From 827db061f11898a995adf1cf7e85d05242095cdd Mon Sep 17 00:00:00 2001 From: bad-dai <57464271+bad-dai@users.noreply.github.com> Date: Mon, 7 Dec 2020 00:34:29 +0100 Subject: [PATCH] add slump data set ad portfolio data set can not use earth since has bug, https://github.com/scikit-learn-contrib/py-earth/issues/198 --- .../stacking-regression-checkpoint.ipynb | 1250 +++++++++-- notebooks/stacking-regression.ipynb | 1257 +++++++++-- src/__pycache__/skoptimize.cpython-37.pyc | Bin 9400 -> 11171 bytes src/catboost_info/catboost_training.json | 2000 ++++++++--------- src/catboost_info/learn/events.out.tfevents | Bin 48870 -> 48870 bytes src/catboost_info/learn_error.tsv | 2000 ++++++++--------- src/catboost_info/time_left.tsv | 2000 ++++++++--------- 7 files changed, 5185 insertions(+), 3322 deletions(-) diff --git a/notebooks/.ipynb_checkpoints/stacking-regression-checkpoint.ipynb b/notebooks/.ipynb_checkpoints/stacking-regression-checkpoint.ipynb index 8f78937..a366cd5 100644 --- a/notebooks/.ipynb_checkpoints/stacking-regression-checkpoint.ipynb +++ b/notebooks/.ipynb_checkpoints/stacking-regression-checkpoint.ipynb @@ -8,7 +8,8 @@ "source": [ "import os\n", "\n", - "os.chdir('/Users/user/Documents/GitHub/II2202_Stacking-Regression-Comparative-Study/src')" + "os.chdir('/Users/user/Documents/GitHub/II2202_Stacking-Regression-Comparative-Study/src')\n", + "#os.chdir('/Users/hamiddimyati/Documents/codes/stacking-regression-comparative-study/src')" ] }, { @@ -24,7 +25,7 @@ "import matplotlib.gridspec as gridspec\n", "plt.style.use('ggplot')\n", "import seaborn as sns\n", - "import scipy.stats as sc\n", + "#import scipy.stats as sc\n", "import time\n", "\n", "from sklearn.preprocessing import OneHotEncoder, StandardScaler, RobustScaler\n", @@ -42,16 +43,103 @@ "from lightgbm import LGBMRegressor\n", "from catboost import CatBoostRegressor\n", "\n", - "from skoptimize import RandomSearch, LinearSearch, DifferentialEvolution, GeneticAlgorithm, ParticleSwarmOptimization, SimulatedAnnealing, ArtificialFishSwarm" + "from skoptimize import LinearSearch, DifferentialEvolution, GeneticAlgorithm, ParticleSwarmOptimization, SimulatedAnnealing, GreedySearch" ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 130, "metadata": {}, "outputs": [], "source": [ - "dir = \"/Users/user/Documents/GitHub/II2202_Stacking-Regression-Comparative-Study\"" + "base_models = {'LinearRegression': LinearRegression(),\n", + " 'Ridge': Ridge(),\n", + " 'Lasso': Lasso(),\n", + " 'KernelRidge': KernelRidge(kernel='rbf'),\n", + " 'KNeighborsRegressor': KNeighborsRegressor(),\n", + " 'MLPRegressor': MLPRegressor(max_iter=1000),\n", + " 'SVR': SVR(),\n", + " 'DecisionTreeRegressor': DecisionTreeRegressor(),\n", + " #'Earth': Earth(),\n", + " 'BaggingRegressor': BaggingRegressor(),\n", + " 'RandomForestRegressor': RandomForestRegressor(),\n", + " 'GradientBoostingRegressor': GradientBoostingRegressor(),\n", + " 'XGBRegressor': XGBRegressor(),\n", + " 'LGBMRegressor': LGBMRegressor(),\n", + " 'CatBoostRegressor': CatBoostRegressor(verbose=False)}\n", + "\n", + "meta_models = {'LinearRegression': LinearRegression(),\n", + " 'Ridge': Ridge(),\n", + " 'LinearSearch': LinearSearch(non_negative=True, sum_to_one=False), \n", + " 'DifferentialEvolution': DifferentialEvolution(size_pop=1000, max_iter=1000, non_negative=False, sum_to_one=False), \n", + " 'GeneticAlgorithm': GeneticAlgorithm(size_pop=1000, max_iter=1000, non_negative=False, sum_to_one=False), \n", + " 'ParticleSwarmOptimization': ParticleSwarmOptimization(pop=1000, max_iter=1000, w=0.8, c1=0.5, c2=0.5, non_negative=False, sum_to_one=False), \n", + " 'SimulatedAnnealing': SimulatedAnnealing(T_max=1, T_min=1e-9, L=500, max_stay_counter=1000), \n", + " 'GreedySearch': GreedySearch(convergence='manhattan', epsilon=1e-2)}" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "def base_cv_learning(model, X_train, y_train, cv_split):\n", + " cv = KFold(n_splits=cv_split)\n", + " rmse = []\n", + " mae = []\n", + " r2 = []\n", + " predictions = np.array([])\n", + " dict_result = {}\n", + " for subtrain_index, subtest_index in cv.split(X_train):\n", + " X_subtrain, X_subtest = X_train.iloc[subtrain_index], X_train.iloc[subtest_index]\n", + " y_subtrain, y_subtest = y_train.iloc[subtrain_index], y_train.iloc[subtest_index]\n", + " \n", + " model.fit(X_subtrain, y_subtrain.to_numpy().ravel())\n", + " y_subpred = model.predict(X_subtest)\n", + " predictions = np.append(predictions, y_subpred)\n", + " \n", + " \n", + " rmse.append(mean_squared_error(y_subtest, y_subpred, squared=False))\n", + " mae.append(mean_absolute_error(y_subtest, y_subpred))\n", + " r2.append(r2_score(y_subtest, y_subpred))\n", + " dict_result['RMSE'] = round(np.mean(rmse), 3)\n", + " dict_result['MAE'] = round(np.mean(mae), 3)\n", + " dict_result['R2'] = round(np.mean(r2), 3)\n", + " \n", + " return predictions, dict_result\n", + "\n", + "def meta_cv_learning(model, X_train, y_train, cv_split):\n", + " cv = KFold(n_splits=cv_split)\n", + " rmse = []\n", + " mae = []\n", + " r2 = []\n", + " dict_result = {}\n", + " for subtrain_index, subtest_index in cv.split(X_train):\n", + " X_subtrain, X_subtest = X_train.iloc[subtrain_index].to_numpy(), X_train.iloc[subtest_index].to_numpy()\n", + " y_subtrain, y_subtest = y_train.iloc[subtrain_index].to_numpy().ravel(), y_train.iloc[subtest_index].to_numpy().ravel()\n", + " \n", + " model.fit(X_subtrain, y_subtrain)\n", + " y_subpred = model.predict(X_subtest)\n", + " \n", + " rmse.append(mean_squared_error(y_subtest, y_subpred, squared=False))\n", + " mae.append(mean_absolute_error(y_subtest, y_subpred))\n", + " r2.append(r2_score(y_subtest, y_subpred))\n", + " dict_result['RMSE'] = round(np.mean(rmse), 3)\n", + " dict_result['MAE'] = round(np.mean(mae), 3)\n", + " dict_result['R2'] = round(np.mean(r2), 3)\n", + " \n", + " return dict_result" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "path = \"/Users/user/Documents/GitHub/II2202_Stacking-Regression-Comparative-Study\"\n", + "#path = \"/Users/hamiddimyati/Documents/codes/stacking-regression-comparative-study\"" ] }, { @@ -63,16 +151,16 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ - "seoul_bike = pd.read_csv(dir + \"/data/SeoulBikeData.csv\", header=0, encoding= 'unicode_escape')" + "seoul_bike = pd.read_csv(path + \"/data/SeoulBikeData.csv\", header=0, encoding= 'unicode_escape')" ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -81,7 +169,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -90,7 +178,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -127,7 +215,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -136,7 +224,7 @@ "Text(0.5, 1.0, 'Snowfall (cm)')" ] }, - "execution_count": 8, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" }, @@ -181,7 +269,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -192,7 +280,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -201,7 +289,7 @@ "Text(0.5, 1.0, 'Hour')" ] }, - "execution_count": 10, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" }, @@ -244,7 +332,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -260,7 +348,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -272,7 +360,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 15, "metadata": {}, "outputs": [], "source": [ @@ -313,7 +401,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 16, "metadata": {}, "outputs": [], "source": [ @@ -325,7 +413,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -357,7 +445,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -386,7 +474,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -409,24 +497,23 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ "meta_models = {'LinearRegression': LinearRegression(),\n", " 'Ridge': Ridge(),\n", - " 'RandomSearch': RandomSearch(n_iter=1000), \n", - " 'LinearSearch': LinearSearch(non_negative=True, sum_to_one=True), \n", - " 'DifferentialEvolution': DifferentialEvolution(size_pop=1000, max_iter=100, non_negative=False, sum_to_one=False), \n", - " 'GeneticAlgorithm': GeneticAlgorithm(size_pop=1000, max_iter=100, non_negative=False, sum_to_one=False), \n", - " 'ParticleSwarmOptimization': ParticleSwarmOptimization(pop=1000, max_iter=100, w=0.8, c1=0.5, c2=0.5, non_negative=False, sum_to_one=False), \n", - " 'SimulatedAnnealing': SimulatedAnnealing(T_max=1, T_min=1e-9, L=300, max_stay_counter=100), \n", - " 'ArtificialFishSwarm': ArtificialFishSwarm(size_pop=500, max_iter=100, max_try_num=100, step=0.5, visual=0.3, q=0.98, delta=0.5)}" + " 'LinearSearch': LinearSearch(non_negative=True, sum_to_one=False), \n", + " 'DifferentialEvolution': DifferentialEvolution(size_pop=1000, max_iter=1000, non_negative=False, sum_to_one=False), \n", + " 'GeneticAlgorithm': GeneticAlgorithm(size_pop=1000, max_iter=1000, non_negative=False, sum_to_one=False), \n", + " 'ParticleSwarmOptimization': ParticleSwarmOptimization(pop=1000, max_iter=1000, w=0.8, c1=0.5, c2=0.5, non_negative=False, sum_to_one=False), \n", + " 'SimulatedAnnealing': SimulatedAnnealing(T_max=1, T_min=1e-9, L=500, max_stay_counter=1000), \n", + " 'GreedySearch': GreedySearch(convergence='manhattan', epsilon=1e-2)}" ] }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ @@ -434,10 +521,25 @@ "base_train_prediction = {}\n", "base_train_prediction['target'] = y_train.to_numpy().ravel()\n", "base_test_prediction = {}\n", - "base_test_prediction['target'] = y_test.to_numpy().ravel()\n", - "\n", + "base_test_prediction['target'] = y_test.to_numpy().ravel()" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ "base_cv_performance = {}\n", - "base_test_performance = {}\n", + "base_test_performance = {}" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ "meta_cv_performance = {}\n", "meta_test_performance = {}" ] @@ -458,12 +560,12 @@ "name": "stdout", "output_type": "stream", "text": [ - "[15:18:36] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n", - "[15:18:36] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n", - "[15:18:36] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n", - "[15:18:37] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n", - "[15:18:37] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n", - "[15:18:37] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n" + "[23:05:37] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n", + "[23:05:38] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n", + "[23:05:38] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n", + "[23:05:38] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n", + "[23:05:38] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n", + "[23:05:39] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n" ] } ], @@ -503,13 +605,13 @@ " 'Lasso': {'RMSE': 431.885, 'MAE': 322.145, 'R2': 0.55},\n", " 'KernelRidge': {'RMSE': 318.111, 'MAE': 216.826, 'R2': 0.756},\n", " 'KNeighborsRegressor': {'RMSE': 308.562, 'MAE': 196.401, 'R2': 0.77},\n", - " 'MLPRegressor': {'RMSE': 320.947, 'MAE': 221.453, 'R2': 0.751},\n", + " 'MLPRegressor': {'RMSE': 321.845, 'MAE': 222.441, 'R2': 0.75},\n", " 'SVR': {'RMSE': 541.74, 'MAE': 370.645, 'R2': 0.293},\n", - " 'DecisionTreeRegressor': {'RMSE': 310.32, 'MAE': 180.758, 'R2': 0.767},\n", + " 'DecisionTreeRegressor': {'RMSE': 309.28, 'MAE': 181.199, 'R2': 0.769},\n", " 'Earth': {'RMSE': 429.335, 'MAE': 321.446, 'R2': 0.556},\n", - " 'BaggingRegressor': {'RMSE': 237.335, 'MAE': 144.388, 'R2': 0.864},\n", - " 'RandomForestRegressor': {'RMSE': 224.347, 'MAE': 136.893, 'R2': 0.878},\n", - " 'GradientBoostingRegressor': {'RMSE': 252.352, 'MAE': 168.397, 'R2': 0.846},\n", + " 'BaggingRegressor': {'RMSE': 232.851, 'MAE': 142.987, 'R2': 0.869},\n", + " 'RandomForestRegressor': {'RMSE': 224.625, 'MAE': 136.939, 'R2': 0.878},\n", + " 'GradientBoostingRegressor': {'RMSE': 252.347, 'MAE': 168.352, 'R2': 0.846},\n", " 'XGBRegressor': {'RMSE': 251.638, 'MAE': 168.246, 'R2': 0.847},\n", " 'LGBMRegressor': {'RMSE': 213.927, 'MAE': 133.812, 'R2': 0.889},\n", " 'CatBoostRegressor': {'RMSE': 211.156, 'MAE': 132.758, 'R2': 0.892}}" @@ -537,13 +639,13 @@ " 'Lasso': {'RMSE': 438.698, 'MAE': 327.013, 'R2': 0.54},\n", " 'KernelRidge': {'RMSE': 333.564, 'MAE': 227.02, 'R2': 0.734},\n", " 'KNeighborsRegressor': {'RMSE': 306.489, 'MAE': 192.451, 'R2': 0.776},\n", - " 'MLPRegressor': {'RMSE': 331.478, 'MAE': 225.769, 'R2': 0.738},\n", + " 'MLPRegressor': {'RMSE': 328.488, 'MAE': 222.467, 'R2': 0.742},\n", " 'SVR': {'RMSE': 535.479, 'MAE': 365.982, 'R2': 0.315},\n", - " 'DecisionTreeRegressor': {'RMSE': 319.5, 'MAE': 187.512, 'R2': 0.756},\n", + " 'DecisionTreeRegressor': {'RMSE': 320.243, 'MAE': 186.488, 'R2': 0.755},\n", " 'Earth': {'RMSE': 436.442, 'MAE': 326.4, 'R2': 0.545},\n", - " 'BaggingRegressor': {'RMSE': 242.719, 'MAE': 146.83, 'R2': 0.859},\n", - " 'RandomForestRegressor': {'RMSE': 234.025, 'MAE': 141.596, 'R2': 0.869},\n", - " 'GradientBoostingRegressor': {'RMSE': 269.779, 'MAE': 181.939, 'R2': 0.826},\n", + " 'BaggingRegressor': {'RMSE': 248.349, 'MAE': 149.09, 'R2': 0.853},\n", + " 'RandomForestRegressor': {'RMSE': 232.604, 'MAE': 140.553, 'R2': 0.871},\n", + " 'GradientBoostingRegressor': {'RMSE': 269.575, 'MAE': 181.896, 'R2': 0.826},\n", " 'XGBRegressor': {'RMSE': 270.605, 'MAE': 180.463, 'R2': 0.825},\n", " 'LGBMRegressor': {'RMSE': 218.842, 'MAE': 136.099, 'R2': 0.886},\n", " 'CatBoostRegressor': {'RMSE': 213.575, 'MAE': 132.441, 'R2': 0.891}}" @@ -610,6 +712,13 @@ " meta_test_performance[model.__class__.__name__]['R2'] = round(r2, 3)" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "100 iteration" + ] + }, { "cell_type": "code", "execution_count": 26, @@ -618,15 +727,14 @@ { "data": { "text/plain": [ - "{'LinearRegression': {'RMSE': 207.079, 'MAE': 126.954, 'R2': 0.896},\n", - " 'Ridge': {'RMSE': 207.078, 'MAE': 126.955, 'R2': 0.896},\n", - " 'RandomSearch': {'RMSE': 233.439, 'MAE': 152.752, 'R2': 0.868},\n", - " 'LinearSearch': {'RMSE': 210.326, 'MAE': 130.852, 'R2': 0.893},\n", - " 'DifferentialEvolution': {'RMSE': 221.86, 'MAE': 142.577, 'R2': 0.881},\n", - " 'GeneticAlgorithm': {'RMSE': 209.236, 'MAE': 128.796, 'R2': 0.894},\n", - " 'ParticleSwarmOptimization': {'RMSE': 207.411, 'MAE': 127.659, 'R2': 0.896},\n", - " 'SimulatedAnnealing': {'RMSE': 233.989, 'MAE': 150.206, 'R2': 0.868},\n", - " 'ArtificialFishSwarm': {'RMSE': 207.956, 'MAE': 128.274, 'R2': 0.895}}" + "{'LinearRegression': {'RMSE': 207.055, 'MAE': 127.009, 'R2': 0.896},\n", + " 'Ridge': {'RMSE': 207.055, 'MAE': 127.009, 'R2': 0.896},\n", + " 'LinearSearch': {'RMSE': 209.604, 'MAE': 130.455, 'R2': 0.894},\n", + " 'DifferentialEvolution': {'RMSE': 208.267, 'MAE': 129.598, 'R2': 0.895},\n", + " 'GeneticAlgorithm': {'RMSE': 206.959, 'MAE': 127.092, 'R2': 0.897},\n", + " 'ParticleSwarmOptimization': {'RMSE': 207.033, 'MAE': 127.102, 'R2': 0.896},\n", + " 'SimulatedAnnealing': {'RMSE': 223.145, 'MAE': 143.772, 'R2': 0.879},\n", + " 'GreedySearch': {'RMSE': 209.942, 'MAE': 129.521, 'R2': 0.893}}" ] }, "execution_count": 26, @@ -646,15 +754,14 @@ { "data": { "text/plain": [ - "{'LinearRegression': {'RMSE': 206.07, 'MAE': 124.334, 'R2': 0.899},\n", - " 'Ridge': {'RMSE': 206.069, 'MAE': 124.334, 'R2': 0.899},\n", - " 'RandomSearch': {'RMSE': 241.448, 'MAE': 153.255, 'R2': 0.861},\n", - " 'LinearSearch': {'RMSE': 219.481, 'MAE': 136.046, 'R2': 0.885},\n", - " 'DifferentialEvolution': {'RMSE': 218.886, 'MAE': 142.386, 'R2': 0.886},\n", - " 'GeneticAlgorithm': {'RMSE': 207.441, 'MAE': 127.476, 'R2': 0.897},\n", - " 'ParticleSwarmOptimization': {'RMSE': 206.927, 'MAE': 125.606, 'R2': 0.898},\n", - " 'SimulatedAnnealing': {'RMSE': 224.179, 'MAE': 148.721, 'R2': 0.88},\n", - " 'ArtificialFishSwarm': {'RMSE': 208.251, 'MAE': 127.16, 'R2': 0.896}}" + "{'LinearRegression': {'RMSE': 206.19, 'MAE': 124.295, 'R2': 0.898},\n", + " 'Ridge': {'RMSE': 206.189, 'MAE': 124.295, 'R2': 0.898},\n", + " 'LinearSearch': {'RMSE': 221.178, 'MAE': 136.426, 'R2': 0.883},\n", + " 'DifferentialEvolution': {'RMSE': 211.44, 'MAE': 128.732, 'R2': 0.893},\n", + " 'GeneticAlgorithm': {'RMSE': 206.976, 'MAE': 125.39, 'R2': 0.898},\n", + " 'ParticleSwarmOptimization': {'RMSE': 206.269, 'MAE': 124.592, 'R2': 0.898},\n", + " 'SimulatedAnnealing': {'RMSE': 211.439, 'MAE': 133.123, 'R2': 0.893},\n", + " 'GreedySearch': {'RMSE': 215.868, 'MAE': 131.394, 'R2': 0.889}}" ] }, "execution_count": 27, @@ -666,6 +773,31 @@ "meta_test_performance" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "1000 iteration" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "meta_cv_performance" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "meta_test_performance" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -675,7 +807,7 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -711,39 +843,8 @@ " print(num_weights)\n", " print(weights)\n", "\n", - " return weights/float(num_weights)" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "took 2.8214519023895264 seconds.\n", - "100\n", - "[ 0 0 0 0 9 0 0 2 0 0 30 0 0 21 38]\n", - "took 5.417552709579468 seconds.\n", - "187\n", - "[ 0 0 0 0 16 0 0 4 0 0 55 0 0 40 72]\n" - ] - }, - { - "ename": "KeyError", - "evalue": "'str'", - "output_type": "error", - "traceback": [ - "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[1;31mKeyError\u001b[0m Traceback (most recent call last)", - "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 8\u001b[0m \u001b[0mr2\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mr2_score\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0my_test\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my_pred\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 9\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 10\u001b[1;33m \u001b[0mmeta_test_performance\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'GreedyStacking'\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m__class__\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m__name__\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'RMSE'\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mround\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mrmse\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m3\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 11\u001b[0m \u001b[0mmeta_test_performance\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'GreedyStacking'\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m__class__\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m__name__\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'MAE'\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mround\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmae\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m3\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 12\u001b[0m \u001b[0mmeta_test_performance\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'GreedyStacking'\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m__class__\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m__name__\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'R2'\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mround\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mr2\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m3\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;31mKeyError\u001b[0m: 'str'" - ] - } - ], - "source": [ + " return weights/float(num_weights)\n", + "\n", "weight1 = greedy_opt(X_train_meta.to_numpy(), y_train_meta.to_numpy(), metric=metric_spearman, converged=conv_manhattan, eps=1e-2)\n", "weight2 = greedy_opt(X_train_meta.to_numpy(), y_train_meta.to_numpy(), metric=metric_spearman, converged=conv_euclid, eps=1e-2)\n", "\n", @@ -751,101 +852,966 @@ "\n", "rmse = mean_squared_error(y_test_meta, y_pred, squared=False)\n", "mae = mean_absolute_error(y_test_meta, y_pred)\n", - "r2 = r2_score(y_test, y_pred)\n", - "\n", - "meta_test_performance['GreedyStacking'.