You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I2C:2020ECCV Inter-Image Communication for Weakly Supervised Localization
2020ECCV Pairwise Similarity Knowledge Transfer for Weakly Supervised Object Localization
2020ICPR Dual-attention Guided Dropblock Module for Weakly Supervised Object Localization
2020arxiv Rethinking Localization Map Towards Accurate Object Perception with Self-Enhancement Maps
2019
ADL:2019CVPR Attention-based Dropout Layer for Weakly Supervised Object Localization
DANet:2019ICCV DANet: Divergent Activation for Weakly Supervised Object Localization
CutMix:2019ICCV CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features
2019ICLR Marginalized average attentional network for weakly-supervised learning
2019arxiv Dual-attention Focused Module for Weakly Supervised Object Localization
2019arxiv Weakly Supervised Localization Using Background Images
2019arxiv Weakly Supervised Object Localization with Inter-Intra Regulated CAMs
2018
ACoL:2018CVPR Adversarial Complementary Learning for Weakly Supervised Object Localization
SPG:2018ECCV Self-produced Guidance for Weakly-supervised Object Localization
2017
Grad-CAM:2017ICCV Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
HaS:2017ICCV Hide-and-Seek Forcing a Network to be Meticulous for Weakly-supervised Object and Action Localization
2016
CAM:2016CVPR Learning Deep Features for Discriminative Localization
2. Performance
Performance will no be updated anymore
Bac. C: backbone for classification
Bac. L: backbone for localization, does not exist for methods use a single network for classification and localization.
Top-1/Top-5 CLS: is correct if the Top-1/Top-5 predict categories contain the correct label.
GT-known Loc is correct when the intersection over union (IoU) between the ground-truth and the prediction is larger than 0.5 and does not consider whether the predicted category is correct.
Top-1/Top-5 Loc is correct when Top-1/Top-5 CLS and GT-Known LOC are both correct.
"-" indicates not exist. "?" indicates the corresponding item is not mentioned in the paper.
2.1. Results on CUB-200-2011
Transformer
Method
Pub.
Bac.C
Bac.L
Top-1/5 Loc
GT-Known
Top-1/5 Cls
GenPromp
2023CVPR
EfficientNet-B7
-
87.0/96.1
98.0
-/-
WEND
2023ACMMM
EfficientNet-B7
ResNet50
83.77/93.84
95.78
-/-
SCM
2022ECCV
Deit-S
-
76.4/91.6
96.6
78.5/94.5
TS-CAM
2021ICCV
Deit-S
-
71.3/83.8
87.7
-/-
VGG
Method
Pub.
Bac.C
Bac.L
Top-1/5 Loc
GT-Known
Top-1/5 Cls
CREAM
2022CVPR
VGG16
-
70.4/85.7
91.0
-/-
SLT-Net
2021CVPR
VGG16
VGG16
67.8/-
87.6
76.6/-
PSOL
2020CVPR
VGG16
VGG16
66.3/84.1
-
-/-
GC-Net
2020ECCV
VGG16
VGG16
63.2/75.5
81.1
76.8/92.3
MEIL
2020CVPR
VGG16
-
57.5/-
73.8
74.8/-
DANet
2019ICCV
VGG16
-
52.5/62.0
67.7
75.4/92.3
CutMix
2019ICCV
VGG16
-
52.5/-
-
-
ADL
2019CVPR
VGG16
-
52.4/-
75.4
65.3/-
CAM
2016CVPR
VGG16
-
44.2/52.2
56.0
76.6/92.5
SPG
2018ECCV
VGG16
-
48.9/57.9
58.9
75.5/92.1
InceptionV3
Method
Pub.
Bac.C
Bac.L
Top-1/5 Loc
GT-Known
Top-1/5 Cls
CREAM
2022CVPR
InceptionV3
-
71.8/86.4
90.4
-/-
SLT-Net
2021CVPR
InceptionV3
VGG16
66.1/-
86.5
76.4/-
PSOL
2020CVPR
InceptionV3
InceptionV3
65.5/83.4
-
-/-
I2C
2020ECCV
InceptionV3
56.0/68.3
72.6
-/-
DANet
2019ICCV
InceptionV3
-
49.5/60.5
67.0
71.2/90.6
ADL
2019CVPR
InceptionV3
-
53.0/-
-
74.6/-
SPG
2018ECCV
InceptionV3
-
46.6/57.7
-
-
Others
Method
Pub.
