-
Notifications
You must be signed in to change notification settings - Fork 145
/
Copy pathface_utilities.py
438 lines (341 loc) · 16.2 KB
/
face_utilities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
import cv2
import numpy as np
import dlib
from imutils import face_utils
import imutils
from collections import OrderedDict
class Face_utilities():
'''
This class contains all needed functions to work with faces in a frame
'''
def __init__(self, face_width = 200):
self.detector = None
self.predictor = None
self.age_net = None
self.gender_net = None
self.MODEL_MEAN_VALUES = (78.4263377603, 87.7689143744, 114.895847746)
self.age_list=['(0, 2)','(4, 6)','(8, 12)','(15, 20)','(25, 32)','(38, 43)','(48, 53)','(60, 100)']
self.gender_list = ['Male', 'Female']
self.desiredLeftEye=(0.35, 0.35)
self.desiredFaceWidth = face_width
self.desiredFaceHeight = None
if self.desiredFaceHeight is None:
self.desiredFaceHeight = self.desiredFaceWidth
#For dlib’s 68-point facial landmark detector:
self.FACIAL_LANDMARKS_68_IDXS = OrderedDict([
("mouth", (48, 68)),
("right_eyebrow", (17, 22)),
("left_eyebrow", (22, 27)),
("right_eye", (36, 42)),
("left_eye", (42, 48)),
("nose", (27, 36)),
("jaw", (0, 17))
])
#For dlib’s 5-point facial landmark detector:
self.FACIAL_LANDMARKS_5_IDXS = OrderedDict([
("right_eye", (2, 3)),
("left_eye", (0, 1)),
("nose", (4))
])
#last params
self.last_age = None
self.last_gender = None
self.last_rects = None
self.last_shape = None
self.last_aligned_shape = None
#FACIAL_LANDMARKS_IDXS = FACIAL_LANDMARKS_68_IDXS
def face_alignment(self, frame, shape):
'''
Align the face by vertical axis
Args:
frame (cv2 image): the original frame. In RGB format.
shape (array): 68 facial landmarks' co-ords in format of of tuples (x,y)
Outputs:
aligned_face (cv2 image): face after alignment
'''
#face_aligned = self.face_align.align(frame,gray,rects[0]) # align face
# print("1: aligned_shape_1 ")
# print(shape)
# print("---")
if (len(shape)==68):
# extract the left and right eye (x, y)-coordinates
(lStart, lEnd) = self.FACIAL_LANDMARKS_68_IDXS["left_eye"]
(rStart, rEnd) = self.FACIAL_LANDMARKS_68_IDXS["right_eye"]
else:
(lStart, lEnd) = self.FACIAL_LANDMARKS_5_IDXS["left_eye"]
(rStart, rEnd) = self.FACIAL_LANDMARKS_5_IDXS["right_eye"]
leftEyePts = shape[lStart:lEnd]
rightEyePts = shape[rStart:rEnd]
# compute the center of mass for each eye
leftEyeCenter = leftEyePts.mean(axis=0).astype("int")
rightEyeCenter = rightEyePts.mean(axis=0).astype("int")
# compute the angle between the eye centroids
dY = rightEyeCenter[1] - leftEyeCenter[1]
dX = rightEyeCenter[0] - leftEyeCenter[0]
angle = np.degrees(np.arctan2(dY, dX)) - 180
# compute the desired right eye x-coordinate based on the
# desired x-coordinate of the left eye
desiredRightEyeX = 1.0 - self.desiredLeftEye[0]
# determine the scale of the new resulting image by taking
# the ratio of the distance between eyes in the *current*
# image to the ratio of distance between eyes in the
# *desired* image
dist = np.sqrt((dX ** 2) + (dY ** 2))
desiredDist = (desiredRightEyeX - self.desiredLeftEye[0])
desiredDist *= self.desiredFaceWidth
scale = desiredDist / dist
# compute center (x, y)-coordinates (i.e., the median point)
# between the two eyes in the input image
eyesCenter = (int((leftEyeCenter[0] + rightEyeCenter[0]) // 2),
int((leftEyeCenter[1] + rightEyeCenter[1]) // 2))
# grab the rotation matrix for rotating and scaling the face
M = cv2.getRotationMatrix2D(eyesCenter, angle, scale)
# update the translation component of the matrix
tX = self.desiredFaceWidth * 0.5
tY = self.desiredFaceHeight * self.desiredLeftEye[1]
M[0, 2] += (tX - eyesCenter[0])
M[1, 2] += (tY - eyesCenter[1])