__class__.__name__]['RMSE'] = round(rmse, 3)\n", - "meta_test_performance['GreedyStacking'.__class__.__name__]['MAE'] = round(mae, 3)\n", - "meta_test_performance['GreedyStacking'.__class__.__name__]['R2'] = round(r2, 3)" + "r2 = r2_score(y_test, y_pred)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# ====================================================================" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Feature Selection (SKIPPED!)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Parameter Tuning (SKIPPED!)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Pre-process Slump Test Data" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 107, "metadata": {}, "outputs": [], "source": [ - "meta_test_performance" + "slump = pd.read_csv(path + \"/data/slump_test.data\", header=0, encoding= 'unicode_escape')" ] }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 108, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "215.74350006437393" - ] - }, - "execution_count": 43, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], + "source": [ + "slump.rename(columns={'Fly ash': 'FlyAsh', 'Coarse Aggr.': 'CoarseAggr', 'Fine Aggr.': 'FineAggr', 'SLUMP(cm)': 'Slump' , 'FLOW(cm)' : 'Flow' , 'Compressive Strength (28-day)(Mpa)': 'CompressiveStr'}, inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 109, + "metadata": {}, + "outputs": [], + "source": [ + "slump.drop(columns=['No'], inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 94, + "metadata": {}, + "outputs": [], "source": [ - "rmse" + "#slump.drop(slump.tail(1).index,inplace=True)" ] }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 110, "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "131.55150688629558" - ] - }, - "execution_count": 44, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 103 entries, 0 to 102\n", + "Data columns (total 10 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 Cement 103 non-null float64\n", + " 1 Slag 103 non-null float64\n", + " 2 FlyAsh 103 non-null float64\n", + " 3 Water 103 non-null float64\n", + " 4 SP 103 non-null float64\n", + " 5 CoarseAggr 103 non-null float64\n", + " 6 FineAggr 103 non-null float64\n", + " 7 Slump 103 non-null float64\n", + " 8 Flow 103 non-null float64\n", + " 9 CompressiveStr 103 non-null float64\n", + "dtypes: float64(10)\n", + "memory usage: 8.2 KB\n" + ] } ], "source": [ - "mae" + "slump.info()" ] }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 111, "metadata": {}, "outputs": [ { "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
countmeanstdmin25%50%75%max
Cement103.0229.89417578.877230137.00152.00248.00303.900374.00
Slag103.077.97378660.4613630.000.05100.00125.000193.00
FlyAsh103.0149.01456385.4180800.00115.50164.00235.950260.00
Water103.0197.16796120.208158160.00180.00196.00209.500240.00
SP103.08.5398062.8075304.406.008.0010.00019.00
CoarseAggr103.0883.97864188.391393708.00819.50879.00952.8001049.90
FineAggr103.0739.60485463.342117640.60684.50742.70788.000902.00
Slump103.018.0485448.7508440.0014.5021.5024.00029.00
Flow103.049.61068017.56861020.0038.5054.0063.75078.00
CompressiveStr103.036.0394177.83823217.1930.9035.5241.20558.53
\n", + "
" + ], "text/plain": [ - "0.8888279162237089" + " count mean std min 25% 50% 75% \\\n", + "Cement 103.0 229.894175 78.877230 137.00 152.00 248.00 303.900 \n", + "Slag 103.0 77.973786 60.461363 0.00 0.05 100.00 125.000 \n", + "FlyAsh 103.0 149.014563 85.418080 0.00 115.50 164.00 235.950 \n", + "Water 103.0 197.167961 20.208158 160.00 180.00 196.00 209.500 \n", + "SP 103.0 8.539806 2.807530 4.40 6.00 8.00 10.000 \n", + "CoarseAggr 103.0 883.978641 88.391393 708.00 819.50 879.00 952.800 \n", + "FineAggr 103.0 739.604854 63.342117 640.60 684.50 742.70 788.000 \n", + "Slump 103.0 18.048544 8.750844 0.00 14.50 21.50 24.000 \n", + "Flow 103.0 49.610680 17.568610 20.00 38.50 54.00 63.750 \n", + "CompressiveStr 103.0 36.039417 7.838232 17.19 30.90 35.52 41.205 \n", + "\n", + " max \n", + "Cement 374.00 \n", + "Slag 193.00 \n", + "FlyAsh 260.00 \n", + "Water 240.00 \n", + "SP 19.00 \n", + "CoarseAggr 1049.90 \n", + "FineAggr 902.00 \n", + "Slump 29.00 \n", + "Flow 78.00 \n", + "CompressiveStr 58.53 " ] }, - "execution_count": 45, + "execution_count": 111, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "r2" + "slump.describe().transpose()" ] }, { - "cell_type": "markdown", + "cell_type": "code", + "execution_count": 122, "metadata": {}, + "outputs": [], "source": [ - "# ====================================================================" + "X = slump[['Cement','Slag','FlyAsh','Water','SP','CoarseAggr','FineAggr']]\n", + "y = slump[['Slump']]\n", + "#y = slump[['Slump','Flow','CompressiveStr']]" ] }, { - "cell_type": "markdown", + "cell_type": "code", + "execution_count": 139, "metadata": {}, + "outputs": [], "source": [ - "## Feature Selection (SKIPPED!)" + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=333)\n", + "base_train_prediction = {}\n", + "base_train_prediction['target'] = y_train.to_numpy().ravel()\n", + "base_test_prediction = {}\n", + "base_test_prediction['target'] = y_test.to_numpy().ravel()" + ] + }, + { + "cell_type": "code", + "execution_count": 140, + "metadata": {}, + "outputs": [], + "source": [ + "base_cv_performance = {}\n", + "base_test_performance = {}\n", + "meta_cv_performance = {}\n", + "meta_test_performance = {}" + ] + }, + { + "cell_type": "code", + "execution_count": 145, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[00:16:23] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n", + "[00:16:23] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n", + "[00:16:23] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n", + "[00:16:23] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n", + "[00:16:23] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n", + "[00:16:23] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n" + ] + } + ], + "source": [ + "for m in base_models:\n", + " model = base_models[m]\n", + " base_test_performance[model.__class__.__name__] = {}\n", + " \n", + " prediction, performance = base_cv_learning(model, X_train, y_train, 5)\n", + " base_train_prediction[model.__class__.__name__] = prediction\n", + " base_cv_performance[model.__class__.__name__] = performance\n", + " \n", + " model.fit(X_train, y_train)\n", + " y_pred = model.predict(X_test)\n", + " try:\n", + " base_test_prediction[model.__class__.__name__] = [items[0] for items in y_pred.tolist()]\n", + " except:\n", + " base_test_prediction[model.__class__.__name__] = y_pred.tolist()\n", + " rmse = mean_squared_error(y_test, y_pred, squared=False)\n", + " mae = mean_absolute_error(y_test, y_pred)\n", + " r2 = r2_score(y_test, y_pred)\n", + " base_test_performance[model.__class__.__name__]['RMSE'] = round(rmse, 3)\n", + " base_test_performance[model.__class__.__name__]['MAE'] = round(mae, 3)\n", + " base_test_performance[model.__class__.__name__]['R2'] = round(r2, 3)" + ] + }, + { + "cell_type": "code", + "execution_count": 146, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'LinearRegression': {'RMSE': 7.934, 'MAE': 6.498, 'R2': -0.571},\n", + " 'Ridge': {'RMSE': 7.934, 'MAE': 6.497, 'R2': -0.57},\n", + " 'Lasso': {'RMSE': 7.804, 'MAE': 6.401, 'R2': -0.523},\n", + " 'KernelRidge': {'RMSE': 20.051, 'MAE': 18.283, 'R2': -16.7},\n", + " 'KNeighborsRegressor': {'RMSE': 8.001, 'MAE': 6.033, 'R2': -0.255},\n", + " 'MLPRegressor': {'RMSE': 35.985, 'MAE': 32.608, 'R2': -41.441},\n", + " 'SVR': {'RMSE': 8.723, 'MAE': 6.494, 'R2': -0.381},\n", + " 'DecisionTreeRegressor': {'RMSE': 9.61, 'MAE': 6.629, 'R2': -1.828},\n", + " 'BaggingRegressor': {'RMSE': 7.598, 'MAE': 5.294, 'R2': -0.53},\n", + " 'RandomForestRegressor': {'RMSE': 7.217, 'MAE': 5.285, 'R2': -0.262},\n", + " 'GradientBoostingRegressor': {'RMSE': 8.402, 'MAE': 6.041, 'R2': -0.951},\n", + " 'XGBRegressor': {'RMSE': 7.971, 'MAE': 5.678, 'R2': -0.463},\n", + " 'LGBMRegressor': {'RMSE': 7.534, 'MAE': 5.947, 'R2': -0.194},\n", + " 'CatBoostRegressor': {'RMSE': 7.55, 'MAE': 5.446, 'R2': -0.341}}" + ] + }, + "execution_count": 146, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "base_cv_performance" + ] + }, + { + "cell_type": "code", + "execution_count": 147, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'LinearRegression': {'RMSE': 9.095, 'MAE': 7.076, 'R2': -0.021},\n", + " 'Ridge': {'RMSE': 9.094, 'MAE': 7.076, 'R2': -0.021},\n", + " 'Lasso': {'RMSE': 8.987, 'MAE': 7.067, 'R2': 0.003},\n", + " 'KernelRidge': {'RMSE': 19.151, 'MAE': 16.904, 'R2': -3.526},\n", + " 'KNeighborsRegressor': {'RMSE': 11.173, 'MAE': 8.326, 'R2': -0.54},\n", + " 'MLPRegressor': {'RMSE': 59.419, 'MAE': 57.623, 'R2': -42.567},\n", + " 'SVR': {'RMSE': 10.264, 'MAE': 6.858, 'R2': -0.3},\n", + " 'DecisionTreeRegressor': {'RMSE': 11.013, 'MAE': 7.81, 'R2': -0.497},\n", + " 'BaggingRegressor': {'RMSE': 9.079, 'MAE': 6.569, 'R2': -0.017},\n", + " 'RandomForestRegressor': {'RMSE': 8.396, 'MAE': 6.231, 'R2': 0.13},\n", + " 'GradientBoostingRegressor': {'RMSE': 9.788, 'MAE': 6.808, 'R2': -0.182},\n", + " 'XGBRegressor': {'RMSE': 9.837, 'MAE': 6.596, 'R2': -0.194},\n", + " 'LGBMRegressor': {'RMSE': 8.981, 'MAE': 6.878, 'R2': 0.005},\n", + " 'CatBoostRegressor': {'RMSE': 9.116, 'MAE': 6.394, 'R2': -0.025}}" + ] + }, + "execution_count": 147, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "base_test_performance" + ] + }, + { + "cell_type": "code", + "execution_count": 148, + "metadata": {}, + "outputs": [], + "source": [ + "df_train_meta = pd.DataFrame(base_train_prediction)\n", + "y_train_meta = df_train_meta[['target']]\n", + "X_train_meta = df_train_meta.drop(columns=['target'], axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 149, + "metadata": {}, + "outputs": [], + "source": [ + "df_test_meta = pd.DataFrame(base_test_prediction)\n", + "y_test_meta = df_test_meta[['target']].to_numpy().ravel()\n", + "X_test_meta = df_test_meta.drop(columns=['target'], axis=1).to_numpy()" + ] + }, + { + "cell_type": "code", + "execution_count": 150, + "metadata": {}, + "outputs": [], + "source": [ + "for m in meta_models:\n", + " model = meta_models[m]\n", + " meta_test_performance[model.__class__.__name__] = {}\n", + " \n", + " performance = meta_cv_learning(model, X_train_meta, y_train_meta, 5)\n", + " meta_cv_performance[model.__class__.__name__] = performance\n", + " \n", + " model.fit(X_train_meta.to_numpy(), y_train_meta.to_numpy().ravel())\n", + " y_pred = model.predict(X_test_meta)\n", + " rmse = mean_squared_error(y_test_meta, y_pred, squared=False)\n", + " mae = mean_absolute_error(y_test_meta, y_pred)\n", + " r2 = r2_score(y_test, y_pred)\n", + " meta_test_performance[model.__class__.__name__]['RMSE'] = round(rmse, 3)\n", + " meta_test_performance[model.__class__.__name__]['MAE'] = round(mae, 3)\n", + " meta_test_performance[model.__class__.__name__]['R2'] = round(r2, 3)" + ] + }, + { + "cell_type": "code", + "execution_count": 151, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'LinearRegression': {'RMSE': 9.061, 'MAE': 6.883, 'R2': -1.137},\n", + " 'Ridge': {'RMSE': 8.699, 'MAE': 6.673, 'R2': -1.001},\n", + " 'LinearSearch': {'RMSE': 7.791, 'MAE': 6.182, 'R2': -0.572},\n", + " 'DifferentialEvolution': {'RMSE': 8.526, 'MAE': 6.448, 'R2': -1.069},\n", + " 'GeneticAlgorithm': {'RMSE': 8.592, 'MAE': 6.457, 'R2': -1.078},\n", + " 'ParticleSwarmOptimization': {'RMSE': 8.613, 'MAE': 6.566, 'R2': -1.126},\n", + " 'SimulatedAnnealing': {'RMSE': 8.233, 'MAE': 6.421, 'R2': -0.728},\n", + " 'GreedySearch': {'RMSE': 15.106, 'MAE': 14.0, 'R2': -10.286}}" + ] + }, + "execution_count": 151, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "meta_cv_performance" + ] + }, + { + "cell_type": "code", + "execution_count": 152, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'LinearRegression': {'RMSE': 8.215, 'MAE': 7.061, 'R2': 0.167},\n", + " 'Ridge': {'RMSE': 8.018, 'MAE': 6.87, 'R2': 0.207},\n", + " 'LinearSearch': {'RMSE': 8.31, 'MAE': 6.35, 'R2': 0.148},\n", + " 'DifferentialEvolution': {'RMSE': 8.348, 'MAE': 6.838, 'R2': 0.14},\n", + " 'GeneticAlgorithm': {'RMSE': 8.294, 'MAE': 6.931, 'R2': 0.151},\n", + " 'ParticleSwarmOptimization': {'RMSE': 8.386, 'MAE': 6.979, 'R2': 0.132},\n", + " 'SimulatedAnnealing': {'RMSE': 8.323, 'MAE': 6.634, 'R2': 0.145},\n", + " 'GreedySearch': {'RMSE': 14.201, 'MAE': 12.813, 'R2': -1.489}}" + ] + }, + "execution_count": 152, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "meta_test_performance" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Parameter Tuning (SKIPPED!)" + "# Pre-process Slump Test Data" + ] + }, + { + "cell_type": "code", + "execution_count": 153, + "metadata": {}, + "outputs": [], + "source": [ + "stock = pd.read_csv(path + \"/data/Stock Portofolio.csv\", header=0, encoding= 'unicode_escape')" + ] + }, + { + "cell_type": "code", + "execution_count": 154, + "metadata": {}, + "outputs": [], + "source": [ + "stock.rename(columns=dict(zip(stock.columns, ['largeBP', 'largeROE', 'largeSP', 'largeReturn', 'largeValue', 'smallRisk', 'Return'])), inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 155, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
countmeanstdmin25%50%75%max
largeBP63.00.1666190.1993040.00.00.1670.29151.0
largeROE63.00.1666190.1993040.00.00.1670.29151.0
largeSP63.00.1666190.1993040.00.00.1670.29151.0
largeReturn63.00.1666190.1993040.00.00.1670.29151.0
largeValue63.00.1666190.1993040.00.00.1670.29151.0
smallRisk63.00.1666190.1993040.00.00.1670.29151.0
Return63.014.9238102.7872247.013.815.30017.000019.5
\n", + "
" + ], + "text/plain": [ + " count mean std min 25% 50% 75% max\n", + "largeBP 63.0 0.166619 0.199304 0.0 0.0 0.167 0.2915 1.0\n", + "largeROE 63.0 0.166619 0.199304 0.0 0.0 0.167 0.2915 1.0\n", + "largeSP 63.0 0.166619 0.199304 0.0 0.0 0.167 0.2915 1.0\n", + "largeReturn 63.0 0.166619 0.199304 0.0 0.0 0.167 0.2915 1.0\n", + "largeValue 63.0 0.166619 0.199304 0.0 0.0 0.167 0.2915 1.0\n", + "smallRisk 63.0 0.166619 0.199304 0.0 0.0 0.167 0.2915 1.0\n", + "Return 63.0 14.923810 2.787224 7.0 13.8 15.300 17.0000 19.5" + ] + }, + "execution_count": 155, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "stock.describe().transpose()" + ] + }, + { + "cell_type": "code", + "execution_count": 156, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 63 entries, 0 to 62\n", + "Data columns (total 7 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 largeBP 63 non-null float64\n", + " 1 largeROE 63 non-null float64\n", + " 2 largeSP 63 non-null float64\n", + " 3 largeReturn 63 non-null float64\n", + " 4 largeValue 63 non-null float64\n", + " 5 smallRisk 63 non-null float64\n", + " 6 Return 63 non-null float64\n", + "dtypes: float64(7)\n", + "memory usage: 3.6 KB\n" + ] + } + ], + "source": [ + "stock.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 158, + "metadata": {}, + "outputs": [], + "source": [ + "X = stock[['largeBP','largeROE','largeSP','largeReturn','largeValue','smallRisk']]\n", + "y = stock[['Return']]" + ] + }, + { + "cell_type": "code", + "execution_count": 159, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=333)\n", + "base_train_prediction = {}\n", + "base_train_prediction['target'] = y_train.to_numpy().ravel()\n", + "base_test_prediction = {}\n", + "base_test_prediction['target'] = y_test.to_numpy().ravel()" + ] + }, + { + "cell_type": "code", + "execution_count": 160, + "metadata": {}, + "outputs": [], + "source": [ + "base_cv_performance = {}\n", + "base_test_performance = {}\n", + "meta_cv_performance = {}\n", + "meta_test_performance = {}" + ] + }, + { + "cell_type": "code", + "execution_count": 161, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[00:24:07] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n", + "[00:24:07] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n", + "[00:24:07] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n", + "[00:24:07] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n", + "[00:24:07] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n", + "[00:24:07] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n" + ] + } + ], + "source": [ + "for m in base_models:\n", + " model = base_models[m]\n", + " base_test_performance[model.__class__.__name__] = {}\n", + " \n", + " prediction, performance = base_cv_learning(model, X_train, y_train, 5)\n", + " base_train_prediction[model.__class__.__name__] = prediction\n", + " base_cv_performance[model.__class__.__name__] = performance\n", + " \n", + " model.fit(X_train, y_train)\n", + " y_pred = model.predict(X_test)\n", + " try:\n", + " base_test_prediction[model.__class__.__name__] = [items[0] for items in y_pred.tolist()]\n", + " except:\n", + " base_test_prediction[model.__class__.__name__] = y_pred.tolist()\n", + " rmse = mean_squared_error(y_test, y_pred, squared=False)\n", + " mae = mean_absolute_error(y_test, y_pred)\n", + " r2 = r2_score(y_test, y_pred)\n", + " base_test_performance[model.__class__.__name__]['RMSE'] = round(rmse, 3)\n", + " base_test_performance[model.__class__.__name__]['MAE'] = round(mae, 3)\n", + " base_test_performance[model.__class__.