-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmeasure_sharpness.py
872 lines (775 loc) · 29.2 KB
/
measure_sharpness.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
from __future__ import print_function
from typing import Dict, List, NamedTuple, Optional, Tuple
import argparse
import os
import sys
import shutil
import time
import random
import numpy as np
from tqdm import tqdm
import pickle
import torch.nn.utils.prune as prune
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
from torchvision import datasets
from torchvision import transforms
from pathlib import Path
import operator as op
from contextlib import contextmanager
import copy
from copy import deepcopy
from functorch import make_functional_with_buffers, vmap, grad
from sharpness_utils import eval_APGD_sharpness, eval_average_sharpness
from models.resnet_width import ResNet18, ResNet50, ResNet34, LogitNormalizationWrapper
from models.resnet_imgnet import resnet18
sys.path.append('../')
import utils
parser = argparse.ArgumentParser(
description='Trains a CIFAR Classifier',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument(
'--dataset',
type=str,
default='cifar10',
choices=['cifar10', 'cifar100'],
help='Choose between CIFAR-10, CIFAR-100.')
parser.add_argument(
'--model',
'-m',
type=str,
default='wrn',
choices=['wrn', 'allconv', 'densenet', 'resnext','resnet18','resnet34', 'wrn-28-10'],
help='Choose architecture.')
# Optimization options
parser.add_argument(
'--epochs', '-e', type=int, default=100, help='Number of epochs to train.')
parser.add_argument(
'--lr',
'-lr',
type=float,
default=0.1,
help='Initial learning rate.')
parser.add_argument(
'--norm',
type=str)
parser.add_argument(
'--batch-size', '-b', type=int, default=128, help='Batch size.')
parser.add_argument('--eval_batch_size', type=int, default=5)
parser.add_argument('--momentum', type=float, default=0.9, help='Momentum.')
parser.add_argument(
'--decay',
'-wd',
type=float,
default=0.0005,
help='Weight decay (L2 penalty).')
# WRN Architecture options
parser.add_argument(
'--layers', default=18, type=int, help='total number of layers') #
parser.add_argument('--width', default=64, type=int, help='Widen factor')
parser.add_argument(
'--droprate', default=0.0, type=float, help='Dropout probability')
# AugMix options
parser.add_argument(
'--mixture-width',
default=3,
type=int,
help='Number of augmentation chains to mix per augmented example')
parser.add_argument(
'--mixture-depth',
default=-1,
type=int,
help='Depth of augmentation chains. -1 denotes stochastic depth in [1, 3]')
parser.add_argument(
'--aug-severity',
default=3,
type=int,
help='Severity of base augmentation operators')
parser.add_argument(
'--no-jsd',
'-nj',
action='store_true',
help='Turn off JSD consistency loss.')
parser.add_argument(
'--all-ops',
'-all',
action='store_true',
help='Turn on all operations (+brightness,contrast,color,sharpness).')
# Checkpointing options
parser.add_argument(
'--pruned_model',
default=False,
type=bool
)
parser.add_argument('--adaptive', type=str, default='True') #action='store_true',
parser.add_argument(
'--save',
'-s',
type=str,
default='./snapshots',
help='Folder to save checkpoints.')
parser.add_argument(
'--resume',
nargs='+',
help='Checkpoint path for resume / test.')
parser.add_argument(
'--mask_resumes',
nargs='+',
help='Checkpoint path for resume / test.')
parser.add_argument('--evaluate', type=bool, default=True, help='Eval only.')
parser.add_argument(
'--print-freq',
type=int,
default=50,
help='Training loss print frequency (batches).')
# Acceleration
parser.add_argument(
'--num-workers',
type=int,
default=6,
help='Number of pre-fetching threads.')