Bac.C
Bac.L
Top-1/5 Loc
GT-Known
Top-1/5 Cls
ResNet50
DA-WSOL
2022CVPR
ResNet50
-
66.8/-
82.3
-/-
CutMix
2019ICCV
ResNet50
-
54.81/-
-
-/-
GoogleNet
CAM
2016CVPR
GoogleNet
-
41.1/50.7
-
73.8/91.5
2.2. Results on ImageNet
Transformer
Method
Pub.
Bac.C
Bac.L
Top-1/5 Loc
GT-Known
Top-1/5 Cls
GenPromp
2023ICCV
EfficientNet-B7
-
65.2/73.4
75.0
-/-
ViTOL
2022CVPRW
DeiT-B
-
58.6/-
72.5
77.1/-
SCM
2022ECCN
Deit-S
-
56.1/66/4
68.8
76.7/93.0
TS-CAM
2021ICCV
Deit-S
-
53.4/64.3
67.6
-/-
VGG
Method
Pub.
Bac.C
Bac.L
Top-1/5 Loc
GT-Known
Top-1/5 Cls
CREAM
2022CVPR
VGG16
-
52.4/64.2
68.3
-/-
SLT-Net
2021CVPR
VGG16
InceptionV3
51.2/62.4
67.2
72.4/-
PSOL
2020CVPR
VGG16
VGG16
50.9/60.9
64.0
-/-
I2C
2020ECCV
VGG16
-
47.4/58.5
63.9
69.4/89.3
MEIL
2020CVPR
VGG16
-
46.8/-
-
70.3/-
ADL
2019CVPR
VGG16
-
44.9/-
-
69.5/-
CAM
2016CVPR
VGG16
-
42.8/54.9
59.0
68.8/88.6
InceptionV3
Method
Pub.
Bac.C
Bac.L
Top-1/5 Loc
GT-Known
Top-1/5 Cls
CREAM
2022CVPR
InceptionV3
-
56.1/66.2
69.0
-/-
SLT-Net
2021CVPR
InceptionV3
InceptionV3
55.7/65.4
67.6
78.1/-
PSOL
2020CVPR
InceptionV3
InceptionV3
54.8/63.3
65.2
-/-
I2C
2020ECCV
InceptionV3
-
53.1/64.1
68.5
73.3/91.6
GC-Net
2020ECCV
InceptionV3
InceptionV3
49.1/58.1
-
77.4/93.6
MEIL
2020CVPR
InceptionV3
-
49.5/-
-
73.3/-
ADL
2019CVPR
InceptionV3
-
48.7/-
-
72.8/-
SPG
2018ECCV
InceptionV3
-
48.6/60.0
64.7
CAM
2016CVPR
InceptionV3
-
46.3/58.2
62.7
73.3/91.8
Others
Method
Pub.
Bac.C
Bac.L
Top-1/5 Loc
GT-Known
Top-1/5 Cls
ResNet50
DA-WSOL
2022CVPR
ResNet50
-
54.9/-
70.2
-/-
CutMix
2019ICCV
ResNet50
-
47.25/-
-
78.6/94.1
GoogleNet
CAM
2016CVPR
GoogleNet
-
41.1/50.7
-
73.8/91.5
3. Dataset
CUB-200-2011
@article{wah2011caltech,
title={The caltech-ucsd birds-200-2011 dataset},
author={Wah, Catherine and Branson, Steve and Welinder, Peter and Perona, Pietro and Belongie, Serge},
year={2011},
publisher={California Institute of Technology}
}
ImageNet
@inproceedings{deng2009imagenet,
title={Imagenet: A large-scale hierarchical image database},
author={Deng, Jia and Dong, Wei and Socher, Richard and Li, Li-Jia and Li, Kai and Fei-Fei, Li},
booktitle={2009 IEEE conference on computer vision and pattern recognition},
pages={248--255},
year={2009},
organization={Ieee}
}
4. Awesome-list of Weakly-supervised Learning from Our Team