__name__]['R2'] = round(r2, 3)" + ] + }, + { + "cell_type": "code", + "execution_count": 162, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'LinearRegression': {'RMSE': 2.282, 'MAE': 1.874, 'R2': 0.272},\n", + " 'Ridge': {'RMSE': 2.12, 'MAE': 1.782, 'R2': 0.381},\n", + " 'Lasso': {'RMSE': 2.728, 'MAE': 2.147, 'R2': -0.025},\n", + " 'KernelRidge': {'RMSE': 2.056, 'MAE': 1.694, 'R2': 0.424},\n", + " 'KNeighborsRegressor': {'RMSE': 1.959, 'MAE': 1.432, 'R2': 0.463},\n", + " 'MLPRegressor': {'RMSE': 1.895, 'MAE': 1.629, 'R2': 0.489},\n", + " 'SVR': {'RMSE': 1.888, 'MAE': 1.342, 'R2': 0.51},\n", + " 'DecisionTreeRegressor': {'RMSE': 1.73, 'MAE': 1.498, 'R2': 0.585},\n", + " 'BaggingRegressor': {'RMSE': 1.861, 'MAE': 1.453, 'R2': 0.525},\n", + " 'RandomForestRegressor': {'RMSE': 1.655, 'MAE': 1.332, 'R2': 0.62},\n", + " 'GradientBoostingRegressor': {'RMSE': 1.163, 'MAE': 0.963, 'R2': 0.805},\n", + " 'XGBRegressor': {'RMSE': 1.559, 'MAE': 1.174, 'R2': 0.664},\n", + " 'LGBMRegressor': {'RMSE': 2.699, 'MAE': 2.114, 'R2': -0.04},\n", + " 'CatBoostRegressor': {'RMSE': 1.545, 'MAE': 1.172, 'R2': 0.672}}" + ] + }, + "execution_count": 162, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "base_cv_performance" + ] + }, + { + "cell_type": "code", + "execution_count": 163, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'LinearRegression': {'RMSE': 1.49, 'MAE': 1.267, 'R2': 0.719},\n", + " 'Ridge': {'RMSE': 1.842, 'MAE': 1.611, 'R2': 0.571},\n", + " 'Lasso': {'RMSE': 2.879, 'MAE': 2.307, 'R2': -0.049},\n", + " 'KernelRidge': {'RMSE': 2.119, 'MAE': 1.723, 'R2': 0.432},\n", + " 'KNeighborsRegressor': {'RMSE': 1.751, 'MAE': 1.489, 'R2': 0.612},\n", + " 'MLPRegressor': {'RMSE': 1.572, 'MAE': 1.385, 'R2': 0.688},\n", + " 'SVR': {'RMSE': 1.822, 'MAE': 1.382, 'R2': 0.58},\n", + " 'DecisionTreeRegressor': {'RMSE': 2.066, 'MAE': 1.777, 'R2': 0.46},\n", + " 'BaggingRegressor': {'RMSE': 1.705, 'MAE': 1.414, 'R2': 0.632},\n", + " 'RandomForestRegressor': {'RMSE': 1.724, 'MAE': 1.489, 'R2': 0.624},\n", + " 'GradientBoostingRegressor': {'RMSE': 1.106, 'MAE': 0.897, 'R2': 0.845},\n", + " 'XGBRegressor': {'RMSE': 1.271, 'MAE': 1.006, 'R2': 0.796},\n", + " 'LGBMRegressor': {'RMSE': 1.505, 'MAE': 1.121, 'R2': 0.714},\n", + " 'CatBoostRegressor': {'RMSE': 1.54, 'MAE': 1.25, 'R2': 0.7}}" + ] + }, + "execution_count": 163, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "base_test_performance" + ] + }, + { + "cell_type": "code", + "execution_count": 164, + "metadata": {}, + "outputs": [], + "source": [ + "df_train_meta = pd.DataFrame(base_train_prediction)\n", + "y_train_meta = df_train_meta[['target']]\n", + "X_train_meta = df_train_meta.drop(columns=['target'], axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 165, + "metadata": {}, + "outputs": [], + "source": [ + "df_test_meta = pd.DataFrame(base_test_prediction)\n", + "y_test_meta = df_test_meta[['target']].to_numpy().ravel()\n", + "X_test_meta = df_test_meta.drop(columns=['target'], axis=1).to_numpy()" + ] + }, + { + "cell_type": "code", + "execution_count": 166, + "metadata": {}, + "outputs": [], + "source": [ + "for m in meta_models:\n", + " model = meta_models[m]\n", + " meta_test_performance[model.__class__.__name__] = {}\n", + " \n", + " performance = meta_cv_learning(model, X_train_meta, y_train_meta, 5)\n", + " meta_cv_performance[model.__class__.__name__] = performance\n", + " \n", + " model.fit(X_train_meta.to_numpy(), y_train_meta.to_numpy().ravel())\n", + " y_pred = model.predict(X_test_meta)\n", + " rmse = mean_squared_error(y_test_meta, y_pred, squared=False)\n", + " mae = mean_absolute_error(y_test_meta, y_pred)\n", + " r2 = r2_score(y_test, y_pred)\n", + " meta_test_performance[model.__class__.__name__]['RMSE'] = round(rmse, 3)\n", + " meta_test_performance[model.__class__.__name__]['MAE'] = round(mae, 3)\n", + " meta_test_performance[model.__class__.__name__]['R2'] = round(r2, 3)" + ] + }, + { + "cell_type": "code", + "execution_count": 167, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'LinearRegression': {'RMSE': 1.558, 'MAE': 1.29, 'R2': 0.66},\n", + " 'Ridge': {'RMSE': 1.315, 'MAE': 1.096, 'R2': 0.758},\n", + " 'LinearSearch': {'RMSE': 1.365, 'MAE': 1.123, 'R2': 0.732},\n", + " 'DifferentialEvolution': {'RMSE': 1.473, 'MAE': 1.196, 'R2': 0.686},\n", + " 'GeneticAlgorithm': {'RMSE': 1.164, 'MAE': 0.981, 'R2': 0.814},\n", + " 'ParticleSwarmOptimization': {'RMSE': 1.326, 'MAE': 1.078, 'R2': 0.754},\n", + " 'SimulatedAnnealing': {'RMSE': 1.175, 'MAE': 0.981, 'R2': 0.804},\n", + " 'GreedySearch': {'RMSE': 2.076, 'MAE': 1.606, 'R2': 0.413}}" + ] + }, + "execution_count": 167, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "meta_cv_performance" + ] + }, + { + "cell_type": "code", + "execution_count": 168, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'LinearRegression': {'RMSE': 1.214, 'MAE': 1.025, 'R2': 0.814},\n", + " 'Ridge': {'RMSE': 1.123, 'MAE': 0.896, 'R2': 0.84},\n", + " 'LinearSearch': {'RMSE': 1.231, 'MAE': 0.992, 'R2': 0.809},\n", + " 'DifferentialEvolution': {'RMSE': 1.291, 'MAE': 1.02, 'R2': 0.789},\n", + " 'GeneticAlgorithm': {'RMSE': 1.057, 'MAE': 0.857, 'R2': 0.859},\n", + " 'ParticleSwarmOptimization': {'RMSE': 1.138, 'MAE': 0.906, 'R2': 0.836},\n", + " 'SimulatedAnnealing': {'RMSE': 1.477, 'MAE': 1.264, 'R2': 0.724},\n", + " 'GreedySearch': {'RMSE': 2.14, 'MAE': 1.797, 'R2': 0.421}}" + ] + }, + "execution_count": 168, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "meta_test_performance" ] }, { diff --git a/notebooks/stacking-regression.ipynb b/notebooks/stacking-regression.ipynb index 71da574..a366cd5 100644 --- a/notebooks/stacking-regression.ipynb +++ b/notebooks/stacking-regression.ipynb @@ -8,8 +8,8 @@ "source": [ "import os\n", "\n", - "#os.chdir('/Users/user/Documents/GitHub/II2202_Stacking-Regression-Comparative-Study/src')\n", - "os.chdir('/Users/hamiddimyati/Documents/codes/stacking-regression-comparative-study/src')" + "os.chdir('/Users/user/Documents/GitHub/II2202_Stacking-Regression-Comparative-Study/src')\n", + "#os.chdir('/Users/hamiddimyati/Documents/codes/stacking-regression-comparative-study/src')" ] }, { @@ -48,12 +48,98 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 130, "metadata": {}, "outputs": [], "source": [ - "#path = \"/Users/user/Documents/GitHub/II2202_Stacking-Regression-Comparative-Study\"\n", - "path = \"/Users/hamiddimyati/Documents/codes/stacking-regression-comparative-study\"" + "base_models = {'LinearRegression': LinearRegression(),\n", + " 'Ridge': Ridge(),\n", + " 'Lasso': Lasso(),\n", + " 'KernelRidge': KernelRidge(kernel='rbf'),\n", + " 'KNeighborsRegressor': KNeighborsRegressor(),\n", + " 'MLPRegressor': MLPRegressor(max_iter=1000),\n", + " 'SVR': SVR(),\n", + " 'DecisionTreeRegressor': DecisionTreeRegressor(),\n", + " #'Earth': Earth(),\n", + " 'BaggingRegressor': BaggingRegressor(),\n", + " 'RandomForestRegressor': RandomForestRegressor(),\n", + " 'GradientBoostingRegressor': GradientBoostingRegressor(),\n", + " 'XGBRegressor': XGBRegressor(),\n", + " 'LGBMRegressor': LGBMRegressor(),\n", + " 'CatBoostRegressor': CatBoostRegressor(verbose=False)}\n", + "\n", + "meta_models = {'LinearRegression': LinearRegression(),\n", + " 'Ridge': Ridge(),\n", + " 'LinearSearch': LinearSearch(non_negative=True, sum_to_one=False), \n", + " 'DifferentialEvolution': DifferentialEvolution(size_pop=1000, max_iter=1000, non_negative=False, sum_to_one=False), \n", + " 'GeneticAlgorithm': GeneticAlgorithm(size_pop=1000, max_iter=1000, non_negative=False, sum_to_one=False), \n", + " 'ParticleSwarmOptimization': ParticleSwarmOptimization(pop=1000, max_iter=1000, w=0.8, c1=0.5, c2=0.5, non_negative=False, sum_to_one=False), \n", + " 'SimulatedAnnealing': SimulatedAnnealing(T_max=1, T_min=1e-9, L=500, max_stay_counter=1000), \n", + " 'GreedySearch': GreedySearch(convergence='manhattan', epsilon=1e-2)}" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "def base_cv_learning(model, X_train, y_train, cv_split):\n", + " cv = KFold(n_splits=cv_split)\n", + " rmse = []\n", + " mae = []\n", + " r2 = []\n", + " predictions = np.array([])\n", + " dict_result = {}\n", + " for subtrain_index, subtest_index in cv.split(X_train):\n", + " X_subtrain, X_subtest = X_train.iloc[subtrain_index], X_train.iloc[subtest_index]\n", + " y_subtrain, y_subtest = y_train.iloc[subtrain_index], y_train.iloc[subtest_index]\n", + " \n", + " model.fit(X_subtrain, y_subtrain.to_numpy().ravel())\n", + " y_subpred = model.predict(X_subtest)\n", + " predictions = np.append(predictions, y_subpred)\n", + " \n", + " \n", + " rmse.append(mean_squared_error(y_subtest, y_subpred, squared=False))\n", + " mae.append(mean_absolute_error(y_subtest, y_subpred))\n", + " r2.append(r2_score(y_subtest, y_subpred))\n", + " dict_result['RMSE'] = round(np.mean(rmse), 3)\n", + " dict_result['MAE'] = round(np.mean(mae), 3)\n", + " dict_result['R2'] = round(np.mean(r2), 3)\n", + " \n", + " return predictions, dict_result\n", + "\n", + "def meta_cv_learning(model, X_train, y_train, cv_split):\n", + " cv = KFold(n_splits=cv_split)\n", + " rmse = []\n", + " mae = []\n", + " r2 = []\n", + " dict_result = {}\n", + " for subtrain_index, subtest_index in cv.split(X_train):\n", + " X_subtrain, X_subtest = X_train.iloc[subtrain_index].to_numpy(), X_train.iloc[subtest_index].to_numpy()\n", + " y_subtrain, y_subtest = y_train.iloc[subtrain_index].to_numpy().ravel(), y_train.iloc[subtest_index].to_numpy().ravel()\n", + " \n", + " model.fit(X_subtrain, y_subtrain)\n", + " y_subpred = model.predict(X_subtest)\n", + " \n", + " rmse.append(mean_squared_error(y_subtest, y_subpred, squared=False))\n", + " mae.append(mean_absolute_error(y_subtest, y_subpred))\n", + " r2.append(r2_score(y_subtest, y_subpred))\n", + " dict_result['RMSE'] = round(np.mean(rmse), 3)\n", + " dict_result['MAE'] = round(np.mean(mae), 3)\n", + " dict_result['R2'] = round(np.mean(r2), 3)\n", + " \n", + " return dict_result" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "path = \"/Users/user/Documents/GitHub/II2202_Stacking-Regression-Comparative-Study\"\n", + "#path = \"/Users/hamiddimyati/Documents/codes/stacking-regression-comparative-study\"" ] }, { @@ -65,7 +151,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -74,7 +160,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -83,7 +169,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -92,7 +178,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -129,7 +215,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -138,7 +224,7 @@ "Text(0.5, 1.0, 'Snowfall (cm)')" ] }, - "execution_count": 8, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" }, @@ -183,7 +269,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -194,7 +280,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -203,7 +289,7 @@ "Text(0.5, 1.0, 'Hour')" ] }, - "execution_count": 10, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" }, @@ -246,7 +332,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -262,7 +348,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -274,7 +360,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 15, "metadata": {}, "outputs": [], "source": [ @@ -315,7 +401,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 16, "metadata": {}, "outputs": [], "source": [ @@ -327,7 +413,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -359,7 +445,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -388,7 +474,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -411,7 +497,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -427,7 +513,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ @@ -440,7 +526,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "metadata": {}, "outputs": [], "source": [ @@ -450,7 +536,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 19, "metadata": {}, "outputs": [], "source": [ @@ -467,9 +553,22 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 20, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[23:05:37] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n", + "[23:05:38] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n", + "[23:05:38] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n", + "[23:05:38] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n", + "[23:05:38] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n", + "[23:05:39] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n" + ] + } + ], "source": [ "for m in base_models:\n", " model = base_models[m]\n", @@ -495,7 +594,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 21, "metadata": {}, "outputs": [ { @@ -506,19 +605,19 @@ " 'Lasso': {'RMSE': 431.885, 'MAE': 322.145, 'R2': 0.55},\n", " 'KernelRidge': {'RMSE': 318.111, 'MAE': 216.826, 'R2': 0.756},\n", " 'KNeighborsRegressor': {'RMSE': 308.562, 'MAE': 196.401, 'R2': 0.77},\n", - " 'MLPRegressor': {'RMSE': 321.869, 'MAE': 221.817, 'R2': 0.75},\n", + " 'MLPRegressor': {'RMSE': 321.845, 'MAE': 222.441, 'R2': 0.75},\n", " 'SVR': {'RMSE': 541.74, 'MAE': 370.645, 'R2': 0.293},\n", - " 'DecisionTreeRegressor': {'RMSE': 310.078, 'MAE': 181.548, 'R2': 0.768},\n", + " 'DecisionTreeRegressor': {'RMSE': 309.28, 'MAE': 181.199, 'R2': 0.769},\n", " 'Earth': {'RMSE': 429.335, 'MAE': 321.446, 'R2': 0.556},\n", - " 'BaggingRegressor': {'RMSE': 236.5, 'MAE': 144.368, 'R2': 0.865},\n", - " 'RandomForestRegressor': {'RMSE': 225.218, 'MAE': 137.182, 'R2': 0.877},\n", - " 'GradientBoostingRegressor': {'RMSE': 252.351, 'MAE': 168.389, 'R2': 0.846},\n", - " 'XGBRegressor': {'RMSE': 220.127, 'MAE': 136.805, 'R2': 0.883},\n", + " 'BaggingRegressor': {'RMSE': 232.851, 'MAE': 142.987, 'R2': 0.869},\n", + " 'RandomForestRegressor': {'RMSE': 224.625, 'MAE': 136.939, 'R2': 0.878},\n", + " 'GradientBoostingRegressor': {'RMSE': 252.347, 'MAE': 168.352, 'R2': 0.846},\n", + " 'XGBRegressor': {'RMSE': 251.638, 'MAE': 168.246, 'R2': 0.847},\n", " 'LGBMRegressor': {'RMSE': 213.927, 'MAE': 133.812, 'R2': 0.889},\n", " 'CatBoostRegressor': {'RMSE': 211.156, 'MAE': 132.758, 'R2': 0.892}}" ] }, - "execution_count": 18, + "execution_count": 21, "metadata": {}, "output_type": "execute_result" } @@ -529,7 +628,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 22, "metadata": {}, "outputs": [ { @@ -540,19 +639,19 @@ " 'Lasso': {'RMSE': 438.698, 'MAE': 327.013, 'R2': 0.54},\n", " 'KernelRidge': {'RMSE': 333.564, 'MAE': 227.02, 'R2': 0.734},\n", " 'KNeighborsRegressor': {'RMSE': 306.489, 'MAE': 192.451, 'R2': 0.776},\n", - " 'MLPRegressor': {'RMSE': 330.816, 'MAE': 224.285, 'R2': 0.739},\n", + " 'MLPRegressor': {'RMSE': 328.488, 'MAE': 222.467, 'R2': 0.742},\n", " 'SVR': {'RMSE': 535.479, 'MAE': 365.982, 'R2': 0.315},\n", - " 'DecisionTreeRegressor': {'RMSE': 324.438, 'MAE': 188.004, 'R2': 0.749},\n", + " 'DecisionTreeRegressor': {'RMSE': 320.243, 'MAE': 186.488, 'R2': 0.755},\n", " 'Earth': {'RMSE': 436.442, 'MAE': 326.4, 'R2': 0.545},\n", - " 'BaggingRegressor': {'RMSE': 252.159, 'MAE': 150.487, 'R2': 0.848},\n", - " 'RandomForestRegressor': {'RMSE': 233.533, 'MAE': 140.724, 'R2': 0.87},\n", - " 'GradientBoostingRegressor': {'RMSE': 269.631, 'MAE': 181.888, 'R2': 0.826},\n", - " 'XGBRegressor': {'RMSE': 225.564, 'MAE': 138.074, 'R2': 0.878},\n", + " 'BaggingRegressor': {'RMSE': 248.349, 'MAE': 149.09, 'R2': 0.853},\n", + " 'RandomForestRegressor': {'RMSE': 232.604, 'MAE': 140.553, 'R2': 0.871},\n", + " 'GradientBoostingRegressor': {'RMSE': 269.575, 'MAE': 181.896, 'R2': 0.826},\n", + " 'XGBRegressor': {'RMSE': 270.605, 'MAE': 180.463, 'R2': 0.825},\n", " 'LGBMRegressor': {'RMSE': 218.842, 'MAE': 136.099, 'R2': 0.886},\n", " 'CatBoostRegressor': {'RMSE': 213.575, 'MAE': 132.441, 'R2': 0.891}}" ] }, - "execution_count": 19, + "execution_count": 22, "metadata": {}, "output_type": "execute_result" } @@ -570,7 +669,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 23, "metadata": {}, "outputs": [], "source": [ @@ -581,7 +680,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 24, "metadata": {}, "outputs": [], "source": [ @@ -592,7 +691,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 25, "metadata": {}, "outputs": [], "source": [ @@ -622,23 +721,23 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "{'LinearRegression': {'RMSE': 206.801, 'MAE': 126.249, 'R2': 0.897},\n", - " 'Ridge': {'RMSE': 206.801, 'MAE': 126.249, 'R2': 0.897},\n", - " 'LinearSearch': {'RMSE': 208.398, 'MAE': 128.588, 'R2': 0.895},\n", - " 'DifferentialEvolution': {'RMSE': 221.618, 'MAE': 143.401, 'R2': 0.881},\n", - " 'GeneticAlgorithm': {'RMSE': 207.662, 'MAE': 126.935, 'R2': 0.896},\n", - " 'ParticleSwarmOptimization': {'RMSE': 209.612, 'MAE': 129.631, 'R2': 0.894},\n", - " 'SimulatedAnnealing': {'RMSE': 218.325, 'MAE': 141.588, 'R2': 0.885},\n", - " 'GreedySearch': {'RMSE': 209.581, 'MAE': 128.788, 'R2': 0.894}}" + "{'LinearRegression': {'RMSE': 207.055, 'MAE': 127.009, 'R2': 0.896},\n", + " 'Ridge': {'RMSE': 207.055, 'MAE': 127.009, 'R2': 0.896},\n", + " 'LinearSearch': {'RMSE': 209.604, 'MAE': 130.455, 'R2': 0.894},\n", + " 'DifferentialEvolution': {'RMSE': 208.267, 'MAE': 129.598, 'R2': 0.895},\n", + " 'GeneticAlgorithm': {'RMSE': 206.959, 'MAE': 127.092, 'R2': 0.897},\n", + " 'ParticleSwarmOptimization': {'RMSE': 207.033, 'MAE': 127.102, 'R2': 0.896},\n", + " 'SimulatedAnnealing': {'RMSE': 223.145, 'MAE': 143.772, 'R2': 0.879},\n", + " 'GreedySearch': {'RMSE': 209.942, 'MAE': 129.521, 'R2': 0.893}}" ] }, - "execution_count": 23, + "execution_count": 26, "metadata": {}, "output_type": "execute_result" } @@ -649,23 +748,23 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "{'LinearRegression': {'RMSE': 205.853, 'MAE': 123.723, 'R2': 0.899},\n", - " 'Ridge': {'RMSE': 205.853, 'MAE': 123.723, 'R2': 0.899},\n", - " 'LinearSearch': {'RMSE': 217.121, 'MAE': 133.136, 'R2': 0.887},\n", - " 'DifferentialEvolution': {'RMSE': 218.405, 'MAE': 137.858, 'R2': 0.886},\n", - " 'GeneticAlgorithm': {'RMSE': 212.087, 'MAE': 128.353, 'R2': 0.893},\n", - " 'ParticleSwarmOptimization': {'RMSE': 205.584, 'MAE': 123.854, 'R2': 0.899},\n", - " 'SimulatedAnnealing': {'RMSE': 233.917, 'MAE': 148.864, 'R2': 0.869},\n", - " 'GreedySearch': {'RMSE': 215.531, 'MAE': 130.791, 'R2': 0.889}}" + "{'LinearRegression': {'RMSE': 206.19, 'MAE': 124.295, 'R2': 0.898},\n", + " 'Ridge': {'RMSE': 206.189, 'MAE': 124.295, 'R2': 0.898},\n", + " 'LinearSearch': {'RMSE': 221.178, 'MAE': 136.426, 'R2': 0.883},\n", + " 'DifferentialEvolution': {'RMSE': 211.44, 'MAE': 128.732, 'R2': 0.893},\n", + " 'GeneticAlgorithm': {'RMSE': 206.976, 'MAE': 125.39, 'R2': 0.898},\n", + " 'ParticleSwarmOptimization': {'RMSE': 206.269, 'MAE': 124.592, 'R2': 0.898},\n", + " 'SimulatedAnnealing': {'RMSE': 211.439, 'MAE': 133.123, 'R2': 0.893},\n", + " 'GreedySearch': {'RMSE': 215.868, 'MAE': 131.394, 'R2': 0.889}}" ] }, - "execution_count": 24, + "execution_count": 27, "metadata": {}, "output_type": "execute_result" } @@ -683,54 +782,18 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'LinearRegression': {'RMSE': 206.801, 'MAE': 126.249, 'R2': 0.897},\n", - " 'Ridge': {'RMSE': 206.801, 'MAE': 126.249, 'R2': 0.897},\n", - " 'LinearSearch': {'RMSE': 208.398, 'MAE': 128.588, 'R2': 0.895},\n", - " 'DifferentialEvolution': {'RMSE': 209.036, 'MAE': 129.369, 'R2': 0.894},\n", - " 'GeneticAlgorithm': {'RMSE': 207.079, 'MAE': 126.384, 'R2': 0.896},\n", - " 'ParticleSwarmOptimization': {'RMSE': 206.813, 'MAE': 126.47, 'R2': 0.897},\n", - " 'SimulatedAnnealing': {'RMSE': 223.228, 'MAE': 144.525, 'R2': 0.88},\n", - " 'GreedySearch': {'RMSE': 209.581, 'MAE': 128.788, 'R2': 0.894}}" - ] - }, - "execution_count": 29, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "meta_cv_performance" ] }, { "cell_type": "code", - "execution_count": 30, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'LinearRegression': {'RMSE': 205.853, 'MAE': 123.723, 'R2': 0.899},\n", - " 'Ridge': {'RMSE': 205.853, 'MAE': 123.723, 'R2': 0.899},\n", - " 'LinearSearch': {'RMSE': 217.121, 'MAE': 133.136, 'R2': 0.887},\n", - " 'DifferentialEvolution': {'RMSE': 208.173, 'MAE': 125.838, 'R2': 0.896},\n", - " 'GeneticAlgorithm': {'RMSE': 207.444, 'MAE': 125.305, 'R2': 0.897},\n", - " 'ParticleSwarmOptimization': {'RMSE': 205.842, 'MAE': 123.828, 'R2': 0.899},\n", - " 'SimulatedAnnealing': {'RMSE': 216.304, 'MAE': 135.868, 'R2': 0.888},\n", - " 'GreedySearch': {'RMSE': 215.531, 'MAE': 130.791, 'R2': 0.889}}" - ] - }, - "execution_count": 30, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "meta_test_performance" ] @@ -744,7 +807,7 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -780,39 +843,8 @@ " print(num_weights)\n", " print(weights)\n", "\n", - " return weights/float(num_weights)" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "took 2.8214519023895264 seconds.