parser.add_argument(
'--seed',
type=int,
default=13,
help='')
parser.add_argument(
"--mode",
type=str
)
parser.add_argument(
'--sam_epochs',
type=int,
default=15,
help=''
)
parser.add_argument(
'--tryy',
type=int,
default=0,
help=''
)
parser.add_argument(
'--gamma',
type=str,
default='0.5',
help=''
)
parser.add_argument(
'--sam_iter',
type=int,
default=1
)
parser.add_argument(
'--retrain_epochs',
type=int,
default=20,
help=''
)
parser.add_argument(
'--retrain_iter',
type=int,
default=1
)
parser.add_argument(
'--augmix',
type=bool,
default=False
)
parser.add_argument(
'--flat_ratio',
type=float,
default=0.2
)
parser.add_argument(
'--compare_ratio',
type=float,
default=0.2
)
parser.add_argument(
'--lrsche',
type=str,
default='constant'
)
parser.add_argument(
'--optimizer',
type=str,
default='SGD'
)
parser.add_argument(
'--only_flat',
type=str,
default='False'
)
parser.add_argument(
'--flat_trial',
default=5,
type=int)
parser.add_argument(
'--no_aug',
default=True,
type=bool)
parser.add_argument(
'--batch-num',
type=int,
default=100
)
parser.add_argument(
'--logit-norm',
type=str,
default='False'
)
parser.add_argument("--train_idx_path",type=str, default='./dataset/train_idx.npy')
parser.add_argument("--val_idx_path",type=str, default='./dataset/valid_idx.npy')
parser.add_argument("--data_path",type=str)
parser.add_argument('--mod',type=int,default=0)
args = parser.parse_args()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
global fmodel
CORRUPTIONS = [
'gaussian_noise', 'shot_noise', 'impulse_noise', 'defocus_blur',
'glass_blur', 'motion_blur', 'zoom_blur', 'snow', 'frost', 'fog',
'brightness', 'contrast', 'elastic_transform', 'pixelate',
'jpeg_compression'
]
class CustomDataset(torch.utils.data.Dataset):
def __init__(self, dataset):
self.dataset=dataset
def __getitem__(self, i):
x, y = self.dataset[i]
return i,x,y
def __len__(self):
return len(self.dataset)
def test(net, test_loader):
"""Evaluate network on given dataset."""
net.eval()
total_loss = 0.
total_correct = 0
with torch.no_grad():
for images, targets in test_loader:
images, targets = images.cuda(), targets.cuda()
logits = net(images)
loss = F.cross_entropy(logits, targets)
pred = logits.data.max(1)[1]
total_loss += float(loss.data)
total_correct += pred.eq(targets.data).sum().item()
return total_loss / len(test_loader.dataset), total_correct / len(
test_loader.dataset)
def test_accuracy(model,test_loader):
model.eval()
n = 0
accuracy=torch.zeros(len(test_loader.dataset))
with torch.no_grad():
for idx, data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
pred = output.argmax(dim=1)
correct= pred.eq(target).float().cpu()
accuracy[idx]=correct
return accuracy
@contextmanager
def _perturbed_model(
model,
sigma: float,
rng,
magnitude_eps: Optional[float] = None
):
device = next(model.parameters()).device
if magnitude_eps is not None:
noise = [torch.normal(0,sigma**2 * torch.abs(p) ** 2 + magnitude_eps ** 2, generator=rng) for p in model.parameters()]
else:
noise = [torch.normal(0,sigma**2,p.shape, generator=rng).to(device) for p in model.parameters()]
model = deepcopy(model)
try:
[p.add_(n) for p,n in zip(model.parameters(), noise)]
yield model
finally:
[p.sub_(n) for p,n in zip(model.parameters(), noise)]
del model
def compute_grad(model,sample, target):
model.eval()
model.zero_grad()
sample = sample.unsqueeze(0) # prepend batch dimension for processing
target = target.unsqueeze(0)
prediction = model(sample)
loss_fn=nn.CrossEntropyLoss()
loss = loss_fn(prediction, target)
return torch.autograd.grad(loss, list(model.parameters()))
def compute_sample_grads(model,data, targets):
""" manually process each sample with per sample gradient """
sample_grads = [compute_grad(model,data[i], targets[i]) for i in range(data.shape[0])]
