-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmake_filters.py
52 lines (41 loc) · 1.2 KB
/
make_filters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import numpy as np
def make_filter(center=480, width=200, maximum=0.98):
def F(w):
if isinstance(w, np.ndarray):
f = np.zeros(w.shape)
f[(center - width / 2 < w) & (center + width / 2 > w)] = maximum
else:
if center - width / 2 < w < center + width / 2:
f = maximum
else:
f = 0
return f
return F
def init_filters(center, widths, maxima=[0.98, 0.98, 0.98, 0.98]):
w1 = widths[0]
w2 = widths[1]
w3 = widths[2]
w4 = widths[3]
c1 = center
c2 = center + w1 / 2 + w2 / 2
c3 = center + w1 / 2 + w2 + w3 / 2
c4 = center + w1 / 2 + w2 + w3 + w4 / 2
F1 = make_filter(c1, w1, maxima[0])
F2 = make_filter(c2, w2, maxima[1])
F3 = make_filter(c3, w3, maxima[2])
F4 = make_filter(c4, w4, maxima[3])
return F1, F2, F3, F4
def init_filters_thomas(maxima=[0.98, 0.98, 0.98, 0.98]):
w1 = 150
w2 = 100
w3 = 100
w4 = 150
c1 = 460
c2 = 650
c3 = 750
c4 = 900
F1 = make_filter(c1, w1, maxima[0])
F2 = make_filter(c2, w2, maxima[1])
F3 = make_filter(c3, w3, maxima[2])
F4 = make_filter(c4, w4, maxima[3])
return F1, F2, F3, F4