\n", - "100\n", - "[ 0 0 0 0 9 0 0 2 0 0 30 0 0 21 38]\n", - "took 5.417552709579468 seconds.\n", - "187\n", - "[ 0 0 0 0 16 0 0 4 0 0 55 0 0 40 72]\n" - ] - }, - { - "ename": "KeyError", - "evalue": "'str'", - "output_type": "error", - "traceback": [ - "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[1;31mKeyError\u001b[0m Traceback (most recent call last)", - "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 8\u001b[0m \u001b[0mr2\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mr2_score\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0my_test\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my_pred\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 9\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 10\u001b[1;33m \u001b[0mmeta_test_performance\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'GreedyStacking'\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m__class__\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m__name__\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'RMSE'\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mround\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mrmse\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m3\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 11\u001b[0m \u001b[0mmeta_test_performance\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'GreedyStacking'\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m__class__\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m__name__\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'MAE'\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mround\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmae\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m3\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 12\u001b[0m \u001b[0mmeta_test_performance\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'GreedyStacking'\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m__class__\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m__name__\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'R2'\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mround\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mr2\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m3\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;31mKeyError\u001b[0m: 'str'" - ] - } - ], - "source": [ + " return weights/float(num_weights)\n", + "\n", "weight1 = greedy_opt(X_train_meta.to_numpy(), y_train_meta.to_numpy(), metric=metric_spearman, converged=conv_manhattan, eps=1e-2)\n", "weight2 = greedy_opt(X_train_meta.to_numpy(), y_train_meta.to_numpy(), metric=metric_spearman, converged=conv_euclid, eps=1e-2)\n", "\n", @@ -820,101 +852,966 @@ "\n", "rmse = mean_squared_error(y_test_meta, y_pred, squared=False)\n", "mae = mean_absolute_error(y_test_meta, y_pred)\n", - "r2 = r2_score(y_test, y_pred)\n", - "\n", - "meta_test_performance['GreedyStacking'.__class__.__name__]['RMSE'] = round(rmse, 3)\n", - "meta_test_performance['GreedyStacking'.__class__.__name__]['MAE'] = round(mae, 3)\n", - "meta_test_performance['GreedyStacking'.__class__.__name__]['R2'] = round(r2, 3)" + "r2 = r2_score(y_test, y_pred)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# ====================================================================" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Feature Selection (SKIPPED!)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Parameter Tuning (SKIPPED!)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Pre-process Slump Test Data" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 107, "metadata": {}, "outputs": [], "source": [ - "meta_test_performance" + "slump = pd.read_csv(path + \"/data/slump_test.data\", header=0, encoding= 'unicode_escape')" ] }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 108, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "215.74350006437393" - ] - }, - "execution_count": 43, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], + "source": [ + "slump.rename(columns={'Fly ash': 'FlyAsh', 'Coarse Aggr.': 'CoarseAggr', 'Fine Aggr.': 'FineAggr', 'SLUMP(cm)': 'Slump' , 'FLOW(cm)' : 'Flow' , 'Compressive Strength (28-day)(Mpa)': 'CompressiveStr'}, inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 109, + "metadata": {}, + "outputs": [], + "source": [ + "slump.drop(columns=['No'], inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 94, + "metadata": {}, + "outputs": [], "source": [ - "rmse" + "#slump.drop(slump.tail(1).index,inplace=True)" ] }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 110, "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "131.55150688629558" - ] - }, - "execution_count": 44, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 103 entries, 0 to 102\n", + "Data columns (total 10 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 Cement 103 non-null float64\n", + " 1 Slag 103 non-null float64\n", + " 2 FlyAsh 103 non-null float64\n", + " 3 Water 103 non-null float64\n", + " 4 SP 103 non-null float64\n", + " 5 CoarseAggr 103 non-null float64\n", + " 6 FineAggr 103 non-null float64\n", + " 7 Slump 103 non-null float64\n", + " 8 Flow 103 non-null float64\n", + " 9 CompressiveStr 103 non-null float64\n", + "dtypes: float64(10)\n", + "memory usage: 8.2 KB\n" + ] } ], "source": [ - "mae" + "slump.info()" ] }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 111, "metadata": {}, "outputs": [ { "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
countmeanstdmin25%50%75%max
Cement103.0229.89417578.877230137.00152.00248.00303.900374.00
Slag103.077.97378660.4613630.000.05100.00125.000193.00
FlyAsh103.0149.01456385.4180800.00115.50164.00235.950260.00
Water103.0197.16796120.208158160.00180.00196.00209.500240.00
SP103.08.5398062.8075304.406.008.0010.00019.00
CoarseAggr103.0883.97864188.391393708.00819.50879.00952.8001049.90
FineAggr103.0739.60485463.342117640.60684.50742.70788.000902.00
Slump103.018.0485448.7508440.0014.5021.5024.00029.00
Flow103.049.61068017.56861020.0038.5054.0063.75078.00
CompressiveStr103.036.0394177.83823217.1930.9035.5241.20558.53
\n", + "
" + ], "text/plain": [ - "0.8888279162237089" + " count mean std min 25% 50% 75% \\\n", + "Cement 103.0 229.894175 78.877230 137.00 152.00 248.00 303.900 \n", + "Slag 103.0 77.973786 60.461363 0.00 0.05 100.00 125.000 \n", + "FlyAsh 103.0 149.014563 85.418080 0.00 115.50 164.00 235.950 \n", + "Water 103.0 197.167961 20.208158 160.00 180.00 196.00 209.500 \n", + "SP 103.0 8.539806 2.807530 4.40 6.00 8.00 10.000 \n", + "CoarseAggr 103.0 883.978641 88.391393 708.00 819.50 879.00 952.800 \n", + "FineAggr 103.0 739.604854 63.342117 640.60 684.50 742.70 788.000 \n", + "Slump 103.0 18.048544 8.750844 0.00 14.50 21.50 24.000 \n", + "Flow 103.0 49.610680 17.568610 20.00 38.50 54.00 63.750 \n", + "CompressiveStr 103.0 36.039417 7.838232 17.19 30.90 35.52 41.205 \n", + "\n", + " max \n", + "Cement 374.00 \n", + "Slag 193.00 \n", + "FlyAsh 260.00 \n", + "Water 240.00 \n", + "SP 19.00 \n", + "CoarseAggr 1049.90 \n", + "FineAggr 902.00 \n", + "Slump 29.00 \n", + "Flow 78.00 \n", + "CompressiveStr 58.53 " ] }, - "execution_count": 45, + "execution_count": 111, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "r2" + "slump.describe().transpose()" ] }, { - "cell_type": "markdown", + "cell_type": "code", + "execution_count": 122, "metadata": {}, + "outputs": [], "source": [ - "# ====================================================================" + "X = slump[['Cement','Slag','FlyAsh','Water','SP','CoarseAggr','FineAggr']]\n", + "y = slump[['Slump']]\n", + "#y = slump[['Slump','Flow','CompressiveStr']]" ] }, { - "cell_type": "markdown", + "cell_type": "code", + "execution_count": 139, "metadata": {}, + "outputs": [], "source": [ - "## Feature Selection (SKIPPED!)" + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=333)\n", + "base_train_prediction = {}\n", + "base_train_prediction['target'] = y_train.to_numpy().ravel()\n", + "base_test_prediction = {}\n", + "base_test_prediction['target'] = y_test.to_numpy().ravel()" + ] + }, + { + "cell_type": "code", + "execution_count": 140, + "metadata": {}, + "outputs": [], + "source": [ + "base_cv_performance = {}\n", + "base_test_performance = {}\n", + "meta_cv_performance = {}\n", + "meta_test_performance = {}" + ] + }, + { + "cell_type": "code", + "execution_count": 145, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[00:16:23] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n", + "[00:16:23] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n", + "[00:16:23] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n", + "[00:16:23] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n", + "[00:16:23] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n", + "[00:16:23] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n" + ] + } + ], + "source": [ + "for m in base_models:\n", + " model = base_models[m]\n", + " base_test_performance[model.__class__.__name__] = {}\n", + " \n", + " prediction, performance = base_cv_learning(model, X_train, y_train, 5)\n", + " base_train_prediction[model.__class__.__name__] = prediction\n", + " base_cv_performance[model.__class__.__name__] = performance\n", + " \n", + " model.fit(X_train, y_train)\n", + " y_pred = model.predict(X_test)\n", + " try:\n", + " base_test_prediction[model.__class__.__name__] = [items[0] for items in y_pred.tolist()]\n", + " except:\n", + " base_test_prediction[model.__class__.__name__] = y_pred.tolist()\n", + " rmse = mean_squared_error(y_test, y_pred, squared=False)\n", + " mae = mean_absolute_error(y_test, y_pred)\n", + " r2 = r2_score(y_test, y_pred)\n", + " base_test_performance[model.__class__.__name__]['RMSE'] = round(rmse, 3)\n", + " base_test_performance[model.__class__.__name__]['MAE'] = round(mae, 3)\n", + " base_test_performance[model.__class__.__name__]['R2'] = round(r2, 3)" + ] + }, + { + "cell_type": "code", + "execution_count": 146, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'LinearRegression': {'RMSE': 7.934, 'MAE': 6.498, 'R2': -0.571},\n", + " 'Ridge': {'RMSE': 7.934, 'MAE': 6.497, 'R2': -0.57},\n", + " 'Lasso': {'RMSE': 7.804, 'MAE': 6.401, 'R2': -0.523},\n", + " 'KernelRidge': {'RMSE': 20.051, 'MAE': 18.283, 'R2': -16.7},\n", + " 'KNeighborsRegressor': {'RMSE': 8.001, 'MAE': 6.033, 'R2': -0.255},\n", + " 'MLPRegressor': {'RMSE': 35.985, 'MAE': 32.608, 'R2': -41.441},\n", + " 'SVR': {'RMSE': 8.723, 'MAE': 6.494, 'R2': -0.381},\n", + " 'DecisionTreeRegressor': {'RMSE': 9.61, 'MAE': 6.629, 'R2': -1.828},\n", + " 'BaggingRegressor': {'RMSE': 7.598, 'MAE': 5.294, 'R2': -0.53},\n", + " 'RandomForestRegressor': {'RMSE': 7.217, 'MAE': 5.285, 'R2': -0.262},\n", + " 'GradientBoostingRegressor': {'RMSE': 8.402, 'MAE': 6.041, 'R2': -0.951},\n", + " 'XGBRegressor': {'RMSE': 7.971, 'MAE': 5.678, 'R2': -0.463},\n", + " 'LGBMRegressor': {'RMSE': 7.534, 'MAE': 5.947, 'R2': -0.194},\n", + " 'CatBoostRegressor': {'RMSE': 7.55, 'MAE': 5.446, 'R2': -0.341}}" + ] + }, + "execution_count": 146, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "base_cv_performance" + ] + }, + { + "cell_type": "code", + "execution_count": 147, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'LinearRegression': {'RMSE': 9.095, 'MAE': 7.076, 'R2': -0.021},\n", + " 'Ridge': {'RMSE': 9.094, 'MAE': 7.076, 'R2': -0.021},\n", + " 'Lasso': {'RMSE': 8.987, 'MAE': 7.067, 'R2': 0.003},\n", + " 'KernelRidge': {'RMSE': 19.151, 'MAE': 16.904, 'R2': -3.526},\n", + " 'KNeighborsRegressor': {'RMSE': 11.173, 'MAE': 8.326, 'R2': -0.54},\n", + " 'MLPRegressor': {'RMSE': 59.419, 'MAE': 57.623, 'R2': -42.567},\n", + " 'SVR': {'RMSE': 10.264, 'MAE': 6.858, 'R2': -0.3},\n", + " 'DecisionTreeRegressor': {'RMSE': 11.013, 'MAE': 7.81, 'R2': -0.497},\n", + " 'BaggingRegressor': {'RMSE': 9.079, 'MAE': 6.569, 'R2': -0.017},\n", + " 'RandomForestRegressor': {'RMSE': 8.396, 'MAE': 6.231, 'R2': 0.13},\n", + " 'GradientBoostingRegressor': {'RMSE': 9.788, 'MAE': 6.808, 'R2': -0.182},\n", + " 'XGBRegressor': {'RMSE': 9.837, 'MAE': 6.596, 'R2': -0.194},\n", + " 'LGBMRegressor': {'RMSE': 8.981, 'MAE': 6.878, 'R2': 0.005},\n", + " 'CatBoostRegressor': {'RMSE': 9.116, 'MAE': 6.394, 'R2': -0.025}}" + ] + }, + "execution_count": 147, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "base_test_performance" + ] + }, + { + "cell_type": "code", + "execution_count": 148, + "metadata": {}, + "outputs": [], + "source": [ + "df_train_meta = pd.DataFrame(base_train_prediction)\n", + "y_train_meta = df_train_meta[['target']]\n", + "X_train_meta = df_train_meta.drop(columns=['target'], axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 149, + "metadata": {}, + "outputs": [], + "source": [ + "df_test_meta = pd.DataFrame(base_test_prediction)\n", + "y_test_meta = df_test_meta[['target']].to_numpy().ravel()\n", + "X_test_meta = df_test_meta.drop(columns=['target'], axis=1).to_numpy()" + ] + }, + { + "cell_type": "code", + "execution_count": 150, + "metadata": {}, + "outputs": [], + "source": [ + "for m in meta_models:\n", + " model = meta_models[m]\n", + " meta_test_performance[model.__class__.__name__] = {}\n", + " \n", + " performance = meta_cv_learning(model, X_train_meta, y_train_meta, 5)\n", + " meta_cv_performance[model.__class__.__name__] = performance\n", + " \n", + " model.fit(X_train_meta.to_numpy(), y_train_meta.to_numpy().ravel())\n", + " y_pred = model.predict(X_test_meta)\n", + " rmse = mean_squared_error(y_test_meta, y_pred, squared=False)\n", + " mae = mean_absolute_error(y_test_meta, y_pred)\n", + " r2 = r2_score(y_test, y_pred)\n", + " meta_test_performance[model.__class__.__name__]['RMSE'] = round(rmse, 3)\n", + " meta_test_performance[model.__class__.__name__]['MAE'] = round(mae, 3)\n", + " meta_test_performance[model.__class__.__name__]['R2'] = round(r2, 3)" + ] + }, + { + "cell_type": "code", + "execution_count": 151, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'LinearRegression': {'RMSE': 9.061, 'MAE': 6.883, 'R2': -1.137},\n", + " 'Ridge': {'RMSE': 8.699, 'MAE': 6.673, 'R2': -1.001},\n", + " 'LinearSearch': {'RMSE': 7.791, 'MAE': 6.182, 'R2': -0.572},\n", + " 'DifferentialEvolution': {'RMSE': 8.526, 'MAE': 6.448, 'R2': -1.069},\n", + " 'GeneticAlgorithm': {'RMSE': 8.592, 'MAE': 6.457, 'R2': -1.078},\n", + " 'ParticleSwarmOptimization': {'RMSE': 8.613, 'MAE': 6.566, 'R2': -1.126},\n", + " 'SimulatedAnnealing': {'RMSE': 8.233, 'MAE': 6.421, 'R2': -0.728},\n", + " 'GreedySearch': {'RMSE': 15.106, 'MAE': 14.0, 'R2': -10.286}}" + ] + }, + "execution_count": 151, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "meta_cv_performance" + ] + }, + { + "cell_type": "code", + "execution_count": 152, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'LinearRegression': {'RMSE': 8.215, 'MAE': 7.061, 'R2': 0.167},\n", + " 'Ridge': {'RMSE': 8.018, 'MAE': 6.87, 'R2': 0.207},\n", + " 'LinearSearch': {'RMSE': 8.31, 'MAE': 6.35, 'R2': 0.148},\n", + " 'DifferentialEvolution': {'RMSE': 8.348, 'MAE': 6.838, 'R2': 0.14},\n", + " 'GeneticAlgorithm': {'RMSE': 8.294, 'MAE': 6.931, 'R2': 0.151},\n", + " 'ParticleSwarmOptimization': {'RMSE': 8.386, 'MAE': 6.979, 'R2': 0.132},\n", + " 'SimulatedAnnealing': {'RMSE': 8.323, 'MAE': 6.634, 'R2': 0.145},\n", + " 'GreedySearch': {'RMSE': 14.201, 'MAE': 12.813, 'R2': -1.489}}" + ] + }, + "execution_count": 152, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "meta_test_performance" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Parameter Tuning (SKIPPED!)" + "# Pre-process Slump Test Data" + ] + }, + { + "cell_type": "code", + "execution_count": 153, + "metadata": {}, + "outputs": [], + "source": [ + "stock = pd.read_csv(path + \"/data/Stock Portofolio.csv\", header=0, encoding= 'unicode_escape')" + ] + }, + { + "cell_type": "code", + "execution_count": 154, + "metadata": {}, + "outputs": [], + "source": [ + "stock.rename(columns=dict(zip(stock.columns, ['largeBP', 'largeROE', 'largeSP', 'largeReturn', 'largeValue', 'smallRisk', 'Return'])), inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 155, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
countmeanstdmin25%50%75%max
largeBP63.00.1666190.1993040.00.00.1670.29151.0
largeROE63.00.1666190.1993040.00.00.1670.29151.0
largeSP63.00.1666190.1993040.00.00.1670.29151.0
largeReturn63.00.1666190.1993040.00.00.1670.29151.0
largeValue63.00.1666190.1993040.00.00.1670.29151.0
smallRisk63.00.1666190.1993040.00.00.1670.29151.0
Return63.014.9238102.7872247.013.815.30017.000019.5
\n", + "