sample_grads = zip(*sample_grads)
sample_grads = [torch.stack(shards) for shards in sample_grads]
return sample_grads
@torch.no_grad()
def pac_bayes(net,train_data,accuracy,seed,
magnitude_eps: Optional[float] = None,
search_depth: int = 15,
montecarlo_samples: int = 10,
accuracy_displacement: float = 0.1,
displacement_tolerance: float = 1e-2):
train_loader = torch.utils.data.DataLoader(
train_data,
batch_size=1,
shuffle=False,
num_workers=args.num_workers,
pin_memory=True)
BIG_NUMBER = 10348628753
device = next(net.parameters()).device
rng = torch.Generator(device=device) if magnitude_eps is not None else torch.Generator()
rng.manual_seed(BIG_NUMBER + seed)
flatness=torch.zeros(len(train_loader.dataset))
for i, dt in enumerate(tqdm(train_loader)):
idx,data,target=dt
lower, upper = 0, 2
for _ in range(search_depth):
sigma=(lower+upper)/2
accuracy_samples = []
for _ in range(montecarlo_samples):
with _perturbed_model(net, sigma, rng, magnitude_eps) as p_model:
data, target = data.to(device, dtype=torch.float), target.to(device)
logits = p_model(data)
pred = logits.argmax(dim=1)
correct= pred.eq(target).float().cpu()
loss_estimate = correct.sum()
accuracy_samples.append(loss_estimate)
displacement=abs(np.mean(accuracy_samples) - accuracy[idx])
if abs(displacement - accuracy_displacement) < displacement_tolerance:
break
elif displacement > accuracy_displacement:
# Too much perturbation
upper = sigma
else:
# Not perturbed enough to reach target displacement
lower = sigma
flatness[idx]=sigma
return flatness.numpy()
'''
def forgot(model_lst,train_loader,train_data):
for iter in range(args.retrain_iter):
'''
def sam_idx(save_path,flats,i,ascend=True):
print(i)
indice=np.arange(flats[0].shape[0])
if(args.compare_ratio!=0):
total=int(indice.shape[0]*args.compare_ratio)
for j in range(len(flats)):
flat=flats[j]
indice1=np.argsort(flat)
if(ascend):
indice=np.intersect1d(indice,indice1[:total])
else:
indice=np.intersect1d(indice,indice1[-total:])
print(indice.shape)
flat_intection=np.zeros((len(flats),indice.shape[0]))
for k in range(len(flats)):
flat_intection[k]=flats[k][indice]
static=[]
this_flats=np.array(flats)
np.save(save_path,this_flats)
this_indice=indice[i::len(flats)]
return np.array(list(set(indice)-set(this_indice)))
else:
return np.array([-1])
def mask_gradient(net,mask):
for name, tensor in net.named_parameters():
#print(name)
if name in mask:
#print(name)
tensor.grad = tensor.grad*mask[name]
def test_worstcase(net,train_loader,mask):
net.eval()
total_loss=0
base_optimizer = torch.optim.SGD
optimizer = NSAM(net.parameters(),base_optimizer,rho=args.gamma,lr=0.1,momentum=0.9,weight_decay=5e-4)
flatness=torch.zeros(len(train_loader.dataset))
for i,dt in enumerate(tqdm(train_loader)):
optimizer.zero_grad()
idx,data,target=dt
data, target = data.cuda(), target.cuda()
logits = net(data)
loss = F.cross_entropy(logits, target)
total_loss+=loss
loss.backward()
mask_gradient(net,mask)
optimizer.first_step()
output=net(data)
rloss = F.cross_entropy(output, target)
sharpness=rloss-loss
flatness[idx]=sharpness.detach()
optimizer.back_step()
return flatness.numpy()
def hessian_ensemble(deck,masks,train_loader,savepaths):
deck.eval()
flatness=torch.zeros(len(train_loader.dataset))
criterion = nn.CrossEntropyLoss()
for i, dt in enumerate(tqdm(train_loader)):
idx,data,target=dt
if(args.eval_batch_size==1 and idx%10!=args.mod):
continue
hessian_dataloader = (data, target)
hessian_comp = hessian(deck,
criterion,
data=hessian_dataloader,
cuda=True)
trace = hessian_comp.trace()
print('\n***Trace: ', np.mean(trace))
flatness[idx]=(np.mean(trace))
Path(savepaths).mkdir(parents=True, exist_ok=True)
path=os.path.join(savepaths,'hessian_ensemble_largebatch.npy')
