-
Notifications
You must be signed in to change notification settings - Fork 93
/
pe_imports_features.py
86 lines (69 loc) · 2.98 KB
/
pe_imports_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
"""Extract LIEF features from PE files"""
from h2oaicore.transformer_utils import CustomTransformer
import datatable as dt
import numpy as np
class PEImportsFeatures(CustomTransformer):
_unsupervised = True
_modules_needed_by_name = ['lief==0.14.1']
_regression = True
_binary = True
_multiclass = True
_is_reproducible = True
_parallel_task = True # if enabled, params_base['n_jobs'] will be >= 1 (adaptive to system), otherwise 1
_can_use_gpu = True # if enabled, will use special job scheduler for GPUs
_can_use_multi_gpu = True # if enabled, can get access to multiple GPUs for single transformer (experimental)
_numeric_output = True
@staticmethod
def get_default_properties():
return dict(col_type="text", min_cols=1, max_cols=1, relative_importance=1)
@staticmethod
def do_acceptance_test():
return False
def fit_transform(self, X: dt.Frame, y: np.array = None):
return self.transform(X)
def load_pe(self, file_path):
with open(file_path, 'rb') as f:
bytez = bytearray(f.read())
return (bytez)
def imports_features(self, lief_binary):
from sklearn.feature_extraction import FeatureHasher
imports = lief_binary.imports
features = {}
for lib in imports:
if lib.name not in features:
features[lib.name] = []
for entry in lib.entries:
if entry.is_ordinal:
features[lib.name].append("ordinal" + str(entry.ordinal))
else:
features[lib.name].append(entry.name[:10000])
features_hashed = {}
libraries = sorted(list(set([l.lower() for l in features.keys()])))
for i, x in enumerate(FeatureHasher(256, input_type='string').transform([libraries]).toarray()[0]):
features_hashed.update({f'Imports_libraries_hash_{i}': x})
entries = sorted([lib.lower() + ':' + e for lib, elist in features.items() for e in elist])
for i, x in enumerate(FeatureHasher(1024, input_type='string').transform([entries]).toarray()[0]):
features_hashed.update({f'Imports_entries_hash_{i}': x})
return features_hashed
def get_imports_features(self, file_path):
import lief
try:
pe_bytez = self.load_pe(file_path)
lief_binary = lief.PE.parse(list(pe_bytez))
X = self.imports_features(lief_binary)
return X
except:
X = {f'Imports_libraries_hash_{i}': 0 for i in range(256)}
X.update({f'Imports_entries_hash_{i}': 0 for i in range(1024)})
return X
def transform(self, X: dt.Frame):
import pandas as pd
ret_df = pd.DataFrame(
[
self.get_imports_features(x)
for x in X.to_pandas().values[:, 0]
]
)
self._output_feature_names = ret_df.columns.to_list()
self._feature_desc = self._output_feature_names
return ret_df