" + ], + "text/plain": [ + " count mean std min 25% 50% 75% max\n", + "largeBP 63.0 0.166619 0.199304 0.0 0.0 0.167 0.2915 1.0\n", + "largeROE 63.0 0.166619 0.199304 0.0 0.0 0.167 0.2915 1.0\n", + "largeSP 63.0 0.166619 0.199304 0.0 0.0 0.167 0.2915 1.0\n", + "largeReturn 63.0 0.166619 0.199304 0.0 0.0 0.167 0.2915 1.0\n", + "largeValue 63.0 0.166619 0.199304 0.0 0.0 0.167 0.2915 1.0\n", + "smallRisk 63.0 0.166619 0.199304 0.0 0.0 0.167 0.2915 1.0\n", + "Return 63.0 14.923810 2.787224 7.0 13.8 15.300 17.0000 19.5" + ] + }, + "execution_count": 155, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "stock.describe().transpose()" + ] + }, + { + "cell_type": "code", + "execution_count": 156, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 63 entries, 0 to 62\n", + "Data columns (total 7 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 largeBP 63 non-null float64\n", + " 1 largeROE 63 non-null float64\n", + " 2 largeSP 63 non-null float64\n", + " 3 largeReturn 63 non-null float64\n", + " 4 largeValue 63 non-null float64\n", + " 5 smallRisk 63 non-null float64\n", + " 6 Return 63 non-null float64\n", + "dtypes: float64(7)\n", + "memory usage: 3.6 KB\n" + ] + } + ], + "source": [ + "stock.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 158, + "metadata": {}, + "outputs": [], + "source": [ + "X = stock[['largeBP','largeROE','largeSP','largeReturn','largeValue','smallRisk']]\n", + "y = stock[['Return']]" + ] + }, + { + "cell_type": "code", + "execution_count": 159, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=333)\n", + "base_train_prediction = {}\n", + "base_train_prediction['target'] = y_train.to_numpy().ravel()\n", + "base_test_prediction = {}\n", + "base_test_prediction['target'] = y_test.to_numpy().ravel()" + ] + }, + { + "cell_type": "code", + "execution_count": 160, + "metadata": {}, + "outputs": [], + "source": [ + "base_cv_performance = {}\n", + "base_test_performance = {}\n", + "meta_cv_performance = {}\n", + "meta_test_performance = {}" + ] + }, + { + "cell_type": "code", + "execution_count": 161, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[00:24:07] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n", + "[00:24:07] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n", + "[00:24:07] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n", + "[00:24:07] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n", + "[00:24:07] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n", + "[00:24:07] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror.\n" + ] + } + ], + "source": [ + "for m in base_models:\n", + " model = base_models[m]\n", + " base_test_performance[model.__class__.__name__] = {}\n", + " \n", + " prediction, performance = base_cv_learning(model, X_train, y_train, 5)\n", + " base_train_prediction[model.__class__.__name__] = prediction\n", + " base_cv_performance[model.__class__.__name__] = performance\n", + " \n", + " model.fit(X_train, y_train)\n", + " y_pred = model.predict(X_test)\n", + " try:\n", + " base_test_prediction[model.__class__.__name__] = [items[0] for items in y_pred.tolist()]\n", + " except:\n", + " base_test_prediction[model.__class__.__name__] = y_pred.tolist()\n", + " rmse = mean_squared_error(y_test, y_pred, squared=False)\n", + " mae = mean_absolute_error(y_test, y_pred)\n", + " r2 = r2_score(y_test, y_pred)\n", + " base_test_performance[model.__class__.__name__]['RMSE'] = round(rmse, 3)\n", + " base_test_performance[model.__class__.__name__]['MAE'] = round(mae, 3)\n", + " base_test_performance[model.__class__.__name__]['R2'] = round(r2, 3)" + ] + }, + { + "cell_type": "code", + "execution_count": 162, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'LinearRegression': {'RMSE': 2.282, 'MAE': 1.874, 'R2': 0.272},\n", + " 'Ridge': {'RMSE': 2.12, 'MAE': 1.782, 'R2': 0.381},\n", + " 'Lasso': {'RMSE': 2.728, 'MAE': 2.147, 'R2': -0.025},\n", + " 'KernelRidge': {'RMSE': 2.056, 'MAE': 1.694, 'R2': 0.424},\n", + " 'KNeighborsRegressor': {'RMSE': 1.959, 'MAE': 1.432, 'R2': 0.463},\n", + " 'MLPRegressor': {'RMSE': 1.895, 'MAE': 1.629, 'R2': 0.489},\n", + " 'SVR': {'RMSE': 1.888, 'MAE': 1.342, 'R2': 0.51},\n", + " 'DecisionTreeRegressor': {'RMSE': 1.73, 'MAE': 1.498, 'R2': 0.585},\n", + " 'BaggingRegressor': {'RMSE': 1.861, 'MAE': 1.453, 'R2': 0.525},\n", + " 'RandomForestRegressor': {'RMSE': 1.655, 'MAE': 1.332, 'R2': 0.62},\n", + " 'GradientBoostingRegressor': {'RMSE': 1.163, 'MAE': 0.963, 'R2': 0.805},\n", + " 'XGBRegressor': {'RMSE': 1.559, 'MAE': 1.174, 'R2': 0.664},\n", + " 'LGBMRegressor': {'RMSE': 2.699, 'MAE': 2.114, 'R2': -0.04},\n", + " 'CatBoostRegressor': {'RMSE': 1.545, 'MAE': 1.172, 'R2': 0.672}}" + ] + }, + "execution_count": 162, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "base_cv_performance" + ] + }, + { + "cell_type": "code", + "execution_count": 163, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'LinearRegression': {'RMSE': 1.49, 'MAE': 1.267, 'R2': 0.719},\n", + " 'Ridge': {'RMSE': 1.842, 'MAE': 1.611, 'R2': 0.571},\n", + " 'Lasso': {'RMSE': 2.879, 'MAE': 2.307, 'R2': -0.049},\n", + " 'KernelRidge': {'RMSE': 2.119, 'MAE': 1.723, 'R2': 0.432},\n", + " 'KNeighborsRegressor': {'RMSE': 1.751, 'MAE': 1.489, 'R2': 0.612},\n", + " 'MLPRegressor': {'RMSE': 1.572, 'MAE': 1.385, 'R2': 0.688},\n", + " 'SVR': {'RMSE': 1.822, 'MAE': 1.382, 'R2': 0.58},\n", + " 'DecisionTreeRegressor': {'RMSE': 2.066, 'MAE': 1.777, 'R2': 0.46},\n", + " 'BaggingRegressor': {'RMSE': 1.705, 'MAE': 1.414, 'R2': 0.632},\n", + " 'RandomForestRegressor': {'RMSE': 1.724, 'MAE': 1.489, 'R2': 0.624},\n", + " 'GradientBoostingRegressor': {'RMSE': 1.106, 'MAE': 0.897, 'R2': 0.845},\n", + " 'XGBRegressor': {'RMSE': 1.271, 'MAE': 1.006, 'R2': 0.796},\n", + " 'LGBMRegressor': {'RMSE': 1.505, 'MAE': 1.121, 'R2': 0.714},\n", + " 'CatBoostRegressor': {'RMSE': 1.54, 'MAE': 1.25, 'R2': 0.7}}" + ] + }, + "execution_count": 163, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "base_test_performance" + ] + }, + { + "cell_type": "code", + "execution_count": 164, + "metadata": {}, + "outputs": [], + "source": [ + "df_train_meta = pd.DataFrame(base_train_prediction)\n", + "y_train_meta = df_train_meta[['target']]\n", + "X_train_meta = df_train_meta.drop(columns=['target'], axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 165, + "metadata": {}, + "outputs": [], + "source": [ + "df_test_meta = pd.DataFrame(base_test_prediction)\n", + "y_test_meta = df_test_meta[['target']].to_numpy().ravel()\n", + "X_test_meta = df_test_meta.drop(columns=['target'], axis=1).to_numpy()" + ] + }, + { + "cell_type": "code", + "execution_count": 166, + "metadata": {}, + "outputs": [], + "source": [ + "for m in meta_models:\n", + " model = meta_models[m]\n", + " meta_test_performance[model.__class__.__name__] = {}\n", + " \n", + " performance = meta_cv_learning(model, X_train_meta, y_train_meta, 5)\n", + " meta_cv_performance[model.__class__.__name__] = performance\n", + " \n", + " model.fit(X_train_meta.to_numpy(), y_train_meta.to_numpy().ravel())\n", + " y_pred = model.predict(X_test_meta)\n", + " rmse = mean_squared_error(y_test_meta, y_pred, squared=False)\n", + " mae = mean_absolute_error(y_test_meta, y_pred)\n", + " r2 = r2_score(y_test, y_pred)\n", + " meta_test_performance[model.__class__.__name__]['RMSE'] = round(rmse, 3)\n", + " meta_test_performance[model.__class__.__name__]['MAE'] = round(mae, 3)\n", + " meta_test_performance[model.__class__.__name__]['R2'] = round(r2, 3)" + ] + }, + { + "cell_type": "code", + "execution_count": 167, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'LinearRegression': {'RMSE': 1.558, 'MAE': 1.29, 'R2': 0.66},\n", + " 'Ridge': {'RMSE': 1.315, 'MAE': 1.096, 'R2': 0.758},\n", + " 'LinearSearch': {'RMSE': 1.365, 'MAE': 1.123, 'R2': 0.732},\n", + " 'DifferentialEvolution': {'RMSE': 1.473, 'MAE': 1.196, 'R2': 0.686},\n", + " 'GeneticAlgorithm': {'RMSE': 1.164, 'MAE': 0.981, 'R2': 0.814},\n", + " 'ParticleSwarmOptimization': {'RMSE': 1.326, 'MAE': 1.078, 'R2': 0.754},\n", + " 'SimulatedAnnealing': {'RMSE': 1.175, 'MAE': 0.981, 'R2': 0.804},\n", + " 'GreedySearch': {'RMSE': 2.076, 'MAE': 1.606, 'R2': 0.413}}" + ] + }, + "execution_count": 167, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "meta_cv_performance" + ] + }, + { + "cell_type": "code", + "execution_count": 168, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'LinearRegression': {'RMSE': 1.214, 'MAE': 1.025, 'R2': 0.814},\n", + " 'Ridge': {'RMSE': 1.123, 'MAE': 0.896, 'R2': 0.84},\n", + " 'LinearSearch': {'RMSE': 1.231, 'MAE': 0.992, 'R2': 0.809},\n", + " 'DifferentialEvolution': {'RMSE': 1.291, 'MAE': 1.02, 'R2': 0.789},\n", + " 'GeneticAlgorithm': {'RMSE': 1.057, 'MAE': 0.857, 'R2': 0.859},\n", + " 'ParticleSwarmOptimization': {'RMSE': 1.138, 'MAE': 0.906, 'R2': 0.836},\n", + " 'SimulatedAnnealing': {'RMSE': 1.477, 'MAE': 1.264, 'R2': 0.724},\n", + " 'GreedySearch': {'RMSE': 2.14, 'MAE': 1.797, 'R2': 0.421}}" + ] + }, + "execution_count": 168, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "meta_test_performance" ] }, { diff --git a/src/__pycache__/skoptimize.cpython-37.pyc b/src/__pycache__/skoptimize.cpython-37.pyc index defebee492d628d5eb901d4d6749c487f4d65808..a29edb733a588a69ea07a719fc8ff3760d333c87 100644 GIT binary patch delta 2013 zcmZuxU1%It6uxI>c6RoElikf`v-!_zx~-;EABqs@U$lrCe=5W-=ytnzn(p5uy)%hz zI-5mX+08?(^@3>Cl2G5QplpSTA|h20i$5=dgJPe=ClTy}2!iL%Cb8DeaLzs7z30sR z=A3)al?N}*g!hI*euB@JAAg>|I&v=D3%{Nlzo!9Jt>(-5flxv{)j%zn3%a&i4b{TA zuxop(kyD@{Ls){a6Wq^qot`+L7g+Hq z=ibTt${3mTumBD$h{_2R=Zr<2&FV%`cf9(%S*p$%EG*n)77=b0p{jh(P;8(Z&2Ldm z4HW?mRD72bon81@skb5Hyn?b1#T4!qDZ{E{gDtH|6jB6vNz)8)B`Z6US#&(6Rj^FQ zXU-$bTESo&``(W}4jg1r96PE@%tUIs#Y)BehX40Cxsk^H#?3!Gaf@eB5EG9W1yPrz z$bt>NC7abWBbSt5-$Y36sA1zo7t6=*v4$XS3S|j(OX@-{0ezuZEzyGU zBYJG`?E62@4Y#7mlz2qVJtzX3*HPI}CZeQu*@CiU%a%+V(iy3)SZ>8vl{Hc(Yp^0w zd4*89?rA~ULzRle_M)ZMRU_)ocyQ(kw7hloxM8a;Vk?NWQ?mI<3pdzFR!B>-Jruj( z3(^rOg&T`+C&`M`Bu!{aP5FpIRq8#hH7s9CLRNB$oPsHox);g#ZSNY?J+@+dJS63Q zQYMq+*po8^R|B?U1zYHwMzX6RTV8_}2M+mhF$bJ8&dH-zb|#ExMUn?i+l zzpw{{tvCT=p_YGEFU=mc%+9%tmtj2Eo>OoZzyh|RkD;> zzpI1(!H2RDcBk-h&y#0KXLF__mki7CZGNzG`4@!OaiOY0jiYkZ0-LQBjBH)KGL_q;X z@?*pCgDORF?1fRZj8sj%2So8zzy{aa=Z-TikbAW$1_ITV0n8niki3zu5F#|nWjr%ecDDxd%N#4vv QyrXV-kiVW8kiyA-0MlUGCjbBd delta 576 zcmY+<%WD%+6bA75YLZSeuS}Ae$)hH50%{^6bmhv@DoW9XRj@Ef`rwMyP83^oA+%L| z)Ig=CN36P$+GSk`H)vLNp*zK;xKPlA;7Szx2Y8yD_rT@*!MWUX)<-+T=8$0|6g~$p zZ;rhww9G6%w)XTdL_@U^58_aSB4S~pp#@qu_lA1I2#ju4L$hH8RyW7PWWx?@D903$ z5ZY};Xt#QT6iXKd%V4Ehrm$ERE5k|(n`N^cR!XEBh!yjIU?ZDoya1xWJKqYqorsYDH@DDMUlS5Lg+Ny zyM>B8q@Dz7v>bng{j@u=jDC8R_=YO2YAYC^nqG%5o4N-amTSgQ-~|0NU*Zfsu|D89 zm7EGSlh;sRvCm^jPT49jDX*jkfoYQI4P2$M%qA{!<3r3*+nL0K^xOg9rX2OoLc7m{ z&lI+&KR|!-dHS4vfK|GX`-&xgQ>1hG1w5l4`DxscBLx>&r!~WobA5T>1wG#R8ynOt z-b0&GrExr$v!x?IM|R44fp_$M*B0K=Cw~#|sa~0IU-L(^F}_r&nyStSj@2C9t&PyH d+7z9trRmZ>%P)32bo^I4OxG-%B`)7|{sBV+lL7z$ diff --git a/src/catboost_info/catboost_training.json b/src/catboost_info/catboost_training.json index 1fc65c4..1812b46 100644 --- a/src/catboost_info/catboost_training.json +++ b/src/catboost_info/catboost_training.json @@ -1,1004 +1,1004 @@ { "meta":{"test_sets":[],"test_metrics":[],"learn_metrics":[{"best_value":"Min","name":"RMSE"}],"launch_mode":"Train","parameters":"","iteration_count":1000,"learn_sets":["learn"],"name":"experiment"}, "iterations":[ -{"learn":[620.5760578],"iteration":0,"passed_time":0.003476379894,"remaining_time":3.472903515}, -{"learn":[598.7211525],"iteration":1,"passed_time":0.006419039383,"remaining_time":3.203100652}, -{"learn":[578.2542645],"iteration":2,"passed_time":0.009272026479,"remaining_time":3.081403466}, -{"learn":[558.7096874],"iteration":3,"passed_time":0.01186695201,"remaining_time":2.954871049}, -{"learn":[539.5736844],"iteration":4,"passed_time":0.01441909642,"remaining_time":2.869400187}, -{"learn":[521.609713],"iteration":5,"passed_time":0.01705135279,"remaining_time":2.824840779}, -{"learn":[504.8846172],"iteration":6,"passed_time":0.01959361148,"remaining_time":2.779493742}, -{"learn":[492.1700973],"iteration":7,"passed_time":0.02215929222,"remaining_time":2.747752235}, -{"learn":[477.7864847],"iteration":8,"passed_time":0.02471193543,"remaining_time":2.721058667}, -{"learn":[465.4277067],"iteration":9,"passed_time":0.02734788028,"remaining_time":2.707440147}, -{"learn":[452.8171807],"iteration":10,"passed_time":0.02991678202,"remaining_time":2.689790674}, -{"learn":[441.6858787],"iteration":11,"passed_time":0.03251386177,"remaining_time":2.676974619}, -{"learn":[431.7097688],"iteration":12,"passed_time":0.03507059826,"remaining_time":2.66266773}, -{"learn":[421.7999127],"iteration":13,"passed_time":0.03761755816,"remaining_time":2.649350882}, -{"learn":[412.5099288],"iteration":14,"passed_time":0.04020992465,"remaining_time":2.640451718}, -{"learn":[404.4239704],"iteration":15,"passed_time":0.04313030115,"remaining_time":2.652513521}, -{"learn":[396.741244],"iteration":16,"passed_time":0.04568244039,"remaining_time":2.641519936}, -{"learn":[389.5154561],"iteration":17,"passed_time":0.04821969116,"remaining_time":2.63065204}, -{"learn":[383.0563827],"iteration":18,"passed_time":0.0507454166,"remaining_time":2.620065984}, -{"learn":[376.1352158],"iteration":19,"passed_time":0.05325073032,"remaining_time":2.609285786}, -{"learn":[370.1635061],"iteration":20,"passed_time":0.05582512398,"remaining_time":2.602514113}, -{"learn":[364.6459778],"iteration":21,"passed_time":0.05845976177,"remaining_time":2.598802137}, -{"learn":[358.16175],"iteration":22,"passed_time":0.06098203696,"remaining_time":2.590410874}, -{"learn":[353.1040473],"iteration":23,"passed_time":0.06351983746,"remaining_time":2.583140057}, -{"learn":[348.1582543],"iteration":24,"passed_time":0.06607870305,"remaining_time":2.577069419}, -{"learn":[343.7226294],"iteration":25,"passed_time":0.06865768123,"remaining_time":2.572022366}, -{"learn":[338.5719893],"iteration":26,"passed_time":0.07125677199,"remaining_time":2.567882931}, -{"learn":[333.7115713],"iteration":27,"passed_time":0.07414851404,"remaining_time":2.574012702}, -{"learn":[328.9920956],"iteration":28,"passed_time":0.07670923539,"remaining_time":2.568436813}, -{"learn":[325.0515775],"iteration":29,"passed_time":0.07925177807,"remaining_time":2.562474158}, -{"learn":[321.8384646],"iteration":30,"passed_time":0.08180163091,"remaining_time":2.556960657}, -{"learn":[318.4423634],"iteration":31,"passed_time":0.08432992917,"remaining_time":2.550980357}, -{"learn":[315.3978003],"iteration":32,"passed_time":0.08689055517,"remaining_time":2.546156571}, -{"learn":[312.5828544],"iteration":33,"passed_time":0.08959843126,"remaining_time":2.545649547}, -{"learn":[309.70646],"iteration":34,"passed_time":0.09221411825,"remaining_time":2.542474975}, -{"learn":[307.1095685],"iteration":35,"passed_time":0.09475699897,"remaining_time":2.537381861}, -{"learn":[304.0939364],"iteration":36,"passed_time":0.09737355791,"remaining_time":2.534344223}, -{"learn":[301.7656679],"iteration":37,"passed_time":0.09997376193,"remaining_time":2.53091471}, -{"learn":[299.4047899],"iteration":38,"passed_time":0.1025218963,"remaining_time":2.526244677}, -{"learn":[297.254545],"iteration":39,"passed_time":0.1051808261,"remaining_time":2.524339826}, -{"learn":[295.5138736],"iteration":40,"passed_time":0.1077228824,"remaining_time":2.519664492}, -{"learn":[293.4425759],"iteration":41,"passed_time":0.110256457,"remaining_time":2.514897282}, -{"learn":[291.4891169],"iteration":42,"passed_time":0.1128081033,"remaining_time":2.51063616}, -{"learn":[289.6100769],"iteration":43,"passed_time":0.1153746956,"remaining_time":2.506777477}, -{"learn":[287.5775281],"iteration":44,"passed_time":0.1179268524,"remaining_time":2.502669868}, -{"learn":[285.4212346],"iteration":45,"passed_time":0.1205502437,"remaining_time":2.500107229}, -{"learn":[283.8463576],"iteration":46,"passed_time":0.1231523131,"remaining_time":2.497109669}, -{"learn":[281.9264811],"iteration":47,"passed_time":0.1256948252,"remaining_time":2.492947366}, -{"learn":[280.051098],"iteration":48,"passed_time":0.1282665472,"remaining_time":2.48941809}, -{"learn":[278.4764502],"iteration":49,"passed_time":0.1320625836,"remaining_time":2.509189089}, -{"learn":[276.9272552],"iteration":50,"passed_time":0.1358566107,"remaining_time":2.527998501}, -{"learn":[275.6266174],"iteration":51,"passed_time":0.1385542885,"remaining_time":2.525951259}, -{"learn":[274.4524048],"iteration":52,"passed_time":0.1412107332,"remaining_time":2.523142723}, -{"learn":[272.8090315],"iteration":53,"passed_time":0.1437768928,"remaining_time":2.518758158}, -{"learn":[271.8368357],"iteration":54,"passed_time":0.1462752134,"remaining_time":2.51327412}, -{"learn":[270.9166964],"iteration":55,"passed_time":0.1487911271,"remaining_time":2.508193285}, -{"learn":[270.0903729],"iteration":56,"passed_time":0.1513826457,"remaining_time":2.504453244}, -{"learn":[268.9312575],"iteration":57,"passed_time":0.1539402993,"remaining_time":2.500202792}, -{"learn":[267.9345147],"iteration":58,"passed_time":0.156486917,"remaining_time":2.49583371}, -{"learn":[267.1499581],"iteration":59,"passed_time":0.1589965822,"remaining_time":2.490946454}, -{"learn":[266.1951508],"iteration":60,"passed_time":0.1615160959,"remaining_time":2.486288755}, -{"learn":[265.0723269],"iteration":61,"passed_time":0.1640775009,"remaining_time":2.482333804}, -{"learn":[264.1388956],"iteration":62,"passed_time":0.1666071469,"remaining_time":2.47795074}, -{"learn":[263.0923067],"iteration":63,"passed_time":0.1691393653,"remaining_time":2.473663217}, -{"learn":[262.3625219],"iteration":64,"passed_time":0.1716896012,"remaining_time":2.469688879}, -{"learn":[261.2620305],"iteration":65,"passed_time":0.1743197922,"remaining_time":2.46688918}, -{"learn":[260.7711009],"iteration":66,"passed_time":0.1769234482,"remaining_time":2.463725032}, -{"learn":[259.7131163],"iteration":67,"passed_time":0.1795240347,"remaining_time":2.460535299}, -{"learn":[259.0637417],"iteration":68,"passed_time":0.1821584336,"remaining_time":2.457818864}, -{"learn":[258.2124852],"iteration":69,"passed_time":0.1847731749,"remaining_time":2.45484361}, -{"learn":[257.5328243],"iteration":70,"passed_time":0.1872794862,"remaining_time":2.450459757}, -{"learn":[256.7125437],"iteration":71,"passed_time":0.1898528806,"remaining_time":2.446992683}, -{"learn":[256.1055048],"iteration":72,"passed_time":0.1924131283,"remaining_time":2.44338315}, -{"learn":[255.3754692],"iteration":73,"passed_time":0.1949725784,"remaining_time":2.439791994}, -{"learn":[254.8823518],"iteration":74,"passed_time":0.1976225322,"remaining_time":2.437344564}, -{"learn":[254.4031309],"iteration":75,"passed_time":0.2002098395,"remaining_time":2.434130154}, -{"learn":[253.8559975],"iteration":76,"passed_time":0.2027433642,"remaining_time":2.43028734}, -{"learn":[253.1719715],"iteration":77,"passed_time":0.2053254126,"remaining_time":2.427051673}, -{"learn":[252.2324528],"iteration":78,"passed_time":0.2078919034,"remaining_time":2.423651177}, -{"learn":[251.6595185],"iteration":79,"passed_time":0.2105134327,"remaining_time":2.420904476}, -{"learn":[251.1411799],"iteration":80,"passed_time":0.2130245502,"remaining_time":2.416908169}, -{"learn":[250.7367294],"iteration":81,"passed_time":0.2154951011,"remaining_time":2.412493937}, -{"learn":[250.3055688],"iteration":82,"passed_time":0.2180000179,"remaining_time":2.408506222}, -{"learn":[249.7581863],"iteration":83,"passed_time":0.2205394053,"remaining_time":2.404929706}, -{"learn":[249.2938842],"iteration":84,"passed_time":0.2230366072,"remaining_time":2.400923477}, -{"learn":[248.7773177],"iteration":85,"passed_time":0.2255893554,"remaining_time":2.397542684}, -{"learn":[248.3403401],"iteration":86,"passed_time":0.228120549,"remaining_time":2.393954