forked from catid/wirehair
-
Notifications
You must be signed in to change notification settings - Fork 0
/
WirehairTools.cpp
1056 lines (905 loc) · 44.3 KB
/
WirehairTools.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/** \file
\brief Wirehair : Tools
\copyright Copyright (c) 2012-2018 Christopher A. Taylor. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name of Wirehair nor the names of its contributors may be
used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/
#include "WirehairTools.h"
#include <cmath>
#ifdef _MSC_VER
#include <intrin.h> // _BitScanReverse
#pragma intrinsic(_BitScanReverse)
#endif
namespace wirehair {
//------------------------------------------------------------------------------
// Utility: 16-bit Integer Square Root function
static const uint8_t kSquareRootTable[256] = {
0, 16, 16, 16, 32, 32, 32, 32, 32, 48, 48, 48, 48, 48, 48, 48,
64, 64, 64, 64, 64, 64, 64, 64, 64, 80, 80, 80, 80, 80, 80, 80,
80, 80, 80, 80, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96,
96, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112,
128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143,
143, 144, 145, 146, 147, 148, 149, 150, 150, 151, 152, 153, 154, 155, 155, 156,
157, 158, 159, 159, 160, 161, 162, 163, 163, 164, 165, 166, 167, 167, 168, 169,
170, 170, 171, 172, 173, 173, 174, 175, 175, 176, 177, 178, 178, 179, 180, 181,
181, 182, 183, 183, 184, 185, 185, 186, 187, 187, 188, 189, 189, 190, 191, 191,
192, 193, 193, 194, 195, 195, 196, 197, 197, 198, 199, 199, 200, 201, 201, 202,
203, 203, 204, 204, 205, 206, 206, 207, 207, 208, 209, 209, 210, 211, 211, 212,
212, 213, 214, 214, 215, 215, 216, 217, 217, 218, 218, 219, 219, 220, 221, 221,
222, 222, 223, 223, 224, 225, 225, 226, 226, 227, 227, 228, 229, 229, 230, 230,
231, 231, 232, 232, 233, 234, 234, 235, 235, 236, 236, 237, 237, 238, 238, 239,
239, 240, 241, 241, 242, 242, 243, 243, 244, 244, 245, 245, 246, 246, 247, 247,
248, 248, 249, 249, 250, 250, 251, 251, 252, 252, 253, 253, 254, 254, 255, 255,
};
/*
Based on code from http://www.azillionmonkeys.com/qed/sqroot.html
"Contributors include Arne Steinarson for the basic approximation idea,
Dann Corbit and Mathew Hendry for the first cut at the algorithm,
Lawrence Kirby for the rearrangement, improvments and range optimization
and Paul Hsieh for the round-then-adjust idea."
I tried this out, stdlib sqrt() and a few variations on Newton-Raphson
and determined this one is, by far, the fastest. I adapted it to 16-bit
input for additional performance and tweaked the operations to work best
with the MSVC optimizer, which turned out to be very sensitive to the
way that the code is written.
My table generator produces a different table than from the website, but that
is because I stop at 16-bit values.
*/
/// Returns first position with set bit (LSB = 0)
/// Precondition: x != 0
static inline unsigned Log32(uint32_t x)
{
#ifdef _MSC_VER
unsigned long index;
// Note: Ignoring result because x != 0
_BitScanReverse(&index, x);
return (unsigned)index;
#else
// Note: Ignoring return value of 0 because x != 0
return 31 - (unsigned)__builtin_clz(x);
#endif
}
// There is a pretty good discussion of porting CLZ here:
// https://embeddedgurus.com/state-space/tag/clz/
uint16_t FloorSquareRoot16(uint16_t x)
{
unsigned nonzeroBits;
if (x < 0x100) {
nonzeroBits = 6;
}
else {
// TBD: It might be faster on ARM to just use branches
nonzeroBits = Log32(x);
}
// See TableGenerator.cpp for logic here
const unsigned tableShift = (nonzeroBits - 6) & 0xfe;
const unsigned resultShift = (15 - nonzeroBits) / 2;
uint16_t r = kSquareRootTable[x >> tableShift] >> resultShift;
// Correct rounding if necessary (compiler optimizes this form better)
r -= (r * r > x);
return r;
}
//------------------------------------------------------------------------------
// Utility: 16-bit Truncated Sieve of Eratosthenes Next Prime function
/// Size of the kSieveTable in elements
static const int kSieveTableSize = 2 * 3 * 5 * 7;
/// Sieve table for the next prime finding function below
static const uint8_t kSieveTable[kSieveTableSize] = {
1, 0, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 0, 3, 2, 1, 0, 1, 0, 3, 2, 1, 0, 5, 4, 3, 2, 1, 0,
1, 0, 5, 4, 3, 2, 1, 0, 3, 2, 1, 0, 1, 0, 3, 2, 1, 0, 5, 4, 3, 2, 1, 0, 5, 4, 3, 2, 1, 0,
1, 0, 5, 4, 3, 2, 1, 0, 3, 2, 1, 0, 1, 0, 5, 4, 3, 2, 1, 0, 3, 2, 1, 0, 5, 4, 3, 2, 1, 0,
7, 6, 5, 4, 3, 2, 1, 0, 3, 2, 1, 0, 1, 0, 3, 2, 1, 0, 1, 0, 3, 2, 1, 0, 7, 6, 5, 4, 3, 2,
1, 0, 5, 4, 3, 2, 1, 0, 3, 2, 1, 0, 5, 4, 3, 2, 1, 0, 1, 0, 3, 2, 1, 0, 5, 4, 3, 2, 1, 0,
1, 0, 5, 4, 3, 2, 1, 0, 5, 4, 3, 2, 1, 0, 3, 2, 1, 0, 1, 0, 3, 2, 1, 0, 5, 4, 3, 2, 1, 0,
1, 0, 5, 4, 3, 2, 1, 0, 3, 2, 1, 0, 1, 0, 3, 2, 1, 0, 1, 0, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0,
};
/// Number of primes under 256 and above 11
static const unsigned kPrimesUnder256Count = 50;
/// List of primes under 256 and above 11
static const uint8_t kPrimesUnder256From11[50] = {
11, 13, 17, 19, 23, 29, 31, 37, 41, 43,
47, 53, 59, 61, 67, 71, 73, 79, 83, 89,
97, 101, 103, 107, 109, 113, 127, 131, 137, 139,
149, 151, 157, 163, 167, 173, 179, 181, 191, 193,
197, 199, 211, 223, 227, 229, 233, 239, 241, 251,
};
uint16_t NextPrime16(uint16_t n)
{
// Handle small n
switch (n)
{
case 0:
CAT_DEBUG_BREAK(); // Invalid input
case 1: return 1;
case 2: return 2;
case 3: return 3;
case 4:
case 5: return 5;
case 6:
case 7: return 7;
}
// Handle large n
if (n > 65521) {
CAT_DEBUG_BREAK(); // Invalid input
return 0;
}
// Choose first n from table
unsigned offset = n % kSieveTableSize;
uint16_t next = kSieveTable[offset];
offset += next + 1;
n += next;
// Initialize p_max to floor(sqrt(n))
unsigned p_max = FloorSquareRoot16(n);
unsigned p_max2 = p_max * p_max;
const uint8_t * GF256_RESTRICT primes = &kPrimesUnder256From11[0];
// For each number to try:
TryNext:
// For each prime to test up to square root:
for (unsigned i = 0; i < kPrimesUnder256Count; ++i)
{
// If the next prime is above p_max we are done!