np.save(path,flatness)
return
def apply_mask_graient_deck(deck,ft_per_sample_grads,masks):
i=0
for name,param in deck.named_parameters():
index=int(name[7])
mask=masks[index]
if name[9:] in mask.masks:
ft_per_sample_grads[i]=ft_per_sample_grads[i]*torch.unsqueeze(mask.masks[name[9:]],dim=0)
i=i+1
return ft_per_sample_grads
def test_hessian(net, train_loader, mask, mode='trace'):
net.eval()
flatness=[]
hessian_dataloader = []
criterion = nn.CrossEntropyLoss()
for i, dt in enumerate(tqdm(train_loader)):
if(i == args.batch_num):
break
idx,data,target=dt
hessian_dataloader.append((data, target))
hessian_comp = hessian(net,
criterion,
mask,
dataloader=hessian_dataloader,
cuda=True)
if mode == 'trace':
trace = hessian_comp.trace()
flatness.append((np.mean(trace)))
print('\n***Trace: ', np.mean(trace))
elif mode == 'top_e':
top_eigenvalues, _ = hessian_comp.eigenvalues()
flatness.append(top_eigenvalues)
print('\n***top_eigenvalues: ', np.mean(top_eigenvalues))
flatness=np.array(flatness)
return flatness
def hessians(model_lst, savepaths, masks, mode='trace'):
nets_flatness=[]
for i in range(len(model_lst)):
train_loader,_ = get_trainloader()
net=model_lst[i]
if(len(masks)>0):
mask=masks[i].masks
else:
mask=None
flatness=test_hessian(net, train_loader, mask, mode)
nets_flatness.append(flatness)
savepaths = os.path.join(savepaths, f'bs{args.eval_batch_size}_bn{args.batch_num}')
Path(savepaths).mkdir(parents=True, exist_ok=True)
path=os.path.join(savepaths,f'hessian_{mode}_indiv_largebatch.npy')
np.save(path,nets_flatness)
def get_ntk(networks, savepaths, masks):
train_loader,_ = get_trainloader()
log_det_ntk_over_data = []
for i, dt in enumerate(train_loader):
if i == args.batch_num:
break
_, inputs, targets = dt
inputs = inputs.cuda(non_blocking=True)
log_det_ntk_lst = []
for network in networks:
network.eval()
grads = []
if len(masks)>0:
sparse_model=True
else:
sparse_model=False
network.zero_grad()
inputs_ = inputs.clone().cuda(non_blocking=True)
logit = network(inputs_)
if isinstance(logit, tuple):
logit = logit[1] # 201 networks: return features and logits
for _idx in range(len(inputs_)):
logit[_idx:_idx+1].backward(torch.ones_like(logit[_idx:_idx+1]), retain_graph=True)
grad = []
for name, W in network.named_parameters():
if 'weight' in name and W.grad is not None:
# the model is a sparse model
if sparse_model:
grad.append(W.grad[W != 0].view(-1).detach())
else:
#rint('Dense Model')
grad.append(W.grad.view(-1).detach())
grads.append(torch.cat(grad, -1))
network.zero_grad()
torch.cuda.empty_cache()
grads = torch.stack(grads, 0)
# print("stacking matrices")
print("grads.shape", len(grads), grads.shape)
# print("computing the matrix multiplication")
ntk = torch.einsum('nc,mc->nm', [grads, grads])
# print("matrix multiplication completed")
print(len(ntk), ntk.shape)
eigenvalue = torch.linalg.eigvalsh(ntk)
log_det_ntk_lst.append(np.log(eigenvalue.detach().cpu().numpy()).sum())
print(len(eigenvalue), log_det_ntk_lst)
log_det_ntk_over_data.append(log_det_ntk_lst)
log_det_ntk_over_data = np.array(log_det_ntk_over_data)
savepaths = os.path.join(savepaths, f'bs{args.eval_batch_size}_bn{args.batch_num}')
Path(savepaths).mkdir(parents=True, exist_ok=True)
path=os.path.join(savepaths,f'log_det_ntk.npy')
print(f'--------------------> save to {path}')
np.save(path, log_det_ntk_over_data)
def get_trainloader():
np.random.seed(args.seed)
random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
os.environ["PYTHONHASHSEED"] = str(args.seed)
print(f"Random seed set as {args.seed}")
if args.dataset=='cifar10':
mean=[0.4914,0.4822,0.4465]
std=[0.2470, 0.2435, 0.2616]
else:
mean=[0.5071, 0.4865, 0.4409]
std=[0.2673, 0.2564, 0.2762]