727}, -{"learn":[247.982252],"iteration":87,"passed_time":0.2306241002,"remaining_time":2.390104311}, -{"learn":[247.4584931],"iteration":88,"passed_time":0.2332347438,"remaining_time":2.387380355}, -{"learn":[246.8851434],"iteration":89,"passed_time":0.235793619,"remaining_time":2.384135481}, -{"learn":[246.5099382],"iteration":90,"passed_time":0.238331866,"remaining_time":2.380699629}, -{"learn":[245.8354768],"iteration":91,"passed_time":0.2409055871,"remaining_time":2.377633403}, -{"learn":[245.2869179],"iteration":92,"passed_time":0.2434496599,"remaining_time":2.374288618}, -{"learn":[244.7912936],"iteration":93,"passed_time":0.2472120735,"remaining_time":2.382703602}, -{"learn":[244.4087143],"iteration":94,"passed_time":0.2497524509,"remaining_time":2.379220717}, -{"learn":[244.0489623],"iteration":95,"passed_time":0.2522720817,"remaining_time":2.375562103}, -{"learn":[243.6377569],"iteration":96,"passed_time":0.2548193166,"remaining_time":2.372183948}, -{"learn":[243.4286293],"iteration":97,"passed_time":0.2580475558,"remaining_time":2.375090769}, -{"learn":[243.1334243],"iteration":98,"passed_time":0.2651454999,"remaining_time":2.413091873}, -{"learn":[242.7073623],"iteration":99,"passed_time":0.2717995351,"remaining_time":2.446195816}, -{"learn":[242.3659535],"iteration":100,"passed_time":0.2786868297,"remaining_time":2.480588712}, -{"learn":[242.0960148],"iteration":101,"passed_time":0.2812875295,"remaining_time":2.476433348}, -{"learn":[241.436651],"iteration":102,"passed_time":0.2839003452,"remaining_time":2.472413686}, -{"learn":[240.8090563],"iteration":103,"passed_time":0.2864406455,"remaining_time":2.467796331}, -{"learn":[240.4908939],"iteration":104,"passed_time":0.2890311697,"remaining_time":2.463646637}, -{"learn":[240.1725981],"iteration":105,"passed_time":0.2917006047,"remaining_time":2.460191893}, -{"learn":[239.7763861],"iteration":106,"passed_time":0.2942662772,"remaining_time":2.455885846}, -{"learn":[239.4181978],"iteration":107,"passed_time":0.2968008584,"remaining_time":2.451355238}, -{"learn":[239.258638],"iteration":108,"passed_time":0.2993164548,"remaining_time":2.446706066}, -{"learn":[239.080851],"iteration":109,"passed_time":0.3017595536,"remaining_time":2.441509116}, -{"learn":[238.6872763],"iteration":110,"passed_time":0.3043285291,"remaining_time":2.437369931}, -{"learn":[238.3360667],"iteration":111,"passed_time":0.3074503185,"remaining_time":2.437641811}, -{"learn":[237.7427827],"iteration":112,"passed_time":0.3099656199,"remaining_time":2.433092963}, -{"learn":[237.4329402],"iteration":113,"passed_time":0.3124829759,"remaining_time":2.42859576}, -{"learn":[237.0253636],"iteration":114,"passed_time":0.3149862869,"remaining_time":2.424024904}, -{"learn":[236.7503984],"iteration":115,"passed_time":0.3175820475,"remaining_time":2.420194224}, -{"learn":[236.3986407],"iteration":116,"passed_time":0.3201592433,"remaining_time":2.416244545}, -{"learn":[236.0135935],"iteration":117,"passed_time":0.3228535152,"remaining_time":2.413193224}, -{"learn":[235.5269172],"iteration":118,"passed_time":0.325410471,"remaining_time":2.409131302}, -{"learn":[235.0559068],"iteration":119,"passed_time":0.3280374041,"remaining_time":2.40560763}, -{"learn":[234.905801],"iteration":120,"passed_time":0.3305931007,"remaining_time":2.401581285}, -{"learn":[234.7084891],"iteration":121,"passed_time":0.3330962595,"remaining_time":2.397200949}, -{"learn":[234.5241149],"iteration":122,"passed_time":0.3355968045,"remaining_time":2.392832501}, -{"learn":[234.392105],"iteration":123,"passed_time":0.3379978514,"remaining_time":2.387791272}, -{"learn":[234.0393362],"iteration":124,"passed_time":0.3405840963,"remaining_time":2.384088674}, -{"learn":[233.773507],"iteration":125,"passed_time":0.3430715405,"remaining_time":2.379718463}, -{"learn":[233.5237624],"iteration":126,"passed_time":0.3456088002,"remaining_time":2.375720335}, -{"learn":[233.376281],"iteration":127,"passed_time":0.3481261821,"remaining_time":2.371609615}, -{"learn":[232.9864858],"iteration":128,"passed_time":0.3507521018,"remaining_time":2.368256439}, -{"learn":[232.8036273],"iteration":129,"passed_time":0.3532421126,"remaining_time":2.364004907}, -{"learn":[232.4698334],"iteration":130,"passed_time":0.3557444022,"remaining_time":2.359861721}, -{"learn":[232.2137239],"iteration":131,"passed_time":0.3583589828,"remaining_time":2.356481796}, -{"learn":[232.0840741],"iteration":132,"passed_time":0.3608728545,"remaining_time":2.352456879}, -{"learn":[231.7513162],"iteration":133,"passed_time":0.3634352864,"remaining_time":2.348768343}, -{"learn":[231.586349],"iteration":134,"passed_time":0.365930461,"remaining_time":2.344665547}, -{"learn":[231.3809344],"iteration":135,"passed_time":0.3686027268,"remaining_time":2.341711441}, -{"learn":[230.9589638],"iteration":136,"passed_time":0.3712923333,"remaining_time":2.338870683}, -{"learn":[230.7387266],"iteration":137,"passed_time":0.373847646,"remaining_time":2.335193267}, -{"learn":[230.3753151],"iteration":138,"passed_time":0.3763916056,"remaining_time":2.331461672}, -{"learn":[230.1166207],"iteration":139,"passed_time":0.3789174687,"remaining_time":2.327635879}, -{"learn":[229.9530904],"iteration":140,"passed_time":0.3815183464,"remaining_time":2.324285529}, -{"learn":[229.7657174],"iteration":141,"passed_time":0.3841116437,"remaining_time":2.320899932}, -{"learn":[229.4736469],"iteration":142,"passed_time":0.3867292261,"remaining_time":2.317670956}, -{"learn":[229.0638619],"iteration":143,"passed_time":0.3892895767,"remaining_time":2.314110261}, -{"learn":[228.7876325],"iteration":144,"passed_time":0.3918908895,"remaining_time":2.3108049}, -{"learn":[228.5006388],"iteration":145,"passed_time":0.3944204528,"remaining_time":2.307089498}, -{"learn":[228.1224495],"iteration":146,"passed_time":0.3970023707,"remaining_time":2.303694029}, -{"learn":[227.9919517],"iteration":147,"passed_time":0.3995139468,"remaining_time":2.299904612}, -{"learn":[227.7967905],"iteration":148,"passed_time":0.4020470023,"remaining_time":2.296255027}, -{"learn":[227.5287409],"iteration":149,"passed_time":0.4046428301,"remaining_time":2.292976037}, -{"learn":[227.217202],"iteration":150,"passed_time":0.407154907,"remaining_time":2.289235206}, -{"learn":[227.0298558],"iteration":151,"passed_time":0.4096528166,"remaining_time":2.285431503}, -{"learn":[226.4916197],"iteration":152,"passed_time":0.4121888308,"remaining_time":2.281855815}, -{"learn":[226.3253887],"iteration":153,"passed_time":0.4147932125,"remaining_time":2.278669206}, -{"learn":[226.0642439],"iteration":154,"passed_time":0.4172964054,"remaining_time":2.274938468}, -{"learn":[225.8036987],"iteration":155,"passed_time":0.4198617209,"remaining_time":2.271559567}, -{"learn":[225.7026397],"iteration":156,"passed_time":0.4223879802,"remaining_time":2.267981321}, -{"learn":[225.4650761],"iteration":157,"passed_time":0.4249103515,"remaining_time":2.26439567}, -{"learn":[225.3383149],"iteration":158,"passed_time":0.4274337657,"remaining_time":2.260828912}, -{"learn":[225.1078556],"iteration":159,"passed_time":0.4301763293,"remaining_time":2.258425729}, -{"learn":[224.7164752],"iteration":160,"passed_time":0.4327226978,"remaining_time":2.254995922}, -{"learn":[224.4483443],"iteration":161,"passed_time":0.4352554012,"remaining_time":2.251506335}, -{"learn":[224.2232208],"iteration":162,"passed_time":0.4377926919,"remaining_time":2.248052044}, -{"learn":[224.0064678],"iteration":163,"passed_time":0.4403567633,"remaining_time":2.244745452}, -{"learn":[223.6112494],"iteration":164,"passed_time":0.4429172596,"remaining_time":2.241429768}, -{"learn":[223.4253842],"iteration":165,"passed_time":0.4455409707,"remaining_time":2.23844078}, -{"learn":[223.1600008],"iteration":166,"passed_time":0.4480914548,"remaining_time":2.235090909}, -{"learn":[222.9922281],"iteration":167,"passed_time":0.4507618569,"remaining_time":2.232344434}, -{"learn":[222.7160757],"iteration":168,"passed_time":0.4533270591,"remaining_time":2.229081575}, -{"learn":[222.4628553],"iteration":169,"passed_time":0.455931921,"remaining_time":2.226020555}, -{"learn":[222.296121],"iteration":170,"passed_time":0.4584313211,"remaining_time":2.222453598}, -{"learn":[222.1253392],"iteration":171,"passed_time":0.4610112958,"remaining_time":2.219286936}, -{"learn":[222.0139124],"iteration":172,"passed_time":0.4635327831,"remaining_time":2.215847466}, -{"learn":[221.775356],"iteration":173,"passed_time":0.4660837681,"remaining_time":2.212558577}, -{"learn":[221.5265825],"iteration":174,"passed_time":0.4685812436,"remaining_time":2.209025863}, -{"learn":[221.287133],"iteration":175,"passed_time":0.4711069615,"remaining_time":2.205637138}, -{"learn":[221.1300465],"iteration":176,"passed_time":0.4736342046,"remaining_time":2.202265257}, -{"learn":[220.7293612],"iteration":177,"passed_time":0.4762451192,"remaining_time":2.199289258}, -{"learn":[220.5116166],"iteration":178,"passed_time":0.4788183201,"remaining_time":2.196144362}, -{"learn":[220.3514391],"iteration":179,"passed_time":0.4813478638,"remaining_time":2.192806935}, -{"learn":[219.9277564],"iteration":180,"passed_time":0.4839217634,"remaining_time":2.18967914}, -{"learn":[219.7085278],"iteration":181,"passed_time":0.4864048131,"remaining_time":2.186149105}, -{"learn":[219.5998303],"iteration":182,"passed_time":0.4889202917,"remaining_time":2.182775292}, -{"learn":[219.4407344],"iteration":183,"passed_time":0.4914588578,"remaining_time":2.179513196}, -{"learn":[219.29101],"iteration":184,"passed_time":0.4939774824,"remaining_time":2.176171071}, -{"learn":[219.0436525],"iteration":185,"passed_time":0.4965824331,"remaining_time":2.173215594}, -{"learn":[218.770451],"iteration":186,"passed_time":0.4991275472,"remaining_time":2.170003721}, -{"learn":[218.5945932],"iteration":187,"passed_time":0.501683893,"remaining_time":2.166847453}, -{"learn":[218.2581429],"iteration":188,"passed_time":0.5042021196,"remaining_time":2.163533963}, -{"learn":[218.0864669],"iteration":189,"passed_time":0.5067957646,"remaining_time":2.160550365}, -{"learn":[217.8877466],"iteration":190,"passed_time":0.5094512241,"remaining_time":2.157832672}, -{"learn":[217.7246398],"iteration":191,"passed_time":0.5119514452,"remaining_time":2.154462332}, -{"learn":[217.5238023],"iteration":192,"passed_time":0.5145318867,"remaining_time":2.151436438}, -{"learn":[217.3326247],"iteration":193,"passed_time":0.5170482683,"remaining_time":2.148148991}, -{"learn":[217.1211953],"iteration":194,"passed_time":0.5196144065,"remaining_time":2.145074858}, -{"learn":[216.925611],"iteration":195,"passed_time":0.5221140582,"remaining_time":2.141733178}, -{"learn":[216.8230584],"iteration":196,"passed_time":0.524588205,"remaining_time":2.138296084}, -{"learn":[216.5201517],"iteration":197,"passed_time":0.5271828048,"remaining_time":2.135356614}, -{"learn":[216.2508957],"iteration":198,"passed_time":0.5297654071,"remaining_time":2.132372317}, -{"learn":[216.1233317],"iteration":199,"passed_time":0.5323443013,"remaining_time":2.129377205}, -{"learn":[215.811324],"iteration":200,"passed_time":0.5348558164,"remaining_time":2.126118395}, -{"learn":[215.5956551],"iteration":201,"passed_time":0.5378599248,"remaining_time":2.12481297}, -{"learn":[215.4542468],"iteration":202,"passed_time":0.5403538936,"remaining_time":2.121487947}, -{"learn":[215.3201373],"iteration":203,"passed_time":0.5428665819,"remaining_time":2.118244114}, -{"learn":[214.9949874],"iteration":204,"passed_time":0.5453663823,"remaining_time":2.114957434}, -{"learn":[214.8331019],"iteration":205,"passed_time":0.5479134111,"remaining_time":2.111860429}, -{"learn":[214.6393455],"iteration":206,"passed_time":0.5504075045,"remaining_time":2.108565947}, -{"learn":[214.4479167],"iteration":207,"passed_time":0.55291676,"remaining_time":2.105336894}, -{"learn":[214.2650215],"iteration":208,"passed_time":0.5554461147,"remaining_time":2.102190798}, -{"learn":[214.0568441],"iteration":209,"passed_time":0.5580271449,"remaining_time":2.099244974}, -{"learn":[213.9143114],"iteration":210,"passed_time":0.5605331371,"remaining_time":2.096022015}, -{"learn":[213.721702],"iteration":211,"passed_time":0.5630246618,"remaining_time":2.092752045}, -{"learn":[213.41104],"iteration":212,"passed_time":0.5655523463,"remaining_time":2.089622988}, -{"learn":[213.1949372],"iteration":213,"passed_time":0.5680620927,"remaining_time":2.086433668}, -{"learn":[213.0270526],"iteration":214,"passed_time":0.5706061779,"remaining_time":2.083376045}, -{"learn":[212.7538405],"iteration":215,"passed_time":0.5731014097,"remaining_time":2.080145857}, -{"learn":[212.5595728],"iteration":216,"passed_time":0.5755796656,"remaining_time":2.07686119}, -{"learn":[212.4074009],"iteration":217,"passed_time":0.5780769662,"remaining_time":2.073652237}, -{"learn":[212.2530877],"iteration":218,"passed_time":0.5809946549,"remaining_time":2.071948975}, -{"learn":[212.0959803],"iteration":219,"passed_time":0.5835538024,"remaining_time":2.068963481}, -{"learn":[211.8406285],"iteration":220,"passed_time":0.5860980501,"remaining_time":2.065929326}, -{"learn":[211.5512477],"iteration":221,"passed_time":0.5886661546,"remaining_time":2.06298319}, -{"learn":[211.365273],"iteration":222,"passed_time":0.5912146195,"remaining_time":2.059972015}, -{"learn":[211.2034178],"iteration":223,"passed_time":0.5938039357,"remaining_time":2.057106492}, -{"learn":[211.0413434],"iteration":224,"passed_time":0.5963394037,"remaining_time":2.054057946}, -{"learn":[210.7881797],"iteration":225,"passed_time":0.5988201583,"remaining_time":2.05082656}, -{"learn":[210.5369368],"iteration":226,"passed_time":0.6013573695,"remaining_time":2.047794038}, -{"learn":[210.405083],"iteration":227,"passed_time":0.6038449552,"remaining_time":2.044597831}, -{"learn":[210.2253045],"iteration":228,"passed_time":0.6063322014,"remaining_time":2.041406669}, -{"learn":[210.0247202],"iteration":229,"passed_time":0.6088476886,"remaining_time":2.038316175}, -{"learn":[209.7909861],"iteration":230,"passed_time":0.6113391854,"remaining_time":2.035150795}, -{"learn":[209.4997118],"iteration":231,"passed_time":0.6139034214,"remaining_time":2.032232016}, -{"learn":[209.364259],"iteration":232,"passed_time":0.616434277,"remaining_time":2.029206397}, -{"learn":[209.2414656],"iteration":233,"passed_time":0.6189465591,"remaining_time":2.026124206}, -{"learn":[209.0772891],"iteration":234,"passed_time":0.6214337089,"remaining_time":2.022965052}, -{"learn":[208.8902887],"iteration":235,"passed_time":0.6239763432,"remaining_time":2.019991213}, -{"learn":[208.6105659],"iteration":236,"passed_time":0.6264697247,"remaining_time":2.016862447}, -{"learn":[208.4291014],"iteration":237,"passed_time":0.6289857231,"remaining_time":2.013811433}, -{"learn":[208.2279804],"iteration":238,"passed_time":0.631651206,"remaining_time":2.011240869}, -{"learn":[208.0627794],"iteration":239,"passed_time":0.6343150934,"remaining_time":2.008664462}, -{"learn":[207.9374235],"iteration":240,"passed_time":0.6368660475,"remaining_time":2.00573166}, -{"learn":[207.7787936],"iteration":241,"passed_time":0.6393636868,"remaining_time":2.002635019}, -{"learn":[207.5817058],"iteration":242,"passed_time":0.6419295651,"remaining_time":1.999755888}, -{"learn":[207.4728772],"iteration":243,"passed_time":0.6444161394,"remaining_time":1.996633612}, -{"learn":[207.3245384],"iteration":244,"passed_time":0.6474845281,"remaining_time":1.995309464}, -{"learn":[207.2228748],"iteration":245,"passed_time":0.6500506578,"remaining_time":1.992431691}, -{"learn":[207.0689809],"iteration":246,"passed_time":0.652609165,"remaining_time":1.989533203}, -{"learn":[206.8975115],"iteration":247,"passed_time":0.6551553917,"remaining_time":1.98660022}, -{"learn":[206.7478097],"iteration":248,"passed_time":0.6577700556,"remaining_time":1.983876754}, -{"learn":[206.6005494],"iteration":249,"passed_time":0.6602821232,"remaining_time":1.98084637}, -{"learn":[206.468099],"iteration":250,"passed_time":0.66294696,"remaining_time":1.978275988}, -{"learn":[206.3422869],"iteration":251,"passed_time":0.6655128779,"remaining_time":1.975411241}, -{"learn":[206.1414829],"iteration":252,"passed_time":0.6681364926,"remaining_time":1.97271921}, -{"learn":[205.9644681],"iteration":253,"passed_time":0.6706396267,"remaining_time":1.969673864}, -{"learn":[205.7283998],"iteration":254,"passed_time":0.6732286014,"remaining_time":1.966883561}, -{"learn":[205.5421054],"iteration":255,"passed_time":0.6758151235,"remaining_time":1.964087703}, -{"learn":[205.2745842],"iteration":256,"passed_time":0.6784376907,"remaining_time":1.961397682}, -{"learn":[205.041696],"iteration":257,"passed_time":0.6809765666,"remaining_time":1.95846749}, -{"learn":[204.8803275],"iteration":258,"passed_time":0.6834697292,"remaining_time":1.955409534}, -{"learn":[204.7109159],"iteration":259,"passed_time":0.6859812914,"remaining_time":1.952408291}, -{"learn":[204.5470522],"iteration":260,"passed_time":0.6885506823,"remaining_time":1.949574537}, -{"learn":[204.3814112],"iteration":261,"passed_time":0.6910322611,"remaining_time":1.946495453}, -{"learn":[204.1540795],"iteration":262,"passed_time":0.6936390465,"remaining_time":1.943771777}, -{"learn":[203.9456007],"iteration":263,"passed_time":0.6962450946,"remaining_time":1.94104693}, -{"learn":[203.7542633],"iteration":264,"passed_time":0.6987493395,"remaining_time":1.938040621}, -{"learn":[203.6111948],"iteration":265,"passed_time":0.7013280815,"remaining_time":1.935243654}, -{"learn":[203.502345],"iteration":266,"passed_time":0.7038062747,"remaining_time":1.932172282}, -{"learn":[203.3240413],"iteration":267,"passed_time":0.7063105103,"remaining_time":1.929176468}, -{"learn":[203.2213233],"iteration":268,"passed_time":0.709122456,"remaining_time":1.927020503}, -{"learn":[203.0896125],"iteration":269,"passed_time":0.7119142159,"remaining_time":1.924805102}, -{"learn":[202.9597142],"iteration":270,"passed_time":0.7146098947,"remaining_time":1.922326986}, -{"learn":[202.8116892],"iteration":271,"passed_time":0.717325978,"remaining_time":1.919901882}, -{"learn":[202.6939957],"iteration":272,"passed_time":0.7201630415,"remaining_time":1.917796818}, -{"learn":[202.5625231],"iteration":273,"passed_time":0.7228700742,"remaining_time":1.915341876}, -{"learn":[202.4652237],"iteration":274,"passed_time":0.7255172525,"remaining_time":1.912727302}, -{"learn":[202.3172169],"iteration":275,"passed_time":0.7281306355,"remaining_time":1.910023841}, -{"learn":[202.23506],"iteration":276,"passed_time":0.7308039856,"remaining_time":1.907477551}, -{"learn":[202.1644949],"iteration":277,"passed_time":0.7334811494,"remaining_time":1.904940251}, -{"learn":[202.056679],"iteration":278,"passed_time":0.7361569112,"remaining_time":1.902398326