const uint8_t p = primes[i];
if (p > p_max) {
return n;
}
// If composite, try next n
if (n % p == 0)
{
// Use table to choose next trial number
if (offset >= kSieveTableSize) {
offset -= kSieveTableSize;
}
// Get next to test
next = kSieveTable[offset];
offset += next + 1;
n += next + 1;
// Derivative square root iteration of p_max
if (p_max2 < n)
{
++p_max;
p_max2 = p_max * p_max;
}
goto TryNext;
}
}
return n;
}
//------------------------------------------------------------------------------
// Utility: GF(2) Invertible Matrix Generator function
/**
Sometimes it is helpful to be able to quickly generate a GF2 matrix
that is invertible. I guess. Anyway, here's a lookup table of
seeds that create invertible GF2 matrices and a function that will
fill a bitfield with the matrix.
This is generated and unit tested in TableGenerator.cpp
*/
static const unsigned kMatrixSeedCount = 512;
static const uint8_t kInvertibleMatrixSeeds[kMatrixSeedCount] = {
0,1,4,2,0,12,0,1,1,0,2,2,1,4,1,1,1,9,9,1,0,0,0,0,2,2,2,4,3,4,1,1,
0,0,0,0,7,1,6,2,5,1,0,4,0,0,10,0,11,3,3,2,10,0,0,0,0,0,0,1,0,0,1,6,
4,0,2,3,0,0,0,1,0,0,3,3,3,1,4,0,2,2,3,1,6,0,4,1,2,3,1,1,7,0,7,0,
0,3,5,2,6,1,3,3,0,7,0,0,4,7,1,7,5,4,1,4,4,4,6,3,0,0,4,5,5,1,8,1,
1,0,2,4,4,2,2,2,4,5,0,0,2,0,2,4,1,3,3,3,0,4,0,0,0,0,0,0,2,1,1,17,
3,3,3,2,9,14,3,2,5,1,1,6,3,1,6,0,0,5,5,3,3,0,0,0,0,7,4,7,7,10,0,1,
1,9,0,0,0,1,3,0,1,2,0,2,4,1,4,0,0,2,0,4,3,3,1,0,1,10,12,5,2,2,4,1,
0,1,1,1,0,6,4,0,0,0,3,1,3,5,0,10,2,0,3,3,1,1,0,1,6,19,2,2,1,3,5,3,
1,1,1,4,4,0,0,3,2,8,1,14,3,0,0,1,0,1,1,4,1,1,2,0,6,8,6,5,0,0,0,6,
1,1,4,1,6,3,0,0,1,6,3,2,2,1,3,1,9,6,8,3,1,0,3,0,0,1,1,5,2,2,4,0,
1,2,2,6,5,7,6,0,10,3,5,0,0,0,4,0,2,10,3,1,2,2,0,2,0,9,0,0,5,3,4,4,
4,2,0,7,0,0,0,0,2,5,0,0,0,4,5,0,0,2,4,7,3,2,2,0,1,8,1,0,2,2,2,6,
2,0,0,0,9,0,0,0,1,0,1,1,3,0,0,3,3,3,5,0,0,1,0,1,1,1,14,12,9,2,11,3,
2,3,3,3,3,7,6,6,0,0,0,11,0,0,3,2,1,1,1,2,3,2,3,3,3,3,3,0,0,0,1,8,
4,3,4,4,4,1,4,6,0,6,4,3,7,6,0,1,3,3,0,2,1,1,1,1,2,0,1,0,0,8,3,2,
2,2,2,2,9,0,0,0,0,0,0,0,0,0,5,9,0,0,2,3,2,0,0,10,11,0,0,0,2,0,6,0,
};
static GF256_FORCE_INLINE uint64_t Random64(PCGRandom& prng)
{
const uint32_t rv1 = prng.Next();
const uint32_t rv2 = prng.Next();
return ((uint64_t)rv2 << 32) | rv1;
}
void AddInvertibleGF2Matrix(
uint64_t * GF256_RESTRICT matrix, ///< Address of upper left word
const unsigned offset, ///< Offset in bits to the first sum column
const unsigned pitchWords, ///< Pitch of the matrix in words
const unsigned n ///< Number of bits in the matrix to generate
)
{
// If we do not have this value of n in the table:
if (n >= kMatrixSeedCount)
{
uint64_t * row = matrix;
// For each row:
for (unsigned ii = 0; ii < n; ++ii, row += pitchWords)
{
// Flip diagonal bit
const unsigned column_i = offset + ii;
row[column_i >> 6] ^= (uint64_t)1 << (column_i & 63);
// Flip an off-diagonal bit also
if (ii + 1 < n) {
const unsigned column_j = column_i + 1;
row[column_j >> 6] ^= (uint64_t)1 << (column_j & 63);
}
}
return;
}
// Pull a random matrix out of the lookup table
const uint8_t seed = kInvertibleMatrixSeeds[n];
PCGRandom prng;
prng.Seed(seed);
const unsigned shift = offset & 63;
uint64_t * row = matrix + (offset >> 6);
// For each row to generate:
for (unsigned row_i = 0; row_i < n; ++row_i, row += pitchWords)
{
uint64_t * dest = row;
unsigned target = n;
// Unroll the first word
uint64_t prev = 0;
// Generate first word
const uint64_t word0 = Random64(prng);
uint64_t temp0 = word0;
unsigned written0 = 64 - shift;
// Handle short writes
if (target < 64) {
temp0 &= ((uint64_t)1 << target) - 1;
if (written0 > target) {
written0 = target;
}
}
// Add partial word into front
*dest++ ^= temp0 << shift;
target -= written0;
prev = word0;
if (target <= 0) {
continue;
}
// For each remaining word:
for (;;)
{
uint64_t temp = 0;
if (shift != 0) {
temp = prev >> (64 - shift);
}
uint64_t word = 0;
// If it needs another word:
if (target > shift) {
// Generate next word
word = Random64(prng);
temp |= (word << shift);
}
if (target < 64) {
temp &= ((uint64_t)1 << target) - 1;
}
// Add partial word
*dest ^= temp;
if (target <= 64) {
break;
}
target -= 64;
++dest;
prev = word;
}
}
}
//------------------------------------------------------------------------------
// Utility: Deck Shuffling function
void ShuffleDeck16(
