Skip to content

gysit/iree-llvm-sandbox

 
 

Repository files navigation

IREE LLVM Sandbox

DISCLAIMER: This is not an officially-supported Google project. It is a sandbox for quick iteration and experimentation on projects related to the IREE project, MLIR, and LLVM.

This repository contains experimental work by the IREE team closely related to LLVM and MLIR, usually with the aim of upstreaming in some form. The main project is at https://github.com/google/iree.

As an experimental project, build greenness, documentation, and polish are likely to be minimal, as it instead prioritizes easy experimentation.

License

Licensed under the Apache license with LLVM Exceptions. See LICENSE for more information.

Build instructions

This project builds as part of the LLVM External Projects facility (see documentation for the LLVM_EXTERNAL_PROJECTS config setting). There are many ways to set this up. We recommend using our configure.py script below.

It is left to the reader to adapt paths if deviating. We assume below that projects are checked out to $HOME/src.

Check out projects

TODO: Simplify instructions.

In your $HOME/src directory, check out each project:

Required:

  • git clone https://github.com/google/iree-llvm-sandbox

We use the following environment variables defaults in these instructions:

  • IREE_LLVM_SANDBOX_SOURCE_DIR: $HOME/src/iree-llvm-sandbox
  • IREE_LLVM_SANDBOX_BUILD_DIR: ${IREE_LLVM_SANDBOX_SOURCE_DIR}/build

Python prerequisites (if using Python)

Follow the instructions for MLIR Python Bindings:

which python
python -m venv ~/.venv/mlirdev
source ~/.venv/mlirdev/bin/activate
python -m pip install --upgrade pip
python -m pip install -r requirements.txt

Configure and build

The sandbox can be optionally built with or without IREE integration (for accessing IREE specific IR and evaluating on IREE compatible targets):

Note that useful python environment activate scripts for mlirdev and mlirdev-debug are provided in the scripts directory.

Building with IREE

Checkout the IREE GitHub repo next to this directory and initialize submodules:

(cd .. && git clone https://github.com/google/iree --recurse-submodules=third_party/llvm-project && \
 git checkout sandbox)

And configure/build the project:

python configure.py --iree-path=../iree

Or if using scripts/mlirdev/bin/activate:

sandbox-configure-and-build-iree

Note that the third_party/llvm-project bundled with IREE will be used. The sandbox branch often runs ahead of the IREE integration and should generally be used.

Building without IREE

You must checkout llvm-project at a compatible commit.

(cd .. && git clone https://github.com/llvm/llvm-project.git)

And configure/build the project. By default the configure.py script will look in ${IREE_LLVM_SANDBOX_SOURCE_DIR}/../llvm-project (this can also be overridden with --llvm-path):

python configure.py

Using the Python API

source .env && export PYTHONPATH

# Sanity check (should not error).
python -c "import mlir.iree_sandbox"

# Run a matmul.
export MLIR_RUNNER_UTILS_LIB=${IREE_LLVM_SANDBOX_BUILD_DIR}/lib/libmlir_runner_utils.so; \
export MLIR_C_RUNNER_UTILS_LIB=${IREE_LLVM_SANDBOX_BUILD_DIR}/lib/libmlir_c_runner_utils.so; \
cd ${IREE_LLVM_SANDBOX_SOURCE_DIR}; \
python -m python.examples.matmul.test

Using mlir-proto-opt

"${IREE_LLVM_SANDBOX_BUILD_DIR}"/bin/mlir-proto-opt \
  ../iree-llvm-sandbox/test/constant.mlir \
  -linalg-comprehensive-module-bufferize

TODOs:

  1. hook up a lit test target.
  2. re-add npcomp instructions once it is upgraded to use the same build setup.

Running tests

The following commands either run the lit tests only or all tests:

# Run lit tests
lit -v test
# Run python and lit tests
python ./run_tests.py

The lit configuration file test/lit.cfg.py contains a list of excluded tests.

Diagnostics via MLIR LSP server

The MLIR LSP Server allows editors to display as-you-type diagnostics, code navigation, and similar features. In order to extend this functionality to the dialects from this repository, use the following LSP server binary:

/path/to/iree-llvm-sandbox/build/bin/mlir-proto-lsp-server

In VS Code, this is done via the mlir.server_path property in settings.json.