# apply the affine transformation
(w, h) = (self.desiredFaceWidth, self.desiredFaceHeight)
aligned_face = cv2.warpAffine(frame, M, (w, h),
flags=cv2.INTER_CUBIC)
#print("1: aligned_shape_1 = {}".format(aligned_shape))
#print(aligned_shape.shape)
if(len(shape)==68):
shape = np.reshape(shape,(68,1,2))
# cv2.rectangle(aligned_face,(aligned_shape[54][0], aligned_shape[29][1]), #draw rectangle on right and left cheeks
# (aligned_shape[12][0],aligned_shape[33][1]), (0,255,0), 0)
# cv2.rectangle(aligned_face, (aligned_shape[4][0], aligned_shape[29][1]),
# (aligned_shape[48][0],aligned_shape[33][1]), (0,255,0), 0)
else:
shape = np.reshape(shape,(5,1,2))
# cv2.rectangle(aligned_face, (aligned_shape[0][0],int((aligned_shape[4][1] + aligned_shape[2][1])/2)),
# (aligned_shape[1][0],aligned_shape[4][1]), (0,255,0), 0)
# cv2.rectangle(aligned_face, (aligned_shape[2][0],int((aligned_shape[4][1] + aligned_shape[2][1])/2)),
# (aligned_shape[3][0],aligned_shape[4][1]), (0,255,0), 0)
aligned_shape = cv2.transform(shape, M)
aligned_shape = np.squeeze(aligned_shape)
# print("---")
# return aligned_face, aligned_shape
return aligned_face,aligned_shape
def face_detection(self, frame):
'''
Detect faces in a frame
Args:
frame (cv2 image): a normal frame grab from camera or video
Outputs:
rects (array): detected faces as rectangles
'''
if self.detector is None:
self.detector = dlib.get_frontal_face_detector()
if frame is None:
return
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
#get all faces in the frame
rects = self.detector(gray, 0)
# to get the coords from a rect, use: (x, y, w, h) = face_utils.rect_to_bb(rects[0])
return rects
def age_gender_detection(self, face):
'''
Detect age and gender from a face
Args:
face (cv2 image): face after alignment
Outputs:
age (str): age
gender (str): gender
'''
if self.age_net is None:
print("[INFO] load age and gender models ...")
self.age_net = cv2.dnn.readNetFromCaffe("age_gender_models/deploy_age.prototxt",
"age_gender_models/age_net.caffemodel")
self.gender_net = cv2.dnn.readNetFromCaffe("age_gender_models/deploy_gender.prototxt",
"age_gender_models/gender_net.caffemodel")
print("[INFO] Load models - DONE!")
if face is None:
return
blob = cv2.dnn.blobFromImage(face, 1, (227, 227), self.MODEL_MEAN_VALUES, swapRB=False)
# Predict gender
self.gender_net.setInput(blob)
gender_preds = self.gender_net.forward()
gender = self.gender_list[gender_preds[0].argmax()]
# Predict age
self.age_net.setInput(blob)
age_preds = self.age_net.forward()
age = self.age_list[age_preds[0].argmax()]
return age, gender
def get_landmarks(self, frame, type):
'''
Get all facial landmarks in a face
Args:
frame (cv2 image): the original frame. In RGB format.
type (str): 5 or 68 facial landmarks
Outputs:
shape (array): facial landmarks' co-ords in format of of tuples (x,y)
'''
if self.predictor is None:
print("[INFO] load " + type + " facial landmarks model ...")
self.predictor = dlib.shape_predictor("shape_predictor_" + type + "_face_landmarks.dat")
print("[INFO] Load model - DONE!")
if frame is None:
return None, None
# all face will be resized to a fix size, e.g width = 200
#face = imutils.resize(face, width=200)
# face must be gray
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
rects = self.face_detection(frame)
if len(rects)<0 or len(rects)==0:
return None, None
shape = self.predictor(gray, rects[0])
shape = face_utils.shape_to_np(shape)
# in shape, there are 68 pairs of (x, y) carrying coords of 68 points.
# to draw landmarks, use: for (x, y) in shape: cv2.circle(image, (x, y), 1, (0, 0, 255), -1)
return shape, rects
def ROI_extraction(self, face, shape):
'''
Extract 2 cheeks as the ROIs
Args:
face (cv2 image): face cropped from the original frame. In RGB format.
