diff --git a/Titanic_Missing_Data_Handling.ipynb b/Titanic_Missing_Data_Handling.ipynb
new file mode 100644
index 0000000..823c727
--- /dev/null
+++ b/Titanic_Missing_Data_Handling.ipynb
@@ -0,0 +1,703 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import numpy as np ### importing numpy and pandas\n",
+ "import pandas as pd"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " PassengerId | \n",
+ " Survived | \n",
+ " Pclass | \n",
+ " Name | \n",
+ " Sex | \n",
+ " Age | \n",
+ " SibSp | \n",
+ " Parch | \n",
+ " Ticket | \n",
+ " Fare | \n",
+ " Cabin | \n",
+ " Embarked | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " Braund, Mr. Owen Harris | \n",
+ " male | \n",
+ " 22.0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " A/5 21171 | \n",
+ " 7.2500 | \n",
+ " NaN | \n",
+ " S | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " Cumings, Mrs. John Bradley (Florence Briggs Th... | \n",
+ " female | \n",
+ " 38.0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " PC 17599 | \n",
+ " 71.2833 | \n",
+ " C85 | \n",
+ " C | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " Heikkinen, Miss. Laina | \n",
+ " female | \n",
+ " 26.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " STON/O2. 3101282 | \n",
+ " 7.9250 | \n",
+ " NaN | \n",
+ " S | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " Futrelle, Mrs. Jacques Heath (Lily May Peel) | \n",
+ " female | \n",
+ " 35.0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 113803 | \n",
+ " 53.1000 | \n",
+ " C123 | \n",
+ " S | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 5 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " Allen, Mr. William Henry | \n",
+ " male | \n",
+ " 35.0 | \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 373450 | \n",
+ " 8.0500 | \n",
+ " NaN | \n",
+ " S | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " PassengerId Survived Pclass \\\n",
+ "0 1 0 3 \n",
+ "1 2 1 1 \n",
+ "2 3 1 3 \n",
+ "3 4 1 1 \n",
+ "4 5 0 3 \n",
+ "\n",
+ " Name Sex Age SibSp \\\n",
+ "0 Braund, Mr. Owen Harris male 22.0 1 \n",
+ "1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 \n",
+ "2 Heikkinen, Miss. Laina female 26.0 0 \n",
+ "3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 \n",
+ "4 Allen, Mr. William Henry male 35.0 0 \n",
+ "\n",
+ " Parch Ticket Fare Cabin Embarked \n",
+ "0 0 A/5 21171 7.2500 NaN S \n",
+ "1 0 PC 17599 71.2833 C85 C \n",
+ "2 0 STON/O2. 3101282 7.9250 NaN S \n",
+ "3 0 113803 53.1000 C123 S \n",
+ "4 0 373450 8.0500 NaN S "
+ ]
+ },
+ "execution_count": 2,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "dataset = pd.read_csv(\"E:\\MAYUKH\\\\naive bayes\\\\titanic\\\\titanic.csv\") ### import the csv dataset\n",
+ "dataset.head() ### looking at the head of the csv dataset..."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Survived | \n",
+ " Pclass | \n",
+ " Sex | \n",
+ " Age | \n",
+ " Fare | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " male | \n",
+ " 22.0 | \n",
+ " 7.2500 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " female | \n",
+ " 38.0 | \n",
+ " 71.2833 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 3 | \n",
+ " female | \n",
+ " 26.0 | \n",
+ " 7.9250 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " female | \n",
+ " 35.0 | \n",
+ " 53.1000 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 0 | \n",
+ " 3 | \n",
+ " male | \n",
+ " 35.0 | \n",
+ " 8.0500 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Survived Pclass Sex Age Fare\n",
+ "0 0 3 male 22.0 7.2500\n",
+ "1 1 1 female 38.0 71.2833\n",
+ "2 1 3 female 26.0 7.9250\n",
+ "3 1 1 female 35.0 53.1000\n",
+ "4 0 3 male 35.0 8.0500"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "dataset.drop(['PassengerId','Name','SibSp','Parch','Ticket','Cabin','Embarked'],axis='columns',inplace=True) ###Dropping the unwanted columns...\n",
+ "dataset.head() ### After dropping the unwanted columns..."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "target=dataset.Survived ### Fixing Survived columns as target to predict the survivals...\n",
+ "inputs=dataset.drop('Survived',axis='columns') ### Columns other than \"Survived\" are taken as input..."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " female | \n",