preprocess = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize(mean, std)])
test_transform = preprocess
train_idx=np.load(args.train_idx_path)
val_idx= np.load(args.val_idx_path)
if args.dataset == 'cifar10':
train_data = torch.utils.data.Subset(datasets.CIFAR10(
f'{args.data_path}/cifar10', train=True,
transform=test_transform, download=True),indices=train_idx)
test_data = datasets.CIFAR10(
f'{args.data_path}/cifar10', train=False,
transform=test_transform, download=True)
base_c_path = f'{args.data_path}/CIFAR-10-C/'
num_classes = 10
else:
train_data = torch.utils.data.Subset(datasets.CIFAR100(
f'{args.data_path}/cifar100', train=True,
transform=test_transform, download=True),indices=train_idx)
test_data = datasets.CIFAR100(
f'{args.data_path}/cifar100', train=False, transform=test_transform, download=True)
base_c_path = f'{args.data_path}/CIFAR-100-C/'
num_classes = 100
train_data=CustomDataset(train_data)
print('train_data without augmix')
train_loader = torch.utils.data.DataLoader(
train_data,
batch_size=args.eval_batch_size,
shuffle=True,
num_workers=args.num_workers,
pin_memory=True)
test_loader = torch.utils.data.DataLoader(
test_data,
batch_size=args.eval_batch_size,
shuffle=False,
num_workers=args.num_workers,
pin_memory=True)
return train_loader, test_loader
def APGD(model_lst, savepaths, masks, mode):
nets_flatness=[]
loss_f = lambda logits, y: F.cross_entropy(logits, y, reduction='mean')
for i in range(len(model_lst)):
net=model_lst[i]
net.eval()
net = LogitNormalizationWrapper(net, normalize_logits=args.logit_norm == 'True')
if(len(masks)>0):
mask=masks[i].masks
else:
mask=None
sharpness_ablation = {}
#,
for norm in ['l2', 'linf']:
for gamma in args.gamma:
train_loader,_ = get_trainloader()
args.norm = norm
if mask is None:
print("--------------------> Evaluate a dense model")
print(f'{mode}, args.logit_norm={args.logit_norm} rho={gamma}, adaptive={args.adaptive == "True"}, {args.norm}, num_batch={args.batch_num}, train_loader batch={train_loader.batch_size}')
if mode == 'APGD_worst':
flatness=eval_APGD_sharpness(net,
mask,
train_loader,
loss_f=loss_f,
train_err=None,
train_loss=None,
n_iters=20,
rho=gamma,
adaptive= args.adaptive == 'True',
norm=args.norm,
T=args.batch_num)
elif mode == 'APGD_average':
flatness=eval_average_sharpness(net,
mask,
train_loader,
loss_f=loss_f,
n_iters=100,
T=args.batch_num,
rho=gamma,
adaptive= args.adaptive == 'True',
norm=args.norm,
)
else:
print("--------------------> Evaluate a sparse model")
print(f'{mode}, args.logit_norm={args.logit_norm} rho={gamma}, adaptive={args.adaptive == "True"}, {args.norm}, num_batch={args.batch_num}, {train_loader.batch_size}')
if mode == 'APGD_worst':
flatness=eval_APGD_sharpness_sparse(net,
mask,
train_loader,
loss_f=loss_f,
train_err=None,
train_loss=None,
n_iters=20,
rho=gamma,
adaptive=args.adaptive == 'True',
norm=args.norm,
T=args.batch_num)
elif mode == 'APGD_average':
flatness=eval_average_sharpness_sparse(net,
mask,
train_loader,
loss_f=loss_f,
n_iters=100,
T=args.batch_num,
rho=gamma,
adaptive= args.adaptive == 'True',
norm=args.norm,
)
sharpness_ablation[f'{args.norm}_{gamma}'] = flatness
print(sharpness_ablation)
nets_flatness.append(sharpness_ablation)
savepaths = os.path.join(savepaths, f'bs{args.eval_batch_size}_bn{args.batch_num}')
Path(savepaths).mkdir(parents=True, exist_ok=True)
path=os.path.join(savepaths, f'{mode}_adaptive{args.adaptive}_logitnorm{args.logit_norm}_indiv.pkl')
f=open(path,"wb")
pickle.dump(nets_flatness,f)
f.close()
def compute_loss_stateless_model (params, buffers, sample, target):
batch = sample.unsqueeze(0)
targets = target.unsqueeze(0)
loss_fn=nn.CrossEntropyLoss()
global fmodel
predictions = fmodel(params, buffers, batch)