PCGRandom &prng,
uint16_t * GF256_RESTRICT deck,
const uint32_t count)
{
deck[0] = 0;
// If we can unroll 4 times:
if (count <= 256)
{
for (uint32_t ii = 1;;)
{
uint32_t jj, rv = prng.Next();
// 8-bit unroll
switch (count - ii)
{
default:
jj = (uint8_t)rv % ii;
deck[ii] = deck[jj];
deck[jj] = (uint16_t)ii;
++ii;
jj = (uint8_t)(rv >> 8) % ii;
deck[ii] = deck[jj];
deck[jj] = (uint16_t)ii;
++ii;
jj = (uint8_t)(rv >> 16) % ii;
deck[ii] = deck[jj];
deck[jj] = (uint16_t)ii;
++ii;
jj = (uint8_t)(rv >> 24) % ii;
deck[ii] = deck[jj];
deck[jj] = (uint16_t)ii;
++ii;
break;
case 3:
jj = (uint8_t)rv % ii;
deck[ii] = deck[jj];
deck[jj] = (uint16_t)ii;
++ii;
case 2:
jj = (uint8_t)(rv >> 8) % ii;
deck[ii] = deck[jj];
deck[jj] = (uint16_t)ii;
++ii;
case 1:
jj = (uint8_t)(rv >> 16) % ii;
deck[ii] = deck[jj];
deck[jj] = (uint16_t)ii;
case 0:
return;
}
}
}
else
{
// For each deck entry:
for (uint32_t ii = 1;;)
{
uint32_t jj, rv = prng.Next();
// 16-bit unroll
switch (count - ii)
{
default:
jj = (uint16_t)rv % ii;
deck[ii] = deck[jj];
deck[jj] = (uint16_t)ii;
++ii;
jj = (uint16_t)(rv >> 16) % ii;
deck[ii] = deck[jj];
deck[jj] = (uint16_t)ii;
++ii;
break;
case 1:
jj = (uint16_t)rv % ii;
deck[ii] = deck[jj];
deck[jj] = (uint16_t)ii;
case 0:
return;
}
}
}
}
//------------------------------------------------------------------------------
// Utility: Peeling Row Weight Generator function
/// Stop using weight-1 after this
static const uint32_t kMaxNForWeight1 = 2048;
/// Maximum columns per peel matrix row
static const unsigned kMaxPeelCount = 64;
/// Map from a 32-bit uniform random number to a row weight
/// Probability of weight i = (i-1)/i
/// e.g. P(2) = 1/2, P(3) = 2/3, ...
/// P(1) is chosen based on logic below.
/// P(64) is set to 1 to truncate the tail of the distribution
static const uint32_t kPeelCountDistribution[kMaxPeelCount] = {
0x00000000, 0x7fffffff, 0xaaaaaaa9, 0xbfffffff, 0xcccccccb, 0xd5555554, 0xdb6db6da, 0xdfffffff,
0xe38e38e2, 0xe6666665, 0xe8ba2e8a, 0xeaaaaaa9, 0xec4ec4eb, 0xedb6db6c, 0xeeeeeeed, 0xefffffff,
0xf0f0f0ef, 0xf1c71c70, 0xf286bca0, 0xf3333332, 0xf3cf3cf2, 0xf45d1744, 0xf4de9bd2, 0xf5555554,
0xf5c28f5b, 0xf6276275, 0xf684bda0, 0xf6db6db5, 0xf72c234e, 0xf7777776, 0xf7bdef7a, 0xf7ffffff,
0xf83e0f82, 0xf8787877, 0xf8af8af7, 0xf8e38e37, 0xf914c1b9, 0xf9435e4f, 0xf96f96f8, 0xf9999998,
0xf9c18f9b, 0xf9e79e78, 0xfa0be82e, 0xfa2e8ba1, 0xfa4fa4f9, 0xfa6f4de8, 0xfa8d9df4, 0xfaaaaaa9,
0xfac687d5, 0xfae147ad, 0xfafafaf9, 0xfb13b13a, 0xfb2b78c0, 0xfb425ecf, 0xfb586fb4, 0xfb6db6da,
0xfb823edf, 0xfb9611a6, 0xfba93867, 0xfbbbbbba, 0xfbcda3ab, 0xfbdef7bc, 0xfbefbefa, 0xffffffff,
};
// Select probability of weight-1 rows here:
// P = 1/128
static const uint32_t P1 = (uint32_t)((1. / 128) * 0xffffffff);
// Remaining probabilities are taken from table
static const uint32_t P2 = kPeelCountDistribution[1];
static const uint32_t P3 = kPeelCountDistribution[2];
uint16_t GeneratePeelRowWeight(
uint32_t rv, ///< 32-bit random value
uint16_t block_count ///< Number of input blocks
)
{
// If peel column count is small:
if (block_count <= kMaxNForWeight1)
{
if (rv < P1) {
return 1;
}
// Rescale to match table values
rv -= P1;
}
// Unroll first 3 for speed (common case):
if (rv <= P2) {
return 2;
}
if (rv <= P3) {
return 3;
}
uint16_t weight = 3;
// Find first table entry containing a number smaller than or equal to rv
while (rv > kPeelCountDistribution[weight++])
{
CAT_DEBUG_ASSERT(weight < kMaxPeelCount);
}
return weight;
}
//------------------------------------------------------------------------------
// Utility: Peel Matrix Row Parameter Initialization
void PeelRowParameters::Initialize(
uint32_t row_seed,
uint32_t p_seed,
uint16_t peel_column_count,
uint16_t mix_column_count)
{
// Initialize PRNG
PCGRandom prng;
prng.Seed(row_seed, p_seed);
// Generate peeling matrix row weight
const uint16_t weight = GeneratePeelRowWeight(prng.Next(), peel_column_count);
// Do not set more than N/2 at a time
const uint16_t max_weight = peel_column_count / 2;
PeelCount = (weight > max_weight) ? max_weight : weight;
CAT_DEBUG_ASSERT(PeelCount > 0 && PeelCount <= kMaxPeelCount);
const uint32_t rv_peel = prng.Next();
// Generate peeling matrix column selection parameters for row