Running a simple search with Nevergrad

The following command runs a simple search of 1000 iterations distributed across all processors of the machine, for a matmul of fixed size 40x50x60:

iree-llvm-sandbox# python -m python.examples.tuning.test_nevergrad_small_matmul \
--search-budget 1000 --n_iters 100 --num-parallel-tasks $(nproc --all) \
--num-cpus-per-benchmark 1 --timeout-per-compilation 1 --timeout-per-benchmark 1 \
--problem_sizes_list 40,50,60 --search-strategy NGOpt

Benchmark commands

Adaptation of recommended benchmark instructions found here. Run the following as root.

# Basic info
numactl --hardware

################################################################
# Prepare to run on a subset of CPUs only
################################################################
# Disable address space randomization.
echo 0 > /proc/sys/kernel/randomize_va_space

# Disable the sibling of CPU 4.
cat /sys/devices/system/cpu/cpu4/topology/thread_siblings_list

# E.g. on a 36 core system, this should return 4,40, use a shift of 36 for rest.
echo 0 > /sys/devices/system/cpu/cpu$((4 + 36))/online

# Disable the siblings of CPU 0-31, we'll use those for parallel runs.
for i in $(seq 0 31); do \
  echo 0 /sys/devices/system/cpu/cpu$(( ${i} + 36))/online; \
done

################################################################
# Perform cpuset manipulation.
################################################################
# For reference, cset shield does not seem to run as expected on at least 2 systems.
# cset shield -c 4 --user=${RUN_AS_USER} -k on --userset=${RUN_AS_USER}
# Instead, reproduce the following finer-grained instructions:
#   https://documentation.suse.com/sle-rt/15-SP2/html/SLE-RT-all/cha-shielding-cpuset.html

cset set -s system -c 32-35 -m 1

#for i in $(seq 0 32); do \
#  cset set -s sandbox_${i} -c ${i} -m 0 --cpu_exclusive
#done

cset set -s sandbox_parallel -c 0-31 -m 0 --cpu_exclusive

cset proc -m -f root -t system

################################################################
# Freq control (note, cloud VM instances do not allow).
################################################################

echo 1 > /sys/devices/system/cpu/intel_pstate/no_turbo
echo performance > /sys/devices/system/cpu/cpu4/cpufreq/scaling_governor
for i in $(seq 0 31); do \
  echo performance > /sys/devices/system/cpu/cpu$(( ${i} ))/cpufreq/scaling_governor;\
done

################################################################
# Exec.
################################################################
IREE_LLVM_SANDBOX_BUILD_DIR=$(pwd)/build \
MLIR_RUNNER_UTILS_LIB=${IREE_LLVM_SANDBOX_BUILD_DIR}/lib/libmlir_runner_utils.so \
MLIR_C_RUNNER_UTILS_LIB=${IREE_LLVM_SANDBOX_BUILD_DIR}/lib/libmlir_c_runner_utils.so \
PYTHONPATH=${IREE_LLVM_SANDBOX_BUILD_DIR}/tools/sandbox/python_packages cset proc -s sandbox \
-e ${PATH_TO_VENV}/.venv/mlirdev/bin/python -- -m python.examples.matmul.bench

IREE_LLVM_SANDBOX_BUILD_DIR=$(pwd)/build \
MLIR_RUNNER_UTILS_LIB=${IREE_LLVM_SANDBOX_BUILD_DIR}/lib/libmlir_runner_utils.so \
MLIR_C_RUNNER_UTILS_LIB=${IREE_LLVM_SANDBOX_BUILD_DIR}/lib/libmlir_c_runner_utils.so \
MLIR_C_RUNNER_UTILS_LIB=${IREE_LLVM_SANDBOX_BUILD_DIR}/lib/libmlir_c_runner_utils.so \
export MLIR_RUNNER_EXTRA_LIBS=${IREE_LLVM_SANDBOX_BUILD_DIR}/lib/libmlir_async_runtime_copy.so \
PYTHONPATH=${IREE_LLVM_SANDBOX_BUILD_DIR}/tools/sandbox/python_packages cset proc -s sandbox_parallel \
-e ${PATH_TO_VENV}/.venv/mlirdev/bin/python -- -m python.examples.linalg_ext.in_par_bench

Hashes of interest

Repro for experimental results described in arxiv paper:

git checkout 680c8160edb7aa13b621b28c221288624ebc37e4
echo Please update LLVM to $(cat pinned-llvm-version)

Hash before transitioning to schedule dialect only:

git checkout ea0e5ec37a4d73808e16926c0335cc21fde0286c
echo Please update LLVM to $(cat pinned-llvm-version)

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 39.7%
  • Python 33.0%
  • MLIR 19.3%
  • Shell 6.4%
  • CMake 1.4%
  • C 0.2%