loss = loss_fn(predictions, targets)
return loss
def apply_mask_graient(net,ft_per_sample_grads,mask):
i=0
for name, param in net.named_parameters():
if name in mask:
ft_per_sample_grads[i]=ft_per_sample_grads[i]*torch.unsqueeze(mask[name],dim=0)
i=i+1
return ft_per_sample_grads
def test_fisher(model_lst, savepaths, masks):
flatness_model_lst = []
for model_i in range(len(model_lst)):
net = model_lst[model_i]
net.eval()
train_loader, _ = get_trainloader()
if(len(masks)>0):
mask=masks[model_i].masks
else:
mask=None
flatness=[]
global fmodel
fmodel, params, buffers = make_functional_with_buffers(net)
ft_compute_grad = grad(compute_loss_stateless_model)
ft_compute_sample_grad = vmap(ft_compute_grad, in_dims=(None, None, 0, 0))
for i, dt in enumerate(tqdm(train_loader)):
if i == args.batch_num:
break
idx,data,target=dt
#print(idx)
data,target=data.to(device, dtype=torch.float), target.to(device)
ft_per_sample_grads = ft_compute_sample_grad(params, buffers, data, target)
ft_per_sample_grads=list(ft_per_sample_grads)
if mask is not None:
ft_per_sample_grads=apply_mask_graient(net,ft_per_sample_grads,mask)
for j in range(len(ft_per_sample_grads)):
ft_per_sample_grads[j]=ft_per_sample_grads[j].view(data.shape[0],-1)
grads=torch.cat(ft_per_sample_grads,dim=1)
fisher=grads.pow(2).sum(dim=1)
flatness.append(fisher.cpu().detach())
flatness = torch.cat(flatness).numpy()
print(flatness.shape)
flatness_model_lst.append(np.mean(flatness))
flatness_model_lst = np.array(flatness_model_lst)
savepaths = os.path.join(savepaths, f'bs{args.eval_batch_size}_bn{args.batch_num}')
Path(savepaths).mkdir(parents=True, exist_ok=True)
path=os.path.join(savepaths, 'fisher.npy')
np.save(path,flatness_model_lst)
def main():
if args.gamma:
args.gamma = [float(item) for item in args.gamma.split(',')]
print('args.gamma', args.gamma)
else:
print('No numbers provided')
if_sparse = False
if args.dataset == 'cifar10':
num_classes = 10
else:
num_classes = 100
# Distribute model across all visible GPUs
cudnn.benchmark = True
net_ensemble_lst = []
masks=[]
savepaths=[]
i=0
if args.resume:
if len(args.resume) > 0:
for file in args.resume:
print(file)
if args.model == 'densenet':
print("hh")
elif 'wrn' in args.model:
print(args.layers, args.width)
net = WideResNet(args.layers, args.width , num_classes, args.droprate)
elif args.model=='resnet18':
net=ResNet18(width=args.width,num_classes=num_classes)
elif args.model=='resnet34':
net=ResNet34(width=args.width,num_classes=num_classes)
elif args.model=='resnet50':
net=ResNet50(width=args.width,num_classes=num_classes)
net=net.cuda()
indice=file.rindex('/')
savepath=file[:indice]
savepaths.append(savepath)
print(savepath)
checkpoint=torch.load(file,map_location='cuda:0')
if 'mask' in checkpoint:
mask=checkpoint['mask']
masks.append(mask)
net.load_state_dict(checkpoint['state_dict'])
if ('mask' in checkpoint and args.mode=='hessian'):
for name,module in net.named_modules():
if(name+'.weight') in mask.masks:
print(name)
prune.custom_from_mask(module,name='weight',mask=mask.masks[name+'.weight'])
print(f'Model restored from: {file} ')
i=i+1
net.eval()
net_ensemble_lst.append(net)
if args.evaluate:
if(args.mode=='hessian_t'):
print("--------------------> enter hessian trace")
hessians(net_ensemble_lst ,args.save, masks, mode='trace')
elif (args.mode=='hessian_e'):
print("--------------------> enter hessian Eigen")
hessians(net_ensemble_lst ,args.save,masks , mode='top_e')
elif (args.mode=='fisher'):
print("--------------------> enter Fisher")
test_fisher(net_ensemble_lst ,args.save,masks)
elif('APGD' in args.mode):
APGD(net_ensemble_lst , args.save, masks, mode=args.mode)
elif(args.mode=='ntk'):
get_ntk(net_ensemble_lst, args.save, masks)
if __name__ == '__main__':
main()