diff --git a/docs/user-guide/advanced/Pandas_API.ipynb b/docs/user-guide/advanced/Pandas_API.ipynb index a751d4a..c35d64b 100644 --- a/docs/user-guide/advanced/Pandas_API.ipynb +++ b/docs/user-guide/advanced/Pandas_API.ipynb @@ -1884,19 +1884,19 @@ "id": "d98b298c", "metadata": {}, "source": [ - "### Table.idxmin()\n", + "### Table.min()\n", "\n", "```\n", - "Table.idxmax(axis=0, skipna=True, numeric_only=False)\n", + "Table.min(axis=0, skipna=True, numeric_only=False)\n", "```\n", "\n", - "Return index of first occurrence of minimum over requested axis.\n", + "Returns the minimum value across the given axis.\n", "\n", "**Parameters:**\n", "\n", "| Name | Type | Description | Default |\n", "| :----------: | :--: | :------------------------------------------------------------------------------- | :-----: |\n", - "| axis | int | The axis to calculate the idxmin across 0 is columns, 1 is rows. | 0 |\n", + "| axis | int | The axis to calculate the minimum across 0 is columns, 1 is rows. | 0 |\n", "| skipna | bool | Ignore any null values along the axis. | True |\n", "| numeric_only | bool | Only use columns of the table that are of a numeric data type. | False |\n", "\n", @@ -1904,50 +1904,22 @@ "\n", "| Type | Description |\n", "| :----------------: | :------------------------------------------------------------------- |\n", - "| Dictionary | A dictionary where the key represents the column name / row number and the values are the result of calling `idxmin` on that column / row. |" - ] - }, - { - "cell_type": "markdown", - "id": "143f5483", - "metadata": {}, - "source": [ - "**Examples:**\n", - "\n", - "Calculate the idxmin across the columns of a table" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "da7cbf8f", - "metadata": {}, - "outputs": [], - "source": [ - "tab.idxmin()" - ] - }, - { - "cell_type": "markdown", - "id": "fb531e00", - "metadata": {}, - "source": [ - "Calculate the idxmin across the rows of a table using only columns thar are of a numeric data type" + "| Dictionary | A dictionary where the key represents the column name / row number and the values are the result of calling `min` on that column / row. |" ] }, { "cell_type": "code", "execution_count": null, - "id": "9907226a", + "id": "9f13e8a7", "metadata": {}, "outputs": [], "source": [ - "tab.idxmin(axis=1, numeric_only=True)" + "tab.min()" ] }, { "cell_type": "markdown", - "id": "d98b298c", + "id": "b52627d2", "metadata": {}, "source": [ "### Table.idxmax()\n", @@ -1975,7 +1947,7 @@ }, { "cell_type": "markdown", - "id": "143f5483", + "id": "838a07dd", "metadata": {}, "source": [ "**Examples:**\n", @@ -1986,7 +1958,7 @@ { "cell_type": "code", "execution_count": null, - "id": "da7cbf8f", + "id": "6c6d3384", "metadata": {}, "outputs": [], "source": [ @@ -1995,7 +1967,7 @@ }, { "cell_type": "markdown", - "id": "fb531e00", + "id": "30738846", "metadata": {}, "source": [ "Calculate the idxmax across the rows of a table using only columns thar are of a numeric data type" @@ -2004,7 +1976,7 @@ { "cell_type": "code", "execution_count": null, - "id": "9907226a", + "id": "edf9e128", "metadata": {}, "outputs": [], "source": [ @@ -2013,22 +1985,22 @@ }, { "cell_type": "markdown", - "id": "301ab2c2", + "id": "fdb4114c-640a-41ac-a4e7-6c236e9d93ea", "metadata": {}, "source": [ - "### Table.min()\n", + "### Table.idxmin()\n", "\n", "```\n", - "Table.min(axis=0, skipna=True, numeric_only=False)\n", + "Table.idxmax(axis=0, skipna=True, numeric_only=False)\n", "```\n", "\n", - "Returns the minimum value across the given axis.\n", + "Return index of first occurrence of minimum over requested axis.\n", "\n", "**Parameters:**\n", "\n", "| Name | Type | Description | Default |\n", "| :----------: | :--: | :------------------------------------------------------------------------------- | :-----: |\n", - "| axis | int | The axis to calculate the minimum across 0 is columns, 1 is rows. | 0 |\n", + "| axis | int | The axis to calculate the idxmin across 0 is columns, 1 is rows. | 0 |\n", "| skipna | bool | Ignore any null values along the axis. | True |\n", "| numeric_only | bool | Only use columns of the table that are of a numeric data type. | False |\n", "\n", @@ -2036,17 +2008,45 @@ "\n", "| Type | Description |\n", "| :----------------: | :------------------------------------------------------------------- |\n", - "| Dictionary | A dictionary where the key represents the column name / row number and the values are the result of calling `min` on that column / row. |" + "| Dictionary | A dictionary where the key represents the column name / row number and the values are the result of calling `idxmin` on that column / row. |" + ] + }, + { + "cell_type": "markdown", + "id": "57053c36-932e-4805-916c-4cd5e3d33e82", + "metadata": {}, + "source": [ + "**Examples:**\n", + "\n", + "Calculate the idxmin across the columns of a table" ] }, { "cell_type": "code", "execution_count": null, - "id": "9f13e8a7", + "id": "da7cbf8f", "metadata": {}, "outputs": [], "source": [ - "tab.min()" + "tab.idxmin()" + ] + }, + { + "cell_type": "markdown", + "id": "fb531e00", + "metadata": {}, + "source": [ + "Calculate the idxmin across the rows of a table using only columns thar are of a numeric data type" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9907226a", + "metadata": {}, + "outputs": [], + "source": [ + "tab.idxmin(axis=1, numeric_only=True)" ] }, {