-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmultirate_bank_ddc.py
248 lines (216 loc) · 9.14 KB
/
multirate_bank_ddc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
#!/usr/bin/python
#
# DDC experiments which attempt to improve filter efficiency and performance.
#
# Ludwig Schwardt
# 26 October 2010
#
import numpy as np
import scipy.signal
import matplotlib.pyplot as plt
#### PARAMETERS
# Input sample rate, fs
sample_rate = 800e6
no_samples = 8192
# Input tone frequency
tone_freq = 254e6
# LO frequency used in mixing
lo_freq = 199e6
# Interpolate by factor L and decimate by factor M
# The settings below give 800e6 * L / M = 128e6
L = 4
M = 25
# Integer factors for the z^(-1) trick, determined via Euclid's theorem by solving -n0 * L + n1 * M = 1
n0 = 31
n1 = 5
# Filter parameters (operating at a sample rate of L * fs)
taps = 128
cutoff = 64e6
# Number of FFT samples in plots
no_freqs = 8 * no_samples
#### DESIGN FILTER
# Filter operates at highest sample rate (refer to brute-force block diagram)
nyq = L * sample_rate / 2.
# Transition bandwidth for Hamming-windowed design
trans_bw = nyq * 8 / taps
# Maximum allowed ripple (in linear terms)
pass_ripple = stop_ripple = 1 / 256.
# More refined filter specification of passband and stopband edge frequencies
# The Remez design reduces the transition BW to 0.64 of that of the Hamming design
# This keeps the maximum passband and stopband ripple below 1/256, which is good for 8-bit data
pass_edge = cutoff - .64 * trans_bw / 2.
stop_edge = cutoff + .64 * trans_bw / 2.
# Relative weight given to matching the stopband
stop_weight = 0.5
# Normalise all frequencies to Nyquist (i.e. f = 1 means pi rads / sample)
wc, wp, ws = cutoff / nyq, pass_edge / nyq, stop_edge / nyq
## Use windowing method
h_window = scipy.signal.firwin(taps, wc)
## Use Parks-Mclellan aka Remez exchange method
# Increased grid density a bit, as filter bandwidth is quite low (1 / M)
h_remez = scipy.signal.remez(taps, [0, wp, ws, 1], [1, 0], weight=[1 - stop_weight, stop_weight],
Hz=2, grid_density=64)
## Use eigenfilter method
# This method designs a FIR filter h[n] of even order N, having N+1 tap weights h[0] to h[N].
# Since the filter has even symmetry to ensure linear phase, it can be represented by
# the (N // 2 + 1) Fourier cosine coefficients b[m] of its real and even amplitude response.
# In this case, N is taken to be taps - 2, to ensure that this filter is not longer than one above.
coefs = (taps - 2) // 2 + 1
mm, nn = np.meshgrid(np.arange(coefs), np.arange(coefs))
Pstop = 0.5 * (np.sinc(nn + mm) - ws*np.sinc((nn + mm)*ws) + np.sinc(nn - mm) - ws*np.sinc((nn - mm)*ws))