shape (array): facial landmarks' co-ords in format of of tuples (x,y)
Outputs:
ROI1 (cv2 image): right-cheek pixels
ROI2 (cv2 image): left-cheek pixels
'''
if (len(shape)==68):
ROI1 = face[shape[29][1]:shape[33][1], #right cheek
shape[54][0]:shape[12][0]]
ROI2 = face[shape[29][1]:shape[33][1], #left cheek
shape[4][0]:shape[48][0]]
else:
ROI1 = face[int((shape[4][1] + shape[2][1])/2):shape[4][1], #right cheek
shape[2][0]:shape[3][0]]
ROI2 = face[int((shape[4][1] + shape[2][1])/2):shape[4][1], #left cheek
shape[1][0]:shape[0][0]]
return ROI1, ROI2
def facial_landmarks_remap(self,shape):
'''
Need to re-arrange some facials landmarks to get correct params for cv2.fillConvexPoly
Args:
shape (array): facial landmarks' co-ords in format of of tuples (x,y)
Outputs:
remapped_shape (array): facial landmarks after re-arranged
'''
remapped_shape = shape.copy()
# left eye brow
remapped_shape[17] = shape[26]
remapped_shape[18] = shape[25]
remapped_shape[19] = shape[24]
remapped_shape[20] = shape[23]
remapped_shape[21] = shape[22]
# right eye brow
remapped_shape[22] = shape[21]
remapped_shape[23] = shape[20]
remapped_shape[24] = shape[19]
remapped_shape[25] = shape[18]
remapped_shape[26] = shape[17]
# neatening
remapped_shape[27] = shape[0]
remapped_shape = cv2.convexHull(shape)
#to use remapped_shape
#mask = np.zeros((face_frame.shape[0], face_frame.shape[1])) #create a black rectangle mask with w, h of the face
#cv2.fillConvexPoly(mask, remapped_shape[0:27], 1) #fill convex to the mask with remapped_shape
return remapped_shape
def no_age_gender_face_process(self, frame, type):
'''
full process to extract face, ROI but no age and gender detection
Args:
frame (cv2 image): input frame
type (str): 5 or 68 landmarks
Outputs:
rects (array): detected faces as rectangles
face (cv2 image): face
shape (array): facial landmarks' co-ords in format of tuples (x,y)
aligned_face (cv2 image): face after alignment
aligned_shape (array): facial landmarks' co-ords of the aligned face in format of tuples (x,y)
'''
if(type=="5"):
shape, rects = self.get_landmarks(frame, "5")
if shape is None:
return None
else:
shape, rects = self.get_landmarks(frame, "68")
if shape is None:
return None
(x, y, w, h) = face_utils.rect_to_bb(rects[0])
face = frame[y:y+h,x:x+w]
aligned_face,aligned_shape = self.face_alignment(frame, shape)
# if(type=="5"):
# aligned_shape, rects_2 = self.get_landmarks(aligned_face, "5")
# if aligned_shape is None:
# return None
# else:
# aligned_shape, rects_2 = self.get_landmarks(aligned_face, "68")
# if aligned_shape is None:
# return None
return rects, face, shape, aligned_face, aligned_shape
def face_full_process(self, frame, type, face_detect_on, age_gender_on):
'''
full process to extract face, ROI
face detection and facial landmark run every 3 frames
age and gender detection runs every 6 frames
last values of detections are used in other frames to reduce the time of the process
***NOTE: need 2 time facial landmarks, 1 for face alignment and 1 for facial landmarks in aligned face
***TODO: find facial landmarks after rotate (find co-ords after rotating) so don't need to do 2 facial landmarks
Args:
frame (cv2 image): input frame
type (str): 5 or 68 landmarks
face_detect_on (bool): flag to run face detection and facial landmarks
age_gender_on (bool): flag to run age gender detection
Outputs:
rects (array): detected faces as rectangles
face (cv2 image): face
(age, gender) (str,str): age and gender
shape (array): facial landmarks' co-ords in format of tuples (x,y)
aligned_face (cv2 image): face after alignment
aligned_shape (array): facial landmarks' co-ords of the aligned face in format of tuples (x,y)
#mask (cv2 image): mask of the face after fillConvexPoly
'''
#assign from last params
age = self.last_age
gender = self.last_gender
rects = self.last_rects
shape = self.last_shape
aligned_shape = self.last_aligned_shape
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
if face_detect_on:
if(type=="5"):
shape, rects = self.get_landmarks(frame, "5")
#mask = None
if shape is None:
return None
else:
shape, rects = self.get_landmarks(frame, "68")
# remapped_landmarks = self.facial_landmarks_remap(shape)
# mask = np.zeros((face.shape[0], face.shape[1]))
# cv2.fillConvexPoly(mask, remapped_landmarks[0:27], 1)
if shape is None:
return None
(x, y, w, h) = face_utils.rect_to_bb(rects[0])
face = frame[y:y+h,x:x+w]
if age_gender_on:
age, gender = self.age_gender_detection(face)
aligned_face, aligned_face = self.face_alignment(frame, shape)
# if face_detect_on:
# if(type=="5"):
# aligned_shape, rects_2 = self.get_landmarks(aligned_face, "5")
# if aligned_shape is None:
# return None
# else:
# aligned_shape, rects_2 = self.get_landmarks(aligned_face, "68")
# if aligned_shape is None:
# return None
# print("2: aligned_shape")
# print(aligned_shape)
# print("---")
#assign to last params
self.last_age = age
self.last_gender = gender
self.last_rects = rects
self.last_shape = shape
self.last_aligned_shape = aligned_shape
#return rects, face, (age, gender), shape, aligned_face, mask
return rects, face, (age, gender), shape, aligned_face, aligned_shape