+ " male | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " female male\n",
+ "0 0 1\n",
+ "1 1 0\n",
+ "2 1 0\n",
+ "3 1 0\n",
+ "4 0 1"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "dummies=pd.get_dummies(inputs.Sex) ### Converting the Sex column to integer type from text...\n",
+ "dummies.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Pclass | \n",
+ " Sex | \n",
+ " Age | \n",
+ " Fare | \n",
+ " female | \n",
+ " male | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 3 | \n",
+ " male | \n",
+ " 22.0 | \n",
+ " 7.2500 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 1 | \n",
+ " female | \n",
+ " 38.0 | \n",
+ " 71.2833 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 3 | \n",
+ " female | \n",
+ " 26.0 | \n",
+ " 7.9250 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 1 | \n",
+ " female | \n",
+ " 35.0 | \n",
+ " 53.1000 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 3 | \n",
+ " male | \n",
+ " 35.0 | \n",
+ " 8.0500 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Pclass Sex Age Fare female male\n",
+ "0 3 male 22.0 7.2500 0 1\n",
+ "1 1 female 38.0 71.2833 1 0\n",
+ "2 3 female 26.0 7.9250 1 0\n",
+ "3 1 female 35.0 53.1000 1 0\n",
+ "4 3 male 35.0 8.0500 0 1"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "inputs = pd.concat([inputs,dummies],axis='columns') ### Appending the dummy columns replacing Sex columns in inputs...\n",
+ "inputs.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Pclass | \n",
+ " Age | \n",
+ " Fare | \n",
+ " female | \n",
+ " male | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 3 | \n",
+ " 22.0 | \n",
+ " 7.2500 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 38.0 | \n",
+ " 71.2833 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 26.0 | \n",
+ " 7.9250 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 1 | \n",
+ " 35.0 | \n",
+ " 53.1000 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 3 | \n",
+ " 35.0 | \n",
+ " 8.0500 | \n",
+ " 0 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Pclass Age Fare female male\n",
+ "0 3 22.0 7.2500 0 1\n",
+ "1 1 38.0 71.2833 1 0\n",
+ "2 3 26.0 7.9250 1 0\n",
+ "3 1 35.0 53.1000 1 0\n",
+ "4 3 35.0 8.0500 0 1"
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "inputs.drop('Sex',axis='columns',inplace=True) ### Dropping the Sex column...\n",
+ "inputs.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "### Looking for missing data in any of the attributes in the data..."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Index(['Age'], dtype='object')"
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "inputs.columns[inputs.isna().any()] ### Searching for any NaN value in any column...found in Age column..."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0 22.0\n",
+ "1 38.0\n",
+ "2 26.0\n",
+ "3 35.0\n",
+ "4 35.0\n",
+ "5 NaN\n",
+ "6 54.0\n",
+ "7 2.0\n",
+ "8 27.0\n",
+ "9 14.0\n",
+ "Name: Age, dtype: float64"
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "inputs.Age[:10] ###Looking for the NaN values in Age column..."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0 22.000000\n",
+ "1 38.000000\n",
+ "2 26.000000\n",
+ "3 35.000000\n",
+ "4 35.000000\n",
+ "5 29.699118\n",
+ "6 54.000000\n",
+ "7 2.000000\n",
+ "8 27.000000\n",
+ "9 14.000000\n",
+ "Name: Age, dtype: float64"
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "inputs.Age = inputs.Age.fillna(inputs.Age.mean()) ### Filling the NaN values with the mean of the Age column... \n",
+ "inputs.Age[:10]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "### After replacing the missing values with the mean value...\n",
+ "### Again checking for any missing data in any of the attributes..."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Index([], dtype='object')"
+ ]
+ },
+ "execution_count": 13,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "inputs.columns[inputs.isna().any()]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "### So there are no more missing values ini any of the attrinutes in the data..."
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.3"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}