Ppass = wp * (1 - np.sinc(nn*wp) - np.sinc(mm*wp) + 0.5*np.sinc((nn + mm)*wp) + 0.5*np.sinc((nn - mm)*wp))
Poverall = stop_weight * Pstop + (1 - stop_weight) * Ppass
# Pick eigenvector associated with smallest eigenvalue (minimising Rayleigh quotient)
u, s, vh = np.linalg.svd(Poverall)
b = u[:, -1]
# Recreate filter tap weights h[n] from cosine coefficients b[m]
h_eigen = np.hstack((0.5 * np.flipud(b[1:]), (b[0],), 0.5 * b[1:]))
h_eigen /= h_eigen.sum()
h = np.hstack((h_eigen, (0,)))
print "Effective transition regions:"
for name, filt in zip(['window', 'remez', 'eigen'], [h_window, h_remez, h_eigen]):
# Amplitude response with MHz bins
nfreqs = int(2 * nyq / 1e6)
amp_resp = np.abs(np.fft.fft(filt, nfreqs))
eff_pass_edge = (amp_resp[:nfreqs // 2] > 1 - pass_ripple).tolist().index(False)
eff_stop_edge = (amp_resp[:nfreqs // 2] < stop_ripple).tolist().index(True)
print "%s = %d to %d MHz" % (name, eff_pass_edge, eff_stop_edge)
# Choose filter
h = h_window
#### CREATE SIGNALS
# Discrete time indices
n = np.arange(no_samples)
# LO signal
cos_lo_n = 2 * np.cos(2 * np.pi * lo_freq / sample_rate * n)
# Input signal: single sinusoid at given frequency
x = np.cos(2 * np.pi * tone_freq / sample_rate * n)
# Input signal: bandlimited white noise
x = scipy.signal.lfilter(h, 1, np.random.randn(no_samples)) * \
np.cos(2 * np.pi * (lo_freq + cutoff / 4) / sample_rate * n)
#### PERFORM DDC THE BRUTE-FORCE WAY (I channel only)
# Mix signal
i_mix = x * cos_lo_n
# Upsample
i_up = np.zeros(L * no_samples)
i_up[::L] = i_mix
# Filter
i_fir = scipy.signal.lfilter(h, 1, i_up)
# Downsample
i_out = i_fir[::M]
#### PERFORM MORE EFFICIENT DDC
# Mix signal
i_mix = x * cos_lo_n
# Polyphase components (type 1: E_0 to E_(L-1) or type 2: R_(L-1) to R_0)
poly_h = h.reshape(-1, L)
poly_taps = poly_h.shape[0]
# The delays might not be correct for all L and M...
poly_delay = np.arange(0, -L * n0, -n0) + M * (np.arange(0, L * n1, n1) // L)
poly_delay = np.flipud(poly_delay) - poly_delay.min()
# Effective filter memory
memory = poly_delay.max() + poly_taps
# Prepend zeroes to signal to serve as initial filter memory
# (this makes the comparison with the brute-force approach exact)
i_mix_plus_memory = np.hstack((np.zeros(poly_taps - 1), i_mix))
# Number of output samples when first interpolating and then decimating
no_outputs_up_down = (L * no_samples) // M + 1
y = np.zeros(no_outputs_up_down)
for l in range(L):
tap_weights = np.flipud(poly_h[:, l])
for k, start in enumerate(range(poly_delay[l], len(i_mix_plus_memory) - poly_taps, M)):
y[l + k * L] = np.dot(i_mix_plus_memory[start:start + poly_taps], tap_weights)
assert np.all(y == i_out), 'Efficient version not identical to brute-force one'
print "Dumping output to disk\n"