PeelAdd = ((uint16_t)rv_peel % (peel_column_count - 1)) + 1;
PeelFirst = (uint16_t)(rv_peel >> 16) % peel_column_count;
const uint32_t rv_mix = prng.Next();
// Generate mixing matrix column selection parameters
MixAdd = ((uint16_t)rv_mix % (mix_column_count - 1)) + 1;
MixFirst = (uint16_t)(rv_mix >> 16) % mix_column_count;
}
//------------------------------------------------------------------------------
// SIMD-Safe Aligned Memory Allocations
uint8_t* SIMDSafeAllocate(size_t size)
{
uint8_t* data = (uint8_t*)calloc(1, GF256_ALIGN_BYTES + size);
if (!data) {
return nullptr;
}
unsigned offset = (unsigned)((uintptr_t)data % GF256_ALIGN_BYTES);
data += GF256_ALIGN_BYTES - offset;
data[-1] = (uint8_t)offset;
return data;
}
void SIMDSafeFree(void* ptr)
{
if (!ptr) {
return;
}
uint8_t* data = (uint8_t*)ptr;
unsigned offset = data[-1];
if (offset >= GF256_ALIGN_BYTES) {
CAT_DEBUG_BREAK(); // Should never happen
return;
}
data -= GF256_ALIGN_BYTES - offset;
free(data);
}
//------------------------------------------------------------------------------
// Tables for small N
// These are generated and updated by GenerateSmallDenseSeeds.cpp
const uint8_t kTinyDenseCounts[kTinyTableCount] = {
0,0,2,3,3,5,6,6,6,7,9,10,10,10,12,14,13,14,12,12,15,16,21,14,14,13,18,21,22,21,13,22,
13,24,14,17,16,24,30,26,24,18,15,15,24,18,21,17,14,16,21,18,17,22,25,20,17,18,21,18,23,20,19,23,
19
};
const uint16_t kTinyDenseSeeds[kTinyTableCount] = {
0,0,12678,31247,24246,6830,10311,18975,46844,888,38598,63780,12170,24444,55961,13141,53472,55486,28496,27214,49117,60737,62051,59811,3052,33624,35793,8210,32674,36155,10819,52727,
9692,26215,33106,34092,18779,61056,4502,7786,36397,53163,36617,16009,60476,31637,38086,32027,968,59896,27819,10193,64755,41508,44381,41571,52121,23594,313,38382,48549,44868,43789,8396,
1902
};
// This table skips the first kTinyTableCount elements
const uint8_t kSmallDenseSeeds[kSmallTableCount] = {
28,34,248,36,160,229,20,209,229,27,76,188,144,26,95,176,51,20,78,4,121,26,79,158,196,93,233,4,1,1,8,214,
150,139,93,135,224,4,62,27,89,74,150,69,3,119,126,72,145,60,110,57,18,182,140,5,110,8,158,57,196,68,39,138,
3,17,124,119,32,53,69,47,158,39,12,131,44,68,187,168,226,173,92,46,112,89,102,114,231,84,25,237,65,36,151,93,
119,118,147,123,155,62,120,95,161,59,137,12,91,30,119,104,111,203,11,109,207,234,97,117,31,139,207,181,73,127,169,181,
80,246,29,100,6,32,88,2,67,133,185,236,225,16,148,36,16,115,85,108,160,101,171,213,34,107,238,85,89,13,77,14,
133,57,136,242,208,5,225,141,176,155,64,196,142,82,79,64,99,95,74,60,180,72,27,39,13,237,26,60,125,22,188,134,
131,6,25,43,180,61,51,4,81,250,85,123,68,107,129,42,8,160,143,107,181,24,106,126,2,199,23,160,49,109,217,108,
170,238,123,5,4,148,48,45,153,1,121,52,105,255,114,172,115,184,66,220,75,173,133,160,77,220,209,63,248,241,64,228,
70,77,175,29,18,166,144,89,66,131,113,226,22,223,149,125,24,175,51,99,31,145,101,19,106,15,235,118,221,175,148,116,
18,22,156,25,87,154,22,229,7,178,201,116,44,45,9,237,115,218,86,198,107,94,31,49,224,10,43,231,87,72,48,4,
177,213,84,54,143,238,33,155,81,29,57,188,8,240,148,25,32,34,156,199,154,128,130,24,39,182,33,75,13,143,41,137,
15,241,21,92,177,159,73,71,36,46,103,7,106,123,12,195,114,87,255,82,110,50,89,172,158,0,176,242,127,208,110,239,
75,141,58,168,178,150,212,160,91,24,90,184,60,56,190,171,48,26,220,86,143,153,90,60,46,90,74,63,116,245,92,176,
160,70,116,76,61,199,220,86,21,253,77,90,18,240,16,103,72,11,66,26,210,187,54,193,95,81,209,28,51,108,72,61,
6,73,12,54,154,123,140,45,46,108,152,84,244,11,28,205,64,38,18,135,102,1,52,36,73,27,102,42,0,86,28,28,
197,176,160,182,166,31,156,156,156,1,244,168,235,103,43,152,55,82,153,217,35,185,152,123,228,106,184,121,39,226,32,182,
64,157,205,91,139,139,42,10,84,52,66,188,197,161,60,224,83,19,205,40,48,30,47,233,152,162,4,236,230,39,190,240,
85,98,217,93,12,27,150,62,53,7,142,96,192,27,252,166,4,16,78,8,16,248,59,170,26,193,48,1,70,52,18,146,
24,133,123,235,171,205,45,130,107,250,73,173,85,47,1,95,64,188,25,118,40,30,47,132,4,51,125,155,70,166,210,189,
204,143,226,185,63,254,248,93,100,202,167,155,47,28,196,190,5,242,55,51,152,88,248,48,68,24,169,254,33,65,191,1,
245,243,12,48,41,180,189,171,51,14,61,142,14,134,209,123,157,192,149,200,137,204,158,196,114,83,39,58,237,54,134,195,