}, -{"learn":[201.9486307],"iteration":279,"passed_time":0.7387829142,"remaining_time":1.899727494}, -{"learn":[201.7974622],"iteration":280,"passed_time":0.7418097156,"remaining_time":1.898082511}, -{"learn":[201.6298657],"iteration":281,"passed_time":0.7446470844,"remaining_time":1.895945414}, -{"learn":[201.5293781],"iteration":282,"passed_time":0.7472208733,"remaining_time":1.893135569}, -{"learn":[201.3647573],"iteration":283,"passed_time":0.7497728745,"remaining_time":1.890272458}, -{"learn":[201.25341],"iteration":284,"passed_time":0.7522338215,"remaining_time":1.887183096}, -{"learn":[201.0646447],"iteration":285,"passed_time":0.7548600855,"remaining_time":1.884510843}, -{"learn":[200.918735],"iteration":286,"passed_time":0.7573633445,"remaining_time":1.881533326}, -{"learn":[200.6881865],"iteration":287,"passed_time":0.7598902417,"remaining_time":1.878617542}, -{"learn":[200.5228313],"iteration":288,"passed_time":0.7623790446,"remaining_time":1.875610729}, -{"learn":[200.3837488],"iteration":289,"passed_time":0.7649747673,"remaining_time":1.872869258}, -{"learn":[200.2422331],"iteration":290,"passed_time":0.7674501808,"remaining_time":1.869835664}, -{"learn":[200.094994],"iteration":291,"passed_time":0.7710028197,"remaining_time":1.869417796}, -{"learn":[199.8753125],"iteration":292,"passed_time":0.7735674299,"remaining_time":1.866594447}, -{"learn":[199.7094567],"iteration":293,"passed_time":0.7767929238,"remaining_time":1.865359878}, -{"learn":[199.605786],"iteration":294,"passed_time":0.7793654589,"remaining_time":1.862551351}, -{"learn":[199.3385588],"iteration":295,"passed_time":0.7818973461,"remaining_time":1.859647742}, -{"learn":[199.2320876],"iteration":296,"passed_time":0.7844528358,"remaining_time":1.856802504}, -{"learn":[199.1027486],"iteration":297,"passed_time":0.7869579096,"remaining_time":1.853840445}, -{"learn":[198.9789279],"iteration":298,"passed_time":0.7894868251,"remaining_time":1.850937339}, -{"learn":[198.8841844],"iteration":299,"passed_time":0.7922038354,"remaining_time":1.848475616}, -{"learn":[198.7285464],"iteration":300,"passed_time":0.7948210663,"remaining_time":1.845780483}, -{"learn":[198.55084],"iteration":301,"passed_time":0.797348599,"remaining_time":1.84287855}, -{"learn":[198.3555984],"iteration":302,"passed_time":0.7999094501,"remaining_time":1.840055732}, -{"learn":[198.2389263],"iteration":303,"passed_time":0.8024655701,"remaining_time":1.837223805}, -{"learn":[197.9905757],"iteration":304,"passed_time":0.8050465796,"remaining_time":1.834450403}, -{"learn":[197.8348423],"iteration":305,"passed_time":0.8075902865,"remaining_time":1.831593656}, -{"learn":[197.7605851],"iteration":306,"passed_time":0.81005388,"remaining_time":1.828558107}, -{"learn":[197.6215181],"iteration":307,"passed_time":0.8126076936,"remaining_time":1.825728974}, -{"learn":[197.4505016],"iteration":308,"passed_time":0.8152287999,"remaining_time":1.823052106}, -{"learn":[197.3730339],"iteration":309,"passed_time":0.8177997354,"remaining_time":1.820263927}, -{"learn":[197.2520972],"iteration":310,"passed_time":0.8203874034,"remaining_time":1.817514215}, -{"learn":[197.1495845],"iteration":311,"passed_time":0.8229659282,"remaining_time":1.81474538}, -{"learn":[197.0352064],"iteration":312,"passed_time":0.825594914,"remaining_time":1.812088517}, -{"learn":[196.9182128],"iteration":313,"passed_time":0.8282115442,"remaining_time":1.809404839}, -{"learn":[196.7949101],"iteration":314,"passed_time":0.8308235593,"remaining_time":1.80671155}, -{"learn":[196.6093993],"iteration":315,"passed_time":0.8335597603,"remaining_time":1.804287583}, -{"learn":[196.5053793],"iteration":316,"passed_time":0.8360948882,"remaining_time":1.801428418}, -{"learn":[196.3744013],"iteration":317,"passed_time":0.8386021358,"remaining_time":1.798511499}, -{"learn":[196.2257628],"iteration":318,"passed_time":0.8411976249,"remaining_time":1.795785525}, -{"learn":[196.0638383],"iteration":319,"passed_time":0.8437704994,"remaining_time":1.793012311}, -{"learn":[195.9289779],"iteration":320,"passed_time":0.8464096488,"remaining_time":1.790380534}, -{"learn":[195.8190688],"iteration":321,"passed_time":0.8490182345,"remaining_time":1.787684357}, -{"learn":[195.6815703],"iteration":322,"passed_time":0.8515980582,"remaining_time":1.784928438}, -{"learn":[195.5413677],"iteration":323,"passed_time":0.8541888233,"remaining_time":1.782196434}, -{"learn":[195.4682167],"iteration":324,"passed_time":0.8566755858,"remaining_time":1.779249294}, -{"learn":[195.2978161],"iteration":325,"passed_time":0.8592146211,"remaining_time":1.776413051}, -{"learn":[195.1942873],"iteration":326,"passed_time":0.861823231,"remaining_time":1.773721818}, -{"learn":[195.1162076],"iteration":327,"passed_time":0.8644010636,"remaining_time":1.770968033}, -{"learn":[194.9746025],"iteration":328,"passed_time":0.866930726,"remaining_time":1.768117073}, -{"learn":[194.8179789],"iteration":329,"passed_time":0.8694817468,"remaining_time":1.765311425}, -{"learn":[194.7127652],"iteration":330,"passed_time":0.8720636989,"remaining_time":1.762569832}, -{"learn":[194.6382857],"iteration":331,"passed_time":0.8745107599,"remaining_time":1.759557794}, -{"learn":[194.5424384],"iteration":332,"passed_time":0.8771739546,"remaining_time":1.756982065}, -{"learn":[194.4349933],"iteration":333,"passed_time":0.8836020749,"remaining_time":1.761913119}, -{"learn":[194.3543094],"iteration":334,"passed_time":0.8885979506,"remaining_time":1.763933245}, -{"learn":[194.0993312],"iteration":335,"passed_time":0.893033829,"remaining_time":1.764804948}, -{"learn":[194.0135372],"iteration":336,"passed_time":0.8970485052,"remaining_time":1.764816495}, -{"learn":[193.8402122],"iteration":337,"passed_time":0.9004339063,"remaining_time":1.763571734}, -{"learn":[193.6777786],"iteration":338,"passed_time":0.9038742094,"remaining_time":1.762421394}, -{"learn":[193.5930087],"iteration":339,"passed_time":0.9069194838,"remaining_time":1.760490763}, -{"learn":[193.5067935],"iteration":340,"passed_time":0.909777895,"remaining_time":1.758192472}, -{"learn":[193.3609881],"iteration":341,"passed_time":0.912568933,"remaining_time":1.75576128}, -{"learn":[193.2696722],"iteration":342,"passed_time":0.9151074065,"remaining_time":1.752844216}, -{"learn":[193.1976931],"iteration":343,"passed_time":0.9177041306,"remaining_time":1.750040435}, -{"learn":[193.1263009],"iteration":344,"passed_time":0.9203241315,"remaining_time":1.747282047}, -{"learn":[193.0047342],"iteration":345,"passed_time":0.9229628045,"remaining_time":1.744559752}, -{"learn":[192.8487651],"iteration":346,"passed_time":0.9255156194,"remaining_time":1.741676367}, -{"learn":[192.7284966],"iteration":347,"passed_time":0.9280386385,"remaining_time":1.738739058}, -{"learn":[192.6351138],"iteration":348,"passed_time":0.9305126823,"remaining_time":1.735712768}, -{"learn":[192.5254176],"iteration":349,"passed_time":0.9330712484,"remaining_time":1.732846604}, -{"learn":[192.3888625],"iteration":350,"passed_time":0.9356231154,"remaining_time":1.729969806}, -{"learn":[192.2755245],"iteration":351,"passed_time":0.9380796659,"remaining_time":1.726919385}, -{"learn":[192.2127443],"iteration":352,"passed_time":0.9406263397,"remaining_time":1.724037512}, -{"learn":[192.1302873],"iteration":353,"passed_time":0.9430868021,"remaining_time":1.721000209}, -{"learn":[191.9055645],"iteration":354,"passed_time":0.9456866175,"remaining_time":1.718219347}, -{"learn":[191.7294828],"iteration":355,"passed_time":0.9482429137,"remaining_time":1.715360776}, -{"learn":[191.568677],"iteration":356,"passed_time":0.9508255428,"remaining_time":1.712551328}, -{"learn":[191.443408],"iteration":357,"passed_time":0.9533745395,"remaining_time":1.709682833}, -{"learn":[191.3957191],"iteration":358,"passed_time":0.9559359401,"remaining_time":1.706838266}, -{"learn":[191.2704588],"iteration":359,"passed_time":0.9585075348,"remaining_time":1.704013395}, -{"learn":[191.1772952],"iteration":360,"passed_time":0.9610432568,"remaining_time":1.70112643}, -{"learn":[191.1327905],"iteration":361,"passed_time":0.9635526204,"remaining_time":1.69819495}, -{"learn":[190.9854519],"iteration":362,"passed_time":0.9660717538,"remaining_time":1.69528294}, -{"learn":[190.8623563],"iteration":363,"passed_time":0.9686715664,"remaining_time":1.692514056}, -{"learn":[190.7479296],"iteration":364,"passed_time":0.9712537484,"remaining_time":1.689715425}, -{"learn":[190.5527679],"iteration":365,"passed_time":0.9738704168,"remaining_time":1.686977716}, -{"learn":[190.4441503],"iteration":366,"passed_time":0.9763919229,"remaining_time":1.684076532}, -{"learn":[190.3973551],"iteration":367,"passed_time":0.9788501147,"remaining_time":1.681068675}, -{"learn":[190.2883586],"iteration":368,"passed_time":0.9813706935,"remaining_time":1.678170481}, -{"learn":[190.1664498],"iteration":369,"passed_time":0.9838946328,"remaining_time":1.67528005}, -{"learn":[190.120527],"iteration":370,"passed_time":0.986388343,"remaining_time":1.672340344}, -{"learn":[190.0802994],"iteration":371,"passed_time":0.9888676615,"remaining_time":1.66937874}, -{"learn":[189.9223014],"iteration":372,"passed_time":0.9914585767,"remaining_time":1.666607313}, -{"learn":[189.7892053],"iteration":373,"passed_time":0.9939919703,"remaining_time":1.663740571}, -{"learn":[189.5943591],"iteration":374,"passed_time":0.9966374784,"remaining_time":1.661062464}, -{"learn":[189.5387938],"iteration":375,"passed_time":0.9991015263,"remaining_time":1.658083384}, -{"learn":[189.4445027],"iteration":376,"passed_time":1.001621654,"remaining_time":1.65519971}, -{"learn":[189.3813257],"iteration":377,"passed_time":1.004069474,"remaining_time":1.652198976}, -{"learn":[189.3324864],"iteration":378,"passed_time":1.006562188,"remaining_time":1.649274719}, -{"learn":[189.2885793],"iteration":379,"passed_time":1.009015846,"remaining_time":1.646289013}, -{"learn":[189.2552105],"iteration":380,"passed_time":1.011582292,"remaining_time":1.64348934}, -{"learn":[189.179812],"iteration":381,"passed_time":1.014227383,"remaining_time":1.640818122}, -{"learn":[188.9820377],"iteration":382,"passed_time":1.016799862,"remaining_time":1.638030065}, -{"learn":[188.8518642],"iteration":383,"passed_time":1.019381156,"remaining_time":1.635257271}, -{"learn":[188.7455103],"iteration":384,"passed_time":1.021922023,"remaining_time":1.632420895}, -{"learn":[188.6055841],"iteration":385,"passed_time":1.024477341,"remaining_time":1.629609035}, -{"learn":[188.4972974],"iteration":386,"passed_time":1.027162413,"remaining_time":1.627004029}, -{"learn":[188.4338897],"iteration":387,"passed_time":1.029729924,"remaining_time":1.624213179}, -{"learn":[188.34498],"iteration":388,"passed_time":1.032227256,"remaining_time":1.621313248}, -{"learn":[188.2514147],"iteration":389,"passed_time":1.034781037,"remaining_time":1.618503673}, -{"learn":[188.152989],"iteration":390,"passed_time":1.037344597,"remaining_time":1.615710638}, -{"learn":[187.9772986],"iteration":391,"passed_time":1.039874231,"remaining_time":1.612866154}, -{"learn":[187.9431041],"iteration":392,"passed_time":1.042370304,"remaining_time":1.609971436}, -{"learn":[187.8765676],"iteration":393,"passed_time":1.04484179,"remaining_time":1.607040926}, -{"learn":[187.7638602],"iteration":394,"passed_time":1.047395868,"remaining_time":1.604239242}, -{"learn":[187.6849129],"iteration":395,"passed_time":1.049881373,"remaining_time":1.601334216}, -{"learn":[187.6361009],"iteration":396,"passed_time":1.052381719,"remaining_time":1.598453845}, -{"learn":[187.5594122],"iteration":397,"passed_time":1.054900602,"remaining_time":1.595603423}, -{"learn":[187.4591949],"iteration":398,"passed_time":1.057427503,"remaining_time":1.59276674}, -{"learn":[187.3619788],"iteration":399,"passed_time":1.060064819,"remaining_time":1.590097228}, -{"learn":[187.270605],"iteration":400,"passed_time":1.062622563,"remaining_time":1.587309016}, -{"learn":[187.2452938],"iteration":401,"passed_time":1.065045407,"remaining_time":1.584321277}, -{"learn":[187.159415],"iteration":402,"passed_time":1.067566706,"remaining_time":1.581482192}, -{"learn":[187.0832662],"iteration":403,"passed_time":1.070082572,"remaining_time":1.578636665}, -{"learn":[186.9560774],"iteration":404,"passed_time":1.072612823,"remaining_time":1.5758139}, -{"learn":[186.8743768],"iteration":405,"passed_time":1.075155099,"remaining_time":1.573010169}, -{"learn":[186.7374332],"iteration":406,"passed_time":1.077741392,"remaining_time":1.570271856}, -{"learn":[186.6307242],"iteration":407,"passed_time":1.080317733,"remaining_time":1.567519848}, -{"learn":[186.5582266],"iteration":408,"passed_time":1.082940932,"remaining_time":1.564836408}, -{"learn":[186.4450421],"iteration":409,"passed_time":1.085472228,"remaining_time":1.56202101}, -{"learn":[186.3391759],"iteration":410,"passed_time":1.087979916,"remaining_time":1.559173164}, -{"learn":[186.2324441],"iteration":411,"passed_time":1.090590887,"remaining_time":1.556474372}, -{"learn":[186.1796021],"iteration":412,"passed_time":1.093133347,"remaining_time":1.553678632}, -{"learn":[186.1061204],"iteration":413,"passed_time":1.095686891,"remaining_time":1.550899802}, -{"learn":[185.9979506],"iteration":414,"passed_time":1.098281663,"remaining_time":1.548180175}, -{"learn":[185.867875],"iteration":415,"passed_time":1.102294335,"remaining_time":1.547451663}, -{"learn":[185.702765],"iteration":416,"passed_time":1.105658532,"remaining_time":1.545800777}, -{"learn":[185.5976795],"iteration":417,"passed_time":1.10817494,"remaining_time":1.54296128}, -{"learn":[185.4760376],"iteration":418,"passed_time":1.110737777,"remaining_time":1.540187705}, -{"learn":[185.3929718],"iteration":419,"passed_time":1.113229121,"remaining_time":1.537316405}, -{"learn":[185.3831971],"iteration":420,"passed_time":1.115607145,"remaining_time":1.534291061}, -{"learn":[185.3368821],"iteration":421,"passed_time":1.118183787,"remaining_time":1.531540827}, -{"learn":[185.3193232],"iteration":422,"passed_time":1.120607771,"remaining_time":1.528583177}, -{"learn":[185.2239131],"iteration":423,"passed_time":1.123169994,"remaining_time":1.525815841}, -{"learn":[185.0183108],"iteration":424,"passed_time":1.125736223,"remaining_time":1.52305489}, -{"learn":[185.0015195],"iteration":425,"passed_time":1.128173578,"remaining_time":1.520121206}, -{"learn":[184.8885168],"iteration":426,"passed_time":1.130661945,"remaining_time":1.517258301}, -{"learn":[184.8343846],"iteration":427,"passed_time":1.133147009,"remaining_time":1.514392731}, -{"learn":[184.7301678],"iteration":428,"passed_time":1.135630007,"remaining_time":1.511526187}, -{"learn":[184.6708038],"iteration":429,"passed_time":1.138149171,"remaining_time":1.508709367}, -{"learn":[184.5756505],"iteration":430,"passed_time":1.140691718,"remaining_time":1.505924797}, -{"learn":[184.4081002],"iteration":431,"passed_time":1.143293726,"remaining_time":1.503219529}, -{"learn":[184.228694],"iteration":432,"passed_time":1.145902481,"remaining_time":1.500523573}, -{"learn":[184.1191102],"iteration":433,"passed_time":1.148480323,"remaining_time":1.497787702}, -{"learn":[184.0442987],"iteration":434,"passed_time":1.150989131,"remaining_time":1.494962894}, -{"learn":[183.96577],"iteration":435,"passed_time":1.153546508,"remaining_time":1.492202363}, -{"learn":[183.8399255],"iteration":436,"passed_time":1.156108979,"remaining_time":1.489449325}, -{"learn":[183.7643996],"iteration":437,"passed_time":1.158623444,"remaining_time":1.486635561}, -{"learn":[183.5118897],"iteration":438,"passed_time":1.161204908,"remaining_time":1.483908778}, -{"learn":[183.4584052],"iteration":439,"passed_time":1.163704063,"remaining_time":1.481077898}, -{"learn":[183.331782],"iteration":440,"passed_time":1.166258316,"remaining_time":1.478318364}, -{"learn":[183.2542201],"iteration":441,"passed_time":1.168816601,"remaining_time":1.475564849}, -{"learn":[183.1409617],"iteration":442,"passed_time":1.171343221,"remaining_time":1.472772402}, -{"learn":[183.0345605],"iteration":443,"passed_time":1.173884741,"remaining_time":1.46999981}, -{"learn":[182.9280187],"iteration":444,"passed_time":1.176467243,"remaining_time":1.46727937}, -{"learn":[182.8625432],"iteration":445,"passed_time":1.178974202,"remaining_time":1.464465713}, -{"learn":[182.8465892],"iteration":446,"passed_time":1.181388933,"remaining_time":1.461539329}, -{"learn":[182.6982961],"iteration":447,"passed_time":1.184012933,"remaining_time":1.458873078}, -{"learn":[182.6318438],"iteration":448,"passed_time":1.186603347,"remaining_time":1.4561658}, -{"learn":[182.5616179],"iteration":449,"passed_time":1.189129095,"remaining_time":1.453380004}, -{"learn":[182.4716346],"iteration":450,"passed_time":1.191666378,"remaining_time":1.450609405}, -{"learn":[182.2913506],"iteration":451,"passed_time":1.194249087,"remaining_time":1.447894911}, -{"learn":[182.1712237],"iteration":452,"passed_time":1.196816807,"remaining_time":1.445162899}, -{"learn":[182.1027065],"iteration":453,"passed_time":1.199684147,"remaining_time":1.442791948}, -{"learn":[182.0648602],"iteration":454,"passed_time":1.202218255,"remaining_time":1.440019668}, -{"learn":[181.9680114],"iteration":455,"passed_time":1.204794923,"remaining_time":1.437299206}, -{"learn":[181.8750332],"iteration":456,"passed_time":1.207375556,"remaining_time":1.434584085}, -{"learn":[181.7181897],"iteration":457,"passed_time":1.209980704,"remaining_time":1.431898562}, -{"learn":[181.6530143],"iteration":458,"passed_time":1.212458099,"remaining_time":1.429062813}, -{"learn":[181.5897422],"iteration":459,"passed_time":1.214990458,"remaining_time":1.426293146}, -{"learn":[181.4746955],"iteration":460,"passed_time":1.217507543,"remaining_time":1.42350665}, -{"learn":[181.4043126],"iteration":461,"passed_time":1.220112315,"remaining_time":1.420823432}, -{"learn":[181.3270018],"iteration":462,"passed_time":1.222657665,"remaining_time":1.418071633}, -{"learn":[181.2381878],"iteration":463,"passed_time":1.225159452,"remaining_time":1.415270401}, -{"learn":[181.2080899],"iteration":464,"passed_time":1.227621308,"remaining_time":1.412424516}, -{"learn":[181.106551],"iteration":465,"passed_time":1.231575052,"remaining_time":1.411289866}, -{"learn":[181.103535],"iteration":466,"passed_time":1.23787883,"remaining_time":1.412825302}, -{"learn":[181.0244082],"iteration":467,"passed_time":1.243949597,"remaining_time":1.414062362}, -{"learn":[180.9615272],"iteration":468,"passed_time":1.249470751,"remaining_time":1.414645989}, -{"learn":[180.7706652],"iteration":469,"passed_time":1.252071437,"remaining_time":1.411910343}, -{"learn":[180.624935],"iteration":470,"passed_time":1.254677722,"remaining_time":1.40918156}, -{"learn":[180.5269104],"iteration":471,"passed_time":1.257246573,"remaining_