-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathword2vec_gensim.py
44 lines (34 loc) · 1.4 KB
/
word2vec_gensim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
# -*- coding: utf-8 -*-
# Copyright 2017 Amir Hadifar. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from gensim.models import KeyedVectors
from gensim.models import Word2Vec
from gensim.models.word2vec import LineSentence
import logging
logging.basicConfig(level=logging.INFO)
OUTPUT_FILE_PATH = './'
INPUT_FILE_PATH = './wiki.fa.text'
def train_model():
sentences = LineSentence(INPUT_FILE_PATH)
model = Word2Vec(sentences, size=200, window=5, sg=1)
model.wv.save_word2vec_format(OUTPUT_FILE_PATH + 'word2vec.txt', binary=False)
def load_model():
wiki_model = KeyedVectors.load_word2vec_format(OUTPUT_FILE_PATH + 'word2vec.txt')
most_similar = wiki_model.most_similar(u'ایران')
for words in most_similar:
print(words[0])
if __name__ == '__main__':
train_model()
load_model()