20,143,184,156,16,40,17,208,101,95,23,99,26,108,211,215,14,218,115,180,132,4,190,117,116,15,161,139,40,215,124,148,
206,12,169,48,90,28,22,8,144,249,39,15,251,80,128,151,91,132,17,112,167,121,33,111,0,153,228,20,196,93,113,43,
139,14,193,140,72,58,201,157,176,131,10,39,18,37,157,6,45,8,36,144,236,79,52,181,11,125,86,219,96,3,15,21,
42,16,160,156,196,65,210,172,10,2,0,127,41,84,107,215,17,94,115,168,95,163,40,144,203,102,173,26,102,72,76,10,
193,48,225,192,194,209,13,88,224,253,34,128,197,129,146,9,168,87,36,183,2,171,117,6,122,118,5,38,87,61,96,95,
217,188,233,203,101,252,180,27,9,210,157,200,57,7,41,92,119,37,125,42,138,208,68,223,36,30,59,139,61,59,252,161,
31,114,7,168,59,210,23,83,114,63,29,24,128,93,180,107,132,84,178,60,100,181,98,65,28,81,155,2,228,226,138,143,
31,219,180,90,59,228,159,207,50,24,58,215,91,89,77,67,114,237,45,10,150,8,230,180,1,253,104,22,3,7,112,83,
93,98,96,71,6,144,106,168,239,89,72,29,102,182,144,19,11,223,65,47,144,26,58,144,152,15,29,140,53,119,166,102,
165,145,30,30,137,183,24,23,40,232,151,108,43,243,61,89,233,66,219,72,208,42,247,8,144,15,0,71,53,11,234,58,
197,12,140,57,32,61,149,95,99,73,115,79,163,79,102,57,248,105,32,59,235,28,211,78,220,93,3,7,44,231,204,124,
224,250,131,232,173,99,111,118,180,108,178,44,205,241,169,29,5,18,139,192,54,28,69,193,41,113,179,62,131,25,1,125,
62,11,237,135,73,105,242,100,175,90,236,197,156,85,39,96,63,60,100,69,243,88,243,158,114,13,139,169,125,52,44,23,
234,41,120,226,236,80,84,26,204,188,39,16,126,202,103,64,174,68,115,152,69,163,225,181,39,189,38,2,95,120,164,49,
253,208,60,13,35,108,77,140,55,87,219,76,36,98,161,70,45,167,50,139,153,122,216,229,19,218,117,13,155,175,53,252,
138,160,52,74,67,46,205,116,100,105,118,33,22,181,105,151,176,112,74,168,179,50,13,28,27,229,203,139,253,204,57,8,
23,216,99,209,3,1,167,120,89,81,43,20,135,142,233,109,216,198,10,128,162,213,174,57,37,26,82,16,220,122,27,2,
139,160,179,71,62,177,90,0,243,93,24,39,48,93,174,129,222,63,60,19,154,65,35,226,90,43,189,28,83,207,239,244,
11,166,74,184,207,12,85,109,58,30,9,163,217,230,149,178,248,22,147,6,206,88,178,7,50,158,18,173,251,6,68,234,
11,69,245,10,123,189,78,183,14,6,23,15,44,145,162,45,19,39,121,101,156,25,181,14,148,32,184,49,91,60,15,101,
93,143,29,220,145,117,26,94,26,92,133,67,101,121,25,8,35,74,232,137,35,138,206,78,137,160,145,183,217,149,37,3,
7,226,30,164,228,32,126,115,66,223,45,16,254,144,226,40,20,126,4,162,89,171,13,223,162,104,226,1,47,238,232,199,
109,86,100,44,126,226,105,246,62,21,65,130,32,210,58,168,236,233,166,35,229,113,127,76,153,123,240,97,13,140,31,230,
175,37,80,48,197,108,169,183,35,118,48,16,176,97,77,26,186,63,150,183,146,31,25,120,4,39,7,60,23,242,62,141,
39,115,103,111,114,130,198,10,39,184,106,129,59,76,111,159,69,116,58,59,85,29,88,155,112,2,250,26,33,224,136,66,
218,137,36,44,150,135,117,106,74,155,64,201,178,86,127,3,141,49,11,173,79,114,83,156,16,20,205,179,70,157,97,138,
50,125,71,75,43,87,180,198,161,27,221,119,49,159,142,221,200,127,120,130,195,31,22,153,78,184,137,57,79,116,58,21,
70,68,121,83,111,63,85,28,34,27,200,150,89,147,160,129,75,59,140,84,29,132,101,142,83,175,50,96,142,56,1,222,
104,128,241,195,70,151,10,0,103,16,56,237,191,127,35,4,30,157,96,79,224,12,153,210,95,29,191,62,132,216,166,73,
28,222,150,109,59,165,12,103,90,214,7,10,64,58,229,35,1,60,172,63,162,178,186,83,63,108,103,207,221,119,50,8,
138,192,17,162,36,64,3,156,206,5,174,65,31,165,116,90,89,155,28,108,44,192,195,5,52,25,27,157,117,82,181,121,
78,224,39,40,84,15,1,107,122,103,240,105,71,207,218,24,89,50,199,207,159,37,3,182,32,242,134,147,20,5,194,129,
162,226,57,50,65,53,172,242,16,28,107,169,139,179,53,72,192,182,186,85,112,234,65,35,17,79,156,185,12,83,29,41,
183,3,91,71,245,45,240,121,72,54,20,211,233,205,126,13,94,181,107,33,84,85,197,115,58,29,83,165,32,151,29,72,
218,233,164,230,149,27,207,164,130,148,75,183,31,152,87,30,5,191,5,53,136,63,225,204,40,149,124,108,240,255,13,24,
189,127,154,142,247,11,116,47,114,130,87,35,141,216,90,79,19,72,237,240,18,102,24,35,122,65,111,117,141,155,119,12,
4,157,100,107,8,55,102,249,142,99,152,204,35,176,214,236,125,17,41,226,228,48,76,141,16,252,238,57,64,64,118,196,
163,26,246,86,197,100,40,0,185,78,21,177,179,50,178,57,8,30,160,52,158,38,33,82,121,225,189,185,22,172,90,49,