y.astype(np.int8).tofile("py_ddc_out.dump") #dump the output as 8bit signed ints
#### DEBUGGING
# This compares the step-wise transformation of the brute-force filter to
# the efficient one, as illustrated in Figure 18 of P.P. Vaidyanathan's tut
# (Proc. IEEE, vol. 78, no. 1, Jan 1990).
# Step (a): Move interpolator past filter (which becomes polyphase), compare against brute-force UP+FIR
poly_x_a = np.zeros((no_samples, L))
for l in range(L):
poly_x_a[:, l] = scipy.signal.lfilter(poly_h[:, l], 1, i_mix)
i_fir_check = poly_x_a.ravel()
assert np.all(i_fir_check == i_fir), 'Step (a) not identical'
# Step (c): Interchange interpolator and decimator
# Number of output samples when first decimating and then interpolating
no_outputs_down_up = L * (no_samples // M + 1)
y_c = np.zeros(no_outputs_down_up + L*n1)
for l in range(L):
advanced_x = np.hstack((i_mix[l*n0:], np.zeros(l*n0)))
y_c[l*n1:l*n1 + no_outputs_down_up:L] = scipy.signal.lfilter(poly_h[:, l], 1, advanced_x)[::M]
i_out_check = y_c[:len(i_out)]
# Attempt to figure out the discrepancy at start of filter output (not well understood yet)
discrepancy = max((memory + poly_taps) // M * L, M)
assert np.all(i_out_check[discrepancy:] == i_out[discrepancy:]), 'Step (c) not identical'
# Step (d): Move decimator before filter (which splits into polyphase components yet again)
y_d = np.zeros(no_outputs_down_up + L*n1)
for l in range(L):
advanced_x = np.hstack((i_mix_plus_memory[l*n0:], np.zeros(l*n0)))
tap_weights = np.flipud(poly_h[:, l])
for start in range(0, len(advanced_x) - poly_taps, M):
y_d[l*n1 + start // M * L] = np.dot(advanced_x[start:start + poly_taps], tap_weights)
i_out_check2 = y_d[:len(i_out)]
assert np.all(i_out_check2[discrepancy:] == i_out[discrepancy:]), 'Step (d) not identical'
# Plot it up :)
freq = np.arange(0, sample_rate, sample_rate/no_freqs) / 1e6
plt.figure(1)
plt.subplot(311)
plt.title("Scaled FFT of input signal")
plt.plot(freq, abs(np.fft.fft(x, no_freqs)) / no_samples)
plt.xlim(0, sample_rate / 1e6)
plt.xticks([])
plt.subplot(312)
plt.title("Scaled FFT of LO signal")
plt.plot(freq, abs(np.fft.fft(cos_lo_n, no_freqs)) / no_samples)
plt.xlim(0, sample_rate / 1e6)
plt.xticks([])
plt.subplot(313)
plt.title("Scaled FFT of mixer output")
plt.plot(freq, abs(np.fft.fft(i_mix, no_freqs)) / no_samples)
plt.xlim(0, sample_rate / 1e6)
plt.xlabel('Frequency (MHz)')
plt.figure(2)
plt.subplot(311)
plt.title("Scaled FFT of upsampler output")
plt.plot(L * freq, abs(np.fft.fft(i_up, no_freqs)) / no_samples)
plt.xlim(0, L * sample_rate / 1e6)
plt.xticks([])
plt.subplot(312)
plt.title("Frequency response of FIR filter")
plt.plot(L * freq, abs(np.fft.fft(h, no_freqs)))
plt.xlim(0, L * sample_rate / 1e6)
plt.xticks([])
plt.subplot(313)
plt.title("Scaled FFT of filter output")
plt.plot(L * freq, abs(np.fft.fft(i_fir, no_freqs)) / no_samples)
plt.xlim(0, L * sample_rate / 1e6)
plt.xlabel('Frequency (MHz)')
plt.figure(3)
plt.subplot(211)
plt.title("Final output")
plt.plot(i_out, label='brute force')
plt.plot(y, label='efficient')
plt.legend()
plt.xlabel('Samples')
plt.subplot(212)
plt.title("Scaled FFT of final output")
plt.plot(freq * L / M, abs(np.fft.fft(i_out, no_freqs)) * M / no_samples, label='brute force')
plt.plot(freq * L / M, abs(np.fft.fft(y, no_freqs)) * M / no_samples, label='efficient')
plt.xlim(0, sample_rate * L / M / 1e6)
plt.xlabel('Frequency (MHz)')
plt.figure(4)
plt.title("Filter impulse response")
plt.plot(h_window[1:] if taps % 2 == 0 else h_window, label='Windowing')
plt.plot(h_eigen, label='Eigenfilter')
plt.plot(h_remez, label='Remez')
plt.legend()
plt.xlabel('Samples')
plt.figure(5)
plt.title("Filter frequency response")
plt.plot(L * freq, 20 * np.log10(abs(np.fft.fft(h_window, no_freqs))), label='Windowing')
plt.plot(L * freq, 20 * np.log10(abs(np.fft.fft(h_eigen, no_freqs))), label='Eigenfilter')
plt.plot(L * freq, 20 * np.log10(abs(np.fft.fft(h_remez, no_freqs))), label='Remez')
plt.xlim(0, L * sample_rate / 1e6)
plt.legend()
plt.xlabel('Frequency (MHz)')
plt.show()