-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathOpenMDAO-basic-userguide-5.py
134 lines (98 loc) · 3.73 KB
/
OpenMDAO-basic-userguide-5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import openmdao.api as om
import numpy as np
class SellarDis1(om.ExplicitComponent):
"""
Component containing Discipline 1 -- no derivatives version.
"""
def setup(self):
# Global Design Variable
self.add_input('z', val=np.zeros(2))
# Local Design Variable
self.add_input('x', val=0.)
# Coupling parameter
self.add_input('y2', val=1.0)
# Coupling output
self.add_output('y1', val=1.0)
def setup_partials(self):
# Finite difference all partials.
self.declare_partials('*', '*', method='fd')
def compute(self, inputs, outputs):
"""
Evaluates the equation
y1 = z1**2 + z2 + x1 - 0.2*y2
"""
z1 = inputs['z'][0]
z2 = inputs['z'][1]
x1 = inputs['x']
y2 = inputs['y2']
outputs['y1'] = z1**2 + z2 + x1 - 0.2*y2
class SellarDis2(om.ExplicitComponent):
"""
Component containing Discipline 2 -- no derivatives version.
"""
def setup(self):
# Global Design Variable
self.add_input('z', val=np.zeros(2))
# Coupling parameter
self.add_input('y1', val=1.0)
# Coupling output
self.add_output('y2', val=1.0)
def setup_partials(self):
# Finite difference all partials.
self.declare_partials('*', '*', method='fd')
def compute(self, inputs, outputs):
"""
Evaluates the equation
y2 = y1**(.5) + z1 + z2
"""
z1 = inputs['z'][0]
z2 = inputs['z'][1]
y1 = inputs['y1']
# Note: this may cause some issues. However, y1 is constrained to be
# above 3.16, so lets just let it converge, and the optimizer will
# throw it out
if y1.real < 0.0:
y1 *= -1
outputs['y2'] = y1**.5 + z1 + z2
class SellarMDAConnect(om.Group):
def setup(self):
cycle = self.add_subsystem('cycle', om.Group(), promotes_inputs=['x', 'z'])
cycle.add_subsystem('d1', SellarDis1(), promotes_inputs=['x', 'z'])
cycle.add_subsystem('d2', SellarDis2(), promotes_inputs=['z'])
cycle.connect('d1.y1', 'd2.y1')
######################################
# This is a "forgotten" connection!!
######################################
#cycle.connect('d2.y2', 'd1.y2')
cycle.set_input_defaults('x', 1.0)
cycle.set_input_defaults('z', np.array([5.0, 2.0]))
# Nonlinear Block Gauss Seidel is a gradient free solver
cycle.nonlinear_solver = om.NonlinearBlockGS()
self.add_subsystem('obj_cmp', om.ExecComp('obj = x**2 + z[1] + y1 + exp(-y2)',
z=np.array([0.0, 0.0]), x=0.0),
promotes_inputs=['x', 'z'])
self.add_subsystem('con_cmp1', om.ExecComp('con1 = 3.16 - y1'))
self.add_subsystem('con_cmp2', om.ExecComp('con2 = y2 - 24.0'))
self.connect('cycle.d1.y1', ['obj_cmp.y1', 'con_cmp1.y1'])
self.connect('cycle.d2.y2', ['obj_cmp.y2', 'con_cmp2.y2'])
prob = om.Problem()
prob.model = SellarMDAConnect()
prob.driver = om.ScipyOptimizeDriver()
prob.driver.options['optimizer'] = 'SLSQP'
# prob.driver.options['maxiter'] = 100
prob.driver.options['tol'] = 1e-8
prob.set_solver_print(level=0)
prob.model.add_design_var('x', lower=0, upper=10)
prob.model.add_design_var('z', lower=0, upper=10)
prob.model.add_objective('obj_cmp.obj')
prob.model.add_constraint('con_cmp1.con1', upper=0)
prob.model.add_constraint('con_cmp2.con2', upper=0)
prob.setup()
prob.set_val('x', 2.0)
prob.set_val('z', [-1., -1.])
prob.run_driver()
print('minimum found at')
print(prob.get_val('x')[0])
print(prob.get_val('z'))
print('minumum objective')
print(prob.get_val('obj_cmp.obj')[0])