9,4,49,19,114,168,117,53,243,63,33,76,231,105,238,16,187,11,20,23,166,77,243,86,34,249,253,3,7,52,57,177,
177,23,233,60,127,113,200,13,56,40,197,71,149,242,81,87,167,254,171,115,53,10,12,77,8,66,207,123,141,2,46,95,
83,140,20,22,179,245,165,160,238,20,22,57,112,48,95,220,15,187,42,7,99,58,31,45,36,43,94,76,54,217,200
};
const uint8_t kSmallPeelSeeds[kTinyTableCount + kSmallTableCount] = {
0,0,0,11,1,0,0,0,1,0,0,0,5,1,0,0,4,11,0,0,0,3,0,1,7,2,3,12,11,9,2,3,
0,3,1,9,21,46,5,8,27,4,37,37,69,5,180,8,30,201,21,23,12,59,151,77,214,216,221,46,23,89,39,11,
46,228,189,11,18,24,41,229,31,123,11,39,119,19,10,102,178,23,131,210,2,116,219,34,43,105,22,128,87,187,179,89,
70,54,65,173,190,85,98,98,238,16,57,80,67,115,135,178,80,195,135,183,113,116,199,137,4,152,33,146,185,46,153,141,
1,0,4,3,0,7,0,3,6,13,5,2,1,0,2,3,1,3,2,1,1,4,2,2,3,0,3,7,1,0,5,0,
0,4,0,4,1,5,0,2,4,130,5,6,10,6,0,4,3,0,16,2,4,0,19,0,7,0,7,5,0,4,1,4,
5,1,4,2,8,7,15,7,3,1,1,2,2,0,2,2,14,3,6,6,5,3,2,12,14,12,22,16,3,2,3,6,
5,10,2,1,1,0,1,6,2,0,7,9,10,5,1,10,4,2,2,2,9,3,1,1,33,5,11,4,4,7,8,0,
0,3,0,10,3,1,5,7,5,37,9,0,10,12,2,13,2,3,12,5,20,0,5,0,0,20,9,2,23,12,31,2,
14,3,3,2,23,4,0,14,1,3,10,4,22,5,28,0,23,19,4,13,14,4,29,12,19,21,5,1,5,1,22,2,
7,3,5,30,11,18,2,15,60,9,6,0,8,7,1,9,4,13,0,37,42,23,29,8,5,5,9,17,8,5,8,51,
17,2,3,21,11,27,30,51,10,7,45,7,13,12,5,30,12,24,50,47,60,98,31,47,23,4,16,45,10,2,27,45,
42,11,44,81,34,26,3,7,22,2,5,19,16,8,63,9,39,71,41,6,51,2,88,4,13,6,19,7,35,23,6,42,
4,2,26,35,37,49,45,19,40,63,78,37,30,1,19,2,8,1,15,31,0,6,12,0,16,4,10,86,25,9,18,21,
13,0,50,62,0,43,107,8,29,19,60,35,81,11,118,10,39,53,4,11,37,78,33,32,61,7,19,21,26,7,6,11,
81,44,72,37,3,17,98,28,15,11,113,42,163,98,15,122,13,119,12,50,45,4,85,37,124,40,0,45,113,39,52,112,
19,88,32,48,36,90,18,39,15,20,43,71,74,183,57,79,79,0,110,8,12,100,16,47,78,93,0,41,20,1,10,36,
21,162,2,39,203,16,79,25,2,1,158,122,134,15,36,73,42,157,91,0,8,34,242,18,39,98,211,49,41,69,5,56,
71,25,110,87,48,51,5,69,64,135,42,122,10,65,20,126,181,108,112,124,200,10,135,14,135,0,136,11,70,29,7,199,
226,225,171,130,50,44,80,31,89,41,80,18,65,43,21,53,70,37,162,165,91,91,33,87,105,87,110,215,13,32,122,19,
69,18,178,8,30,28,2,206,128,61,5,38,43,9,6,122,51,17,85,180,60,16,23,63,83,112,80,115,36,63,18,146,
22,59,83,24,71,34,10,237,51,126,2,168,64,18,37,28,135,146,5,80,4,17,44,105,47,68,219,26,119,13,0,138,
60,26,93,24,75,20,39,21,242,42,62,17,18,0,83,1,36,76,152,107,138,2,246,15,65,26,16,49,203,59,216,127,
64,255,28,198,137,22,14,42,20,198,47,67,8,48,67,40,10,244,159,217,27,208,6,54,143,3,21,80,119,82,133,117,
152,107,42,38,153,213,45,29,20,10,140,107,14,11,33,26,41,32,123,139,104,42,213,2,3,12,79,44,156,40,65,237,
41,5,63,52,149,251,37,10,143,1,162,90,138,43,12,97,46,4,105,43,81,39,222,107,35,28,10,62,48,21,27,186,
105,0,171,248,6,20,145,10,52,3,215,151,13,24,165,131,170,42,46,139,114,43,22,28,73,48,231,70,142,77,224,133,
153,46,35,251,153,108,2,197,175,37,56,45,28,6,77,1,182,112,43,4,137,169,19,203,154,129,13,6,215,16,47,89,
1,3,53,63,245,175,45,164,158,85,236,16,15,13,185,171,18,95,25,19,12,106,12,254,24,68,50,107,53,155,44,5,
231,15,4,103,38,24,66,38,166,38,61,20,129,212,49,2,3,101,100,148,106,87,37,3,2,210,157,2,68,109,34,96,
26,176,76,173,172,46,47,102,255,233,122,224,38,27,27,54,54,47,32,7,85,148,158,136,113,145,211,241,128,17,88,34,
69,224,246,52,27,43,30,90,239,52,82,248,231,26,81,146,0,2,216,209,80,39,14,46,10,93,255,170,31,203,89,242,
79,81,174,225,16,6,52,244,236,149,28,74,57,63,135,25,86,17,28,124,18,168,158,140,125,168,84,221,245,49,163,150,
100,89,20,18,8,11,184,31,30,77,196,39,149,200,170,52,120,29,136,7,28,45,211,190,83,34,27,1,197,163,93,36,
53,177,97,233,226,80,238,41,186,226,45,43,226,107,20,93,215,59,125,175,77,86,123,23,171,14,28,36,1,99,9,54,
38,213,27,38,99,61,155,186,199,203,143,112,0,68,215,177,111,178,124,21,173,205,103,47,77,27,111,68,252,251,249,175,
97,144,7,5,43,170,112,30,18,186,109,150,129,253,53,28,42,41,31,51,144,0,68,6,175,71,141,3,29,114,70,225,
5,34,121,23,151,240,119,38,238,8,51,179,201,7,206,244,98,15,53,195,239,27,200,72,112,198,23,64,6,66,153,201,
46,26,78,5,160,59,209,18,25,168,215,128,73,77,195,26,98,28,71,73,84,228,227,67,189,125,39,60,108,140,29,86,
71,185,63,65,98,72,74,18,58,76,28,44,36,192,113,249,55,214,220,19,177,29,252,94,129,218,117,223,17,14,160,232,
17,25,49,14,57,93,250,194,193,37,184,18,93,28,74,20,31,1,139,117,1,25,52,231,52,21,53,61,145,26,73,5,
36,92,66,180,19,214,8,200,210,204,21,177,12,241,154,58,75,192,17,72,229,106,37,179,59,18,46,166,103,189,100,88,
223,5,40,118,80,44,71,60,137,56,2,235,40,191,12,139,129,191,73,110,11,71,6,11,60,232,180,117,63,1,117,89,
47,87,90,136,229,137,245,3,19,249,146,27,237,225,20,81,173,119,4,38,113,82,42,240,5,10,173,213,175,17,97,63,
0,13,38,20,230,225,120,152,7,64,94,11,131,92,112,90,21,2,62,75,13,104,138,26,119,161,42,183,15,36,63,121,
48,2,36,71,130,134,154,127,245,213,17,155,153,134,81,29,50,48,107,77,9,182,57,16,179,115,85,49,77,60,121,149,
134,68,197,100,114,1,13,88,3,7,182,38,46,180,214,45,30,221,54,129,22,52,114,17,150,110,66,134,158,242,231,38,
77,216,23,104,235,132,196,65,34,43,131,60,111,13,32,135,171,60,135,13,254,228,91,237,19,72,51,249,104,72,145,193,
14,45,81,80,69,45,193,30,200,55,63,121,52,41,21,41,17,190,104,67,30,1,26,88,47,43,42,26,105,185,25,88,
25,13,72,40,18,40,34,78,80,94,185,40,33,77,227,179,118,113,14,129,126,134,115,151,137,214,193,77,156,249,219,3,
17,109,208,119,186,65,226,4,117,102,173,113,214,4,241,156,89,228,97,210,164,62,183,232,127,61,20,153,57,96,166,189,
180,251,23,147,94,125,133,20,121,150,80,254,100,225,35,160,93,214,23,25,9,8,123,238,1,129,214,5,6,194,154,24,
37,54,10,252,40,85,196,165,207,6,37,15,197,88,95,41,129,113,180,81,84,52,204,83,171,200,24,238,70,28,145,158,
117,135,195,252,144,183,89,181,32,12,33,153,27,19,222,74,83,139,190,84,39,48,110,124,129,3,28,56,248,237,147,15,
62,40,71,78,201,192,8,65,118,220,31,225,50,181,80,216,131,192,48,154,128,155,107,203,41,67,25,185,82,232,119,13,
150,139,90,248,49,28,157,244,88,90,3,151,217,74,213,17,86,38,55,222,163,160,118,126,206,64,208,142,132,96,204,216,
35,211,84,33,194,100,244,206,132,74,66,160,128,177,121,0,143,8,104,83,208,184,71,33,115,50,73,2,47,171,152,95,
212,5,152,122,113,156,111,216,88,68,210,24,159,170,231,69,14,170,254,209,147,99,138,137,127,61,203,73,49,200,53,75,
128,9,145,32,171,147,49,203,143,66,207,56,150,15,76,91,50,89,64,209,75,224,191,206,136,129,84,194,4,11,76,131,
160,254,44,208,117,235,49,64,71,102,1,61,215,77,10,228,167,82,34,32,29,75,191,218,29,165,242,30,152,190,9,195,
141,134,26,18,112,93,70,232,25,67,253,36,25,240,133,93,120,104,246,211,5,86,184,71,41,33,158,183,98,134,6,68,
168,217,204,205,84,169,98,93,16,62,93,80,101,248,122,156,56,18,102,171,223,72,43,4,43,59,24,200,211,120,132,54,
112,107,255,111,66,72,93,135,215,123,136,57,217,66,36,169,185,46,176,68,190,92,62,252,12,11,6,30,80,157,18,243,
72,4,5,57,44,66,13,23,94,237,24,197,91,127,103,157,249,78,72,210,139,14,77,43,21,16,12,54,166,49,32,140
};
//------------------------------------------------------------------------------
// DenseCount
/// Point on DenseCount graph
struct DensePoint
{
/// N: Number of blocks
uint16_t N;
/// Dense count found by GenerateDenseCount.cpp - Maximum value over 5 runs
uint16_t DenseCount;
};
/// Number of points in the graph
static const unsigned kDensePointCount = 64;
/// Based on data collected with GenerateDenseCount.cpp
static const DensePoint kDensePoints[kDensePointCount] = {
{ 2048, 52 },
{ 2618, 54 },
{ 2826, 60 },
{ 3725, 62 },
{ 3962, 67 },
{ 4277, 65 },
{ 4547, 60 },
{ 5065, 64 },
{ 5224, 76 },
{ 5642, 66 },
{ 5909, 71 },
{ 6285, 76 },
{ 6583, 66 },
{ 6895, 72 },
{ 7448, 69 },
{ 7682, 76 },
{ 8046, 78 },
{ 8558, 76 },
{ 8963, 73 },
{ 9389, 81 },
{ 10143, 86 },
{ 11129, 94 },
{ 12593, 99 },
{ 12988, 105 },
{ 14032, 108 },
{ 14473, 114 },
{ 15397, 110 },
{ 16636, 113 },
{ 17698, 118 },
{ 18828, 123 },
{ 19420, 127 },
{ 20343, 136 },
{ 21979, 139 },
{ 23024, 150 },
{ 24119, 156 },
{ 25659, 162 },
{ 27298, 173 },
{ 29042, 176 },
{ 30898, 183 },
{ 31870, 190 },
{ 33906, 200 },
{ 35519, 211 },
{ 37208, 220 },
{ 38978, 234 },
{ 40205, 253 },
{ 42776, 297 },
{ 44122, 320 },
{ 45511, 336 },
{ 46944, 357 },
{ 48421, 373 },
{ 49177, 376 },
{ 50725, 380 },
{ 52321, 391 },
{ 53968, 388 },
{ 54811, 382 },
{ 54811, 382 },
{ 55667, 372 },
{ 57419, 362 },
{ 58316, 356 },
{ 60152, 347 },
{ 61091, 337 },
{ 62045, 334 },
{ 63014, 340 },
{ 64000, 345 },
};
/// Interpolate between two values of N and corresponding counts.
/// It works for Count1 < Count0
static uint16_t LinearInterpolate(
int N0, int N1,
int Count0, int Count1,
int N)
{
CAT_DEBUG_ASSERT(N >= N0 && N <= N1);
const int numerator = (N - N0) * (Count1 - Count0);
const int denominator = N1 - N0;
const int count = Count0 + (unsigned)(numerator / denominator);
CAT_DEBUG_ASSERT(count > 0);
return static_cast<uint16_t>(count);
}
uint16_t GetDenseCount(unsigned N)
{
DensePoint lowPoint, highPoint;
if (N < (kTinyTableCount + kSmallTableCount)) {
if (N < kTinyTableCount) {
return kTinyDenseCounts[N];
}
else if (N <= 500) {
lowPoint.N = 64;
highPoint.N = 500;
lowPoint.DenseCount = 26;
highPoint.DenseCount = 35;
}
else if (N <= 1000) {
lowPoint.N = 500;
highPoint.N = 1000;
lowPoint.DenseCount = 35;
highPoint.DenseCount = 48;
}
else // if (N < 2048)
{
lowPoint.N = 1000;
highPoint.N = 2048;
lowPoint.DenseCount = 48;
highPoint.DenseCount = 62;
}
}
else
{
CAT_DEBUG_ASSERT(N >= (kTinyTableCount + kSmallTableCount) && N <= 64000);
unsigned low = 0;
unsigned high = kDensePointCount - 1;
for (;;)
{
const unsigned mid = (high + low) / 2;
if (mid == low) {
break;
}
const DensePoint midPoint = kDensePoints[mid];
if (N > midPoint.N) {
low = mid;
}
else {
high = mid;
}
}
CAT_DEBUG_ASSERT(low < kDensePointCount);
lowPoint = kDensePoints[low];
CAT_DEBUG_ASSERT(low + 1 < kDensePointCount);
highPoint = kDensePoints[low + 1];
}
CAT_DEBUG_ASSERT(lowPoint.N <= N);
CAT_DEBUG_ASSERT(highPoint.N >= N);
uint16_t dense_count = LinearInterpolate(
lowPoint.N,
highPoint.N,
lowPoint.DenseCount,
highPoint.DenseCount,
N);
CAT_DEBUG_ASSERT(dense_count > 0 && dense_count <= kMaxDenseCount);
// Round up to the next D s.t. D Mod 4 = 2
switch (dense_count % 4)
{
case 0: dense_count += 2; break;
case 1: dense_count += 1; break;
case 2: break;
case 3: dense_count += 3; break;
}
return dense_count;
}
//------------------------------------------------------------------------------
// DenseSeed
const uint8_t kDenseSeeds[kDenseSeedCount] = {
0,0,0,0,0,0,0,0,0,0,0,0,0,214,53,190,233,221,24,33,241,138,159,32,131,17,199,245,235,87,241,116,
148,16,105,141,119,181,133,156,85,38,152,36,219,58,160,81,50,93,27,15,60,116,117,130,106,13,138,81,7,31,34,188,
157,4,145,150,19,140,115,255,165,243,186,249,178,13,174,242,41,128,127,177,119,142,96,39,28,78,226,42,38,108,82,1,
84,112,152,0
};
uint16_t GetDenseSeed(unsigned N, unsigned dense_count)
{
if (N < kTinyTableCount) {
// Get seed from tiny table (16-bit)
return kTinyDenseSeeds[N];
}
else if (N < (kTinyTableCount + kSmallTableCount)) {
// Get seed from small table (8-bit)
return kSmallDenseSeeds[N - kTinyTableCount];
}
CAT_DEBUG_ASSERT(N >= kSmallTableCount && N <= 64000);
CAT_DEBUG_ASSERT(dense_count % 4 == 2);
const unsigned tableIndex = dense_count / 4;
CAT_DEBUG_ASSERT(tableIndex < kDenseSeedCount);
return kDenseSeeds[tableIndex];
}
//------------------------------------------------------------------------------
// PeelSeed
const uint8_t kPeelSeeds[kPeelSeedSubdivisions] = {
0,13,4,7,6,13,1,6,13,7,15,13,11,1,6,7,13,5,12,11,7,14,2,10,13,3,3,3,1,9,13,7,
2,9,10,0,2,14,14,0,13,11,5,0,15,14,7,3,15,2,1,3,7,2,15,12,9,10,14,12,5,13,1,7,
2,4,3,15,17,11,9,10,11,4,7,15,0,14,1,2,10,7,11,3,14,1,3,14,0,1,7,2,3,2,17,10,
3,12,0,6,4,5,9,15,11,9,18,11,8,3,6,4,5,27,9,13,5,13,5,12,4,13,2,7,16,0,4,5,
7,4,11,12,0,8,11,9,13,5,3,4,4,7,4,7,1,0,6,14,0,6,5,11,9,1,14,7,1,19,1,6,
12,7,0,6,17,7,15,2,11,2,1,7,13,11,14,3,4,3,2,4,22,1,17,0,13,4,8,19,9,12,1,1,
20,15,9,14,8,2,9,5,15,3,7,3,1,4,8,12,4,2,15,9,15,22,7,7,7,9,9,0,5,4,1,6,
12,13,9,7,12,14,3,8,0,9,16,3,7,3,0,15,7,7,6,7,3,3,12,0,12,13,5,6,0,10,14,9,
7,1,15,2,2,11,12,11,3,6,18,11,7,13,12,0,7,4,11,2,9,14,15,11,10,9,1,7,0,10,7,6,
5,18,0,9,4,1,6,3,0,7,21,1,2,7,3,15,5,0,3,10,9,0,18,10,1,1,17,0,4,18,2,12,
4,2,2,2,9,8,9,2,9,3,5,11,9,3,9,3,15,2,1,5,9,15,9,4,10,12,2,2,6,5,11,2,
9,5,6,6,14,10,10,22,9,4,6,10,0,12,6,18,11,3,4,15,3,5,10,3,7,0,24,20,10,2,7,3,
5,8,6,0,10,2,16,10,5,9,9,3,0,13,2,14,2,0,4,0,3,4,4,12,12,2,3,0,1,3,7,2,
2,5,14,7,5,0,8,9,13,4,13,5,4,9,19,2,13,0,11,1,3,4,0,3,3,4,3,4,15,0,6,5,
9,15,0,22,3,2,7,5,10,9,2,3,17,3,9,6,2,2,4,15,11,10,2,1,6,3,8,13,9,9,0,2,
7,1,6,13,7,0,9,1,16,2,13,9,0,12,4,11,2,3,0,0,2,9,11,12,11,18,1,0,4,21,3,7,
2,5,7,5,4,1,12,0,14,3,17,8,11,8,9,5,8,0,3,3,7,11,8,3,15,1,15,3,7,3,17,10,
7,18,11,0,2,9,10,4,16,17,0,7,7,4,8,13,7,12,7,0,1,19,15,3,4,12,18,8,2,3,0,13,
22,6,14,3,1,7,8,2,6,6,10,18,12,12,7,15,1,0,9,5,11,4,2,0,1,0,6,11,2,8,13,17,
4,1,8,12,12,1,3,1,5,19,5,12,1,11,11,3,8,3,12,15,6,13,5,0,5,10,1,8,5,7,11,3,
22,5,9,12,1,17,0,7,12,1,8,8,3,17,3,10,5,5,3,4,3,0,9,4,1,0,9,7,4,9,1,7,
1,4,3,3,7,11,4,9,9,8,8,5,1,12,10,7,7,0,0,10,4,12,4,4,2,6,13,7,7,13,8,2,
0,7,3,12,7,4,7,4,8,7,8,7,3,1,12,19,17,4,1,4,12,1,0,15,0,8,0,9,1,18,0,0,
7,3,2,10,12,1,11,11,18,1,17,3,13,4,6,0,9,0,1,5,2,2,10,3,10,12,1,3,5,2,2,5,
1,5,3,1,25,0,18,0,4,2,9,10,10,5,7,10,8,7,9,1,4,0,0,1,14,10,7,15,4,3,7,1,
12,0,6,15,1,4,12,9,3,17,1,2,16,7,0,10,1,9,10,10,11,0,7,4,17,11,4,5,16,10,0,10,