time":1.40641142}, -{"learn":[180.4765264],"iteration":472,"passed_time":1.259944823,"remaining_time":1.403786303}, -{"learn":[180.3834482],"iteration":473,"passed_time":1.26262388,"remaining_time":1.40113958}, -{"learn":[180.2639858],"iteration":474,"passed_time":1.265193629,"remaining_time":1.398371906}, -{"learn":[180.1702528],"iteration":475,"passed_time":1.267759745,"remaining_time":1.395601064}, -{"learn":[180.0225695],"iteration":476,"passed_time":1.270335387,"remaining_time":1.392841525}, -{"learn":[179.9477072],"iteration":477,"passed_time":1.272945622,"remaining_time":1.390120533}, -{"learn":[179.8249567],"iteration":478,"passed_time":1.276238519,"remaining_time":1.388142523}, -{"learn":[179.6925675],"iteration":479,"passed_time":1.278810756,"remaining_time":1.385378319}, -{"learn":[179.5833148],"iteration":480,"passed_time":1.281387174,"remaining_time":1.382619424}, -{"learn":[179.4904883],"iteration":481,"passed_time":1.283903503,"remaining_time":1.379796711}, -{"learn":[179.4228934],"iteration":482,"passed_time":1.28652086,"remaining_time":1.377083405}, -{"learn":[179.2384883],"iteration":483,"passed_time":1.289082026,"remaining_time":1.374310589}, -{"learn":[179.109219],"iteration":484,"passed_time":1.29269867,"remaining_time":1.372659412}, -{"learn":[178.9352855],"iteration":485,"passed_time":1.295943735,"remaining_time":1.37060716}, -{"learn":[178.8564377],"iteration":486,"passed_time":1.298577297,"remaining_time":1.367905859}, -{"learn":[178.7805235],"iteration":487,"passed_time":1.301057208,"remaining_time":1.365043628}, -{"learn":[178.6698185],"iteration":488,"passed_time":1.303734541,"remaining_time":1.362389265}, -{"learn":[178.5399334],"iteration":489,"passed_time":1.306261737,"remaining_time":1.359578542}, -{"learn":[178.4391087],"iteration":490,"passed_time":1.309380524,"remaining_time":1.357382254}, -{"learn":[178.3471156],"iteration":491,"passed_time":1.311940202,"remaining_time":1.354604924}, -{"learn":[178.2236641],"iteration":492,"passed_time":1.314481618,"remaining_time":1.351809696}, -{"learn":[178.1266405],"iteration":493,"passed_time":1.316960599,"remaining_time":1.348951545}, -{"learn":[178.0390315],"iteration":494,"passed_time":1.319565596,"remaining_time":1.346223487}, -{"learn":[177.9634547],"iteration":495,"passed_time":1.322084619,"remaining_time":1.343408565}, -{"learn":[177.8902598],"iteration":496,"passed_time":1.325092077,"remaining_time":1.341089164}, -{"learn":[177.7888727],"iteration":497,"passed_time":1.327696725,"remaining_time":1.338360955}, -{"learn":[177.7362393],"iteration":498,"passed_time":1.330147964,"remaining_time":1.335479219}, -{"learn":[177.6660873],"iteration":499,"passed_time":1.332719826,"remaining_time":1.332719826}, -{"learn":[177.5863547],"iteration":500,"passed_time":1.335276865,"remaining_time":1.329946419}, -{"learn":[177.4314962],"iteration":501,"passed_time":1.337884062,"remaining_time":1.327223631}, -{"learn":[177.3647374],"iteration":502,"passed_time":1.340476547,"remaining_time":1.324486767}, -{"learn":[177.2970494],"iteration":503,"passed_time":1.343042487,"remaining_time":1.321724353}, -{"learn":[177.0784032],"iteration":504,"passed_time":1.34563209,"remaining_time":1.31898591}, -{"learn":[176.9869789],"iteration":505,"passed_time":1.348204206,"remaining_time":1.316230983}, -{"learn":[176.89893],"iteration":506,"passed_time":1.350812654,"remaining_time":1.313512107}, -{"learn":[176.850455],"iteration":507,"passed_time":1.35329359,"remaining_time":1.31067017}, -{"learn":[176.7674189],"iteration":508,"passed_time":1.35607357,"remaining_time":1.30811812}, -{"learn":[176.7127759],"iteration":509,"passed_time":1.358630844,"remaining_time":1.305351203}, -{"learn":[176.6132741],"iteration":510,"passed_time":1.361151723,"remaining_time":1.302550279}, -{"learn":[176.5367589],"iteration":511,"passed_time":1.363768636,"remaining_time":1.299841982}, -{"learn":[176.4328288],"iteration":512,"passed_time":1.366357807,"remaining_time":1.297107704}, -{"learn":[176.3185399],"iteration":513,"passed_time":1.368962777,"remaining_time":1.294388929}, -{"learn":[176.2538829],"iteration":514,"passed_time":1.371474721,"remaining_time":1.291582989}, -{"learn":[176.1315483],"iteration":515,"passed_time":1.374020115,"remaining_time":1.288809565}, -{"learn":[176.0519877],"iteration":516,"passed_time":1.376547274,"remaining_time":1.286019987}, -{"learn":[175.9759822],"iteration":517,"passed_time":1.379107364,"remaining_time":1.283262065}, -{"learn":[175.9037283],"iteration":518,"passed_time":1.381699461,"remaining_time":1.280534567}, -{"learn":[175.848076],"iteration":519,"passed_time":1.384255103,"remaining_time":1.277773942}, -{"learn":[175.7356241],"iteration":520,"passed_time":1.386955681,"remaining_time":1.275147354}, -{"learn":[175.5652818],"iteration":521,"passed_time":1.389566982,"remaining_time":1.272438731}, -{"learn":[175.4690234],"iteration":522,"passed_time":1.392090439,"remaining_time":1.269650362}, -{"learn":[175.3809055],"iteration":523,"passed_time":1.39459542,"remaining_time":1.266846221}, -{"learn":[175.2942901],"iteration":524,"passed_time":1.397157979,"remaining_time":1.264095314}, -{"learn":[175.2165234],"iteration":525,"passed_time":1.399746464,"remaining_time":1.261368487}, -{"learn":[175.1659626],"iteration":526,"passed_time":1.402455071,"remaining_time":1.258749997}, -{"learn":[175.1573371],"iteration":527,"passed_time":1.404892649,"remaining_time":1.255888883}, -{"learn":[174.96195],"iteration":528,"passed_time":1.407443448,"remaining_time":1.253130178}, -{"learn":[174.8663389],"iteration":529,"passed_time":1.409989831,"remaining_time":1.250368341}, -{"learn":[174.7844807],"iteration":530,"passed_time":1.412588046,"remaining_time":1.247653096}, -{"learn":[174.7510207],"iteration":531,"passed_time":1.415134867,"remaining_time":1.244893078}, -{"learn":[174.6480597],"iteration":532,"passed_time":1.417724218,"remaining_time":1.242171125}, -{"learn":[174.5377275],"iteration":533,"passed_time":1.420405074,"remaining_time":1.239529521}, -{"learn":[174.4662678],"iteration":534,"passed_time":1.423004696,"remaining_time":1.236817166}, -{"learn":[174.3605491],"iteration":535,"passed_time":1.425543055,"remaining_time":1.234052197}, -{"learn":[174.2828401],"iteration":536,"passed_time":1.428071892,"remaining_time":1.231279862}, -{"learn":[174.1661108],"iteration":537,"passed_time":1.430704559,"remaining_time":1.228597595}, -{"learn":[174.0673211],"iteration":538,"passed_time":1.433294165,"remaining_time":1.225878683}, -{"learn":[173.9856491],"iteration":539,"passed_time":1.435834751,"remaining_time":1.223118492}, -{"learn":[173.9147132],"iteration":540,"passed_time":1.438374482,"remaining_time":1.220358386}, -{"learn":[173.8294166],"iteration":541,"passed_time":1.440887954,"remaining_time":1.217576906}, -{"learn":[173.7298658],"iteration":542,"passed_time":1.443460576,"remaining_time":1.214846194}, -{"learn":[173.5880418],"iteration":543,"passed_time":1.446202768,"remaining_time":1.212258203}, -{"learn":[173.5281171],"iteration":544,"passed_time":1.448801909,"remaining_time":1.209550217}, -{"learn":[173.4516819],"iteration":545,"passed_time":1.451364862,"remaining_time":1.206812541}, -{"learn":[173.4342129],"iteration":546,"passed_time":1.453781943,"remaining_time":1.203954699}, -{"learn":[173.3127128],"iteration":547,"passed_time":1.456333697,"remaining_time":1.201209546}, -{"learn":[173.206062],"iteration":548,"passed_time":1.458907706,"remaining_time":1.19848338}, -{"learn":[173.1492986],"iteration":549,"passed_time":1.461460437,"remaining_time":1.195740358}, -{"learn":[173.0130969],"iteration":550,"passed_time":1.464038884,"remaining_time":1.193018982}, -{"learn":[172.893947],"iteration":551,"passed_time":1.466567554,"remaining_time":1.190257725}, -{"learn":[172.7611007],"iteration":552,"passed_time":1.469169155,"remaining_time":1.187556261}, -{"learn":[172.736079],"iteration":553,"passed_time":1.471653453,"remaining_time":1.184760722}, -{"learn":[172.7137881],"iteration":554,"passed_time":1.474099845,"remaining_time":1.181935912}, -{"learn":[172.6579546],"iteration":555,"passed_time":1.476562505,"remaining_time":1.179125454}, -{"learn":[172.5064037],"iteration":556,"passed_time":1.479329757,"remaining_time":1.176558496}, -{"learn":[172.4754634],"iteration":557,"passed_time":1.481900492,"remaining_time":1.173835157}, -{"learn":[172.459081],"iteration":558,"passed_time":1.484289093,"remaining_time":1.170968676}, -{"learn":[172.3967515],"iteration":559,"passed_time":1.486782337,"remaining_time":1.168186122}, -{"learn":[172.3260768],"iteration":560,"passed_time":1.489343326,"remaining_time":1.165457612}, -{"learn":[172.1883826],"iteration":561,"passed_time":1.491975436,"remaining_time":1.162785126}, -{"learn":[172.1592547],"iteration":562,"passed_time":1.494581706,"remaining_time":1.160092727}, -{"learn":[172.0947926],"iteration":563,"passed_time":1.497128666,"remaining_time":1.157354784}, -{"learn":[171.9975385],"iteration":564,"passed_time":1.499700661,"remaining_time":1.154636792}, -{"learn":[171.9071591],"iteration":565,"passed_time":1.502266463,"remaining_time":1.151914567}, -{"learn":[171.7891156],"iteration":566,"passed_time":1.504776802,"remaining_time":1.149150538}, -{"learn":[171.7565608],"iteration":567,"passed_time":1.507255867,"remaining_time":1.146363617}, -{"learn":[171.6807685],"iteration":568,"passed_time":1.509808391,"remaining_time":1.143633421}, -{"learn":[171.570738],"iteration":569,"passed_time":1.512353836,"remaining_time":1.140898508}, -{"learn":[171.4700707],"iteration":570,"passed_time":1.514885519,"remaining_time":1.138153919}, -{"learn":[171.3490784],"iteration":571,"passed_time":1.517497961,"remaining_time":1.135470502}, -{"learn":[171.2372567],"iteration":572,"passed_time":1.520099175,"remaining_time":1.132778966}, -{"learn":[171.1496029],"iteration":573,"passed_time":1.522672709,"remaining_time":1.130067202}, -{"learn":[171.099743],"iteration":574,"passed_time":1.525181485,"remaining_time":1.127308054}, -{"learn":[171.0677297],"iteration":575,"passed_time":1.527648446,"remaining_time":1.124518995}, -{"learn":[171.0405341],"iteration":576,"passed_time":1.53019047,"remaining_time":1.121786081}, -{"learn":[170.9925189],"iteration":577,"passed_time":1.532714323,"remaining_time":1.119040561}, -{"learn":[170.9129758],"iteration":578,"passed_time":1.535257135,"remaining_time":1.116309592}, -{"learn":[170.8878927],"iteration":579,"passed_time":1.537727816,"remaining_time":1.113527039}, -{"learn":[170.8116758],"iteration":580,"passed_time":1.540324247,"remaining_time":1.110836247}, -{"learn":[170.7451172],"iteration":581,"passed_time":1.542809412,"remaining_time":1.108065866}, -{"learn":[170.6569936],"iteration":582,"passed_time":1.545373181,"remaining_time":1.105352687}, -{"learn":[170.6255335],"iteration":583,"passed_time":1.547856542,"remaining_time":1.102582742}, -{"learn":[170.6184465],"iteration":584,"passed_time":1.550296313,"remaining_time":1.099782854}, -{"learn":[170.5327195],"iteration":585,"passed_time":1.552841612,"remaining_time":1.09705875}, -{"learn":[170.5095005],"iteration":586,"passed_time":1.555328175,"remaining_time":1.094293929}, -{"learn":[170.3642124],"iteration":587,"passed_time":1.557886529,"remaining_time":1.091580357}, -{"learn":[170.3068174],"iteration":588,"passed_time":1.560464664,"remaining_time":1.088881116}, -{"learn":[170.2329624],"iteration":589,"passed_time":1.562969479,"remaining_time":1.086131333}, -{"learn":[170.1333308],"iteration":590,"passed_time":1.565554105,"remaining_time":1.083437612}, -{"learn":[170.053162],"iteration":591,"passed_time":1.56811713,"remaining_time":1.080729374}, -{"learn":[169.9448808],"iteration":592,"passed_time":1.570700485,"remaining_time":1.078035577}, -{"learn":[169.9123989],"iteration":593,"passed_time":1.573158069,"remaining_time":1.075256188}, -{"learn":[169.9057385],"iteration":594,"passed_time":1.575526115,"remaining_time":1.072416935}, -{"learn":[169.7900202],"iteration":595,"passed_time":1.578085825,"remaining_time":1.069709183}, -{"learn":[169.7772512],"iteration":596,"passed_time":1.580526484,"remaining_time":1.066921563}, -{"learn":[169.7056982],"iteration":597,"passed_time":1.582978915,"remaining_time":1.064143016}, -{"learn":[169.5984399],"iteration":598,"passed_time":1.585509871,"remaining_time":1.061418127}, -{"learn":[169.5032421],"iteration":599,"passed_time":1.588144174,"remaining_time":1.058762783}, -{"learn":[169.4561474],"iteration":600,"passed_time":1.590677273,"remaining_time":1.056040319}, -{"learn":[169.3699062],"iteration":601,"passed_time":1.593212694,"remaining_time":1.05332002}, -{"learn":[169.305575],"iteration":602,"passed_time":1.595776822,"remaining_time":1.050619234}, -{"learn":[169.2404599],"iteration":603,"passed_time":1.598335979,"remaining_time":1.047915642}, -{"learn":[169.2086352],"iteration":604,"passed_time":1.600795252,"remaining_time":1.045147313}, -{"learn":[169.1011452],"iteration":605,"passed_time":1.603340621,"remaining_time":1.042435982}, -{"learn":[169.0452562],"iteration":606,"passed_time":1.605946728,"remaining_time":1.03976452}, -{"learn":[168.9697965],"iteration":607,"passed_time":1.608542901,"remaining_time":1.037086871}, -{"learn":[168.9421965],"iteration":608,"passed_time":1.611019575,"remaining_time":1.034332765}, -{"learn":[168.8608469],"iteration":609,"passed_time":1.613587097,"remaining_time":1.031637652}, -{"learn":[168.7781547],"iteration":610,"passed_time":1.616104266,"remaining_time":1.028910899}, -{"learn":[168.7037561],"iteration":611,"passed_time":1.619355464,"remaining_time":1.026650196}, -{"learn":[168.6166654],"iteration":612,"passed_time":1.621893862,"remaining_time":1.023936256}, -{"learn":[168.5526465],"iteration":613,"passed_time":1.62443978,"remaining_time":1.021227614}, -{"learn":[168.504967],"iteration":614,"passed_time":1.626998322,"remaining_time":1.018527405}, -{"learn":[168.4134884],"iteration":615,"passed_time":1.629665968,"remaining_time":1.015895668}, -{"learn":[168.3235521],"iteration":616,"passed_time":1.63233252,"remaining_time":1.013263136}, -{"learn":[168.1931894],"iteration":617,"passed_time":1.635048287,"remaining_time":1.010660915}, -{"learn":[168.1107431],"iteration":618,"passed_time":1.637630095,"remaining_time":1.007975875}, -{"learn":[168.0214098],"iteration":619,"passed_time":1.640195917,"remaining_time":1.005281368}, -{"learn":[167.9648276],"iteration":620,"passed_time":1.642771735,"remaining_time":1.002593378}, -{"learn":[167.7924691],"iteration":621,"passed_time":1.645352188,"remaining_time":0.9999085644}, -{"learn":[167.7147463],"iteration":622,"passed_time":1.647959523,"remaining_time":0.9972403535}, -{"learn":[167.6457893],"iteration":623,"passed_time":1.650523895,"remaining_time":0.9945464496}, -{"learn":[167.5430052],"iteration":624,"passed_time":1.653313048,"remaining_time":0.991987829}, -{"learn":[167.4406624],"iteration":625,"passed_time":1.655912726,"remaining_time":0.9893152711}, -{"learn":[167.3812053],"iteration":626,"passed_time":1.658481066,"remaining_time":0.9866243026}, -{"learn":[167.3378154],"iteration":627,"passed_time":1.660963346,"remaining_time":0.9838827466}, -{"learn":[167.2908131],"iteration":628,"passed_time":1.663552226,"remaining_time":0.9812048903}, -{"learn":[167.1963146],"iteration":629,"passed_time":1.666184639,"remaining_time":0.9785528833}, -{"learn":[167.0846589],"iteration":630,"passed_time":1.668815429,"remaining_time":0.9758999892}, -{"learn":[167.0613336],"iteration":631,"passed_time":1.671289427,"remaining_time":0.9731558691}, -{"learn":[166.9812865],"iteration":632,"passed_time":1.673837704,"remaining_time":0.9704556672}, -{"learn":[166.8680765],"iteration":633,"passed_time":1.676416461,"remaining_time":0.9677735405}, -{"learn":[166.7957381],"iteration":634,"passed_time":1.679215325,"remaining_time":0.9652182578}, -{"learn":[166.7145206],"iteration":635,"passed_time":1.681976128,"remaining_time":0.9626404253}, -{"learn":[166.7058037],"iteration":636,"passed_time":1.684554002,"remaining_time":0.9599577751}, -{"learn":[166.6426366],"iteration":637,"passed_time":1.687395731,"remaining_time":0.9574251639}, -{"learn":[166.5670646],"iteration":638,"passed_time":1.690170469,"remaining_time":0.9548537391}, -{"learn":[166.4920211],"iteration":639,"passed_time":1.692800194,"remaining_time":0.9522001091}, -{"learn":[166.4078027],"iteration":640,"passed_time":1.695726813,"remaining_time":0.9497128329}, -{"learn":[166.3081368],"iteration":641,"passed_time":1.698475659,"remaining_time":0.9471250561}, -{"learn":[166.2116999],"iteration":642,"passed_time":1.701134123,"remaining_time":0.9444865972}, -{"learn":[166.1274796],"iteration":643,"passed_time":1.703709344,"remaining_time":0.9418020598}, -{"learn":[166.0790992],"iteration":644,"passed_time":1.706278036,"remaining_time":0.939114268}, -{"learn":[166.0357799],"iteration":645,"passed_time":1.709074152,"remaining_time":0.9365514701}, -{"learn":[165.962273],"iteration":646,"passed_time":1.712140186,"remaining_time":0.9341352175}, -{"learn":[165.9019152],"iteration":647,"passed_time":1.714893248,"remaining_time":0.9315469494}, -{"learn":[165.8558937],"iteration":648,"passed_time":1.717449156,"remaining_time":0.9288515467}, -{"learn":[165.7641631],"iteration":649,"passed_time":1.719970823,"remaining_time":0.9261381353}, -{"learn":[165.7002471],"iteration":650,"passed_time":1.72252328,"remaining_time":0.9234418198}, -{"learn":[165.6268019],"iteration":651,"passed_time":1.72510507,"remaining_time":0.9207616015}, -{"learn":[165.5344013],"iteration":652,"passed_time":1.729226137,"remaining_time":0.9188996472}, -{"learn":[165.392062],"iteration":653,"passed_time":1.731816148,"remaining_time":0.9162207758}, -{"learn":[165.3212326],"iteration":654,"passed_time":1.734387463,"remaining_time":0.9135323276}, -{"learn":[165.2797581],"iteration":655,"passed_time":1.736932634,"remaining_time":0.9108305277}, -{"learn":[165.2170122],"iteration":656,"passed_time":1.73947677,"remaining_time":0.9081286638}, -{"learn":[165.1420009],"iteration":657,"passed_time":1.742086519,"remaining_time":0.9054613824}, -{"learn":[165.0755963],"iteration":658,"passed_time":1.744693158,"remaining_time":0.9027926662}, -{"learn":[164.9968519],"iteration":659,"passed_time":1.747268663,"remaining_time":0.9001080993}, -{"learn":[164.9489828],"iteration":660,"passed_time":1.749930942,"remaining_time":0.897468365}, -{"learn":[164.8478661],"iteration":661,"passed_time":1.752515699,"remaining_time":0.8947889822}, -{"learn":[164.7759615],"iteration":662,"passed_time":1.755127036,"remaining_time":0.8921233953}, -{"learn":[164.6991226],"iteration":663,"passed_time":1.757720804,"remaining_time":0.8894490816}, -{"learn":[164.6358342],"iteration":664,"passed_time":1.760338276,"remaining_time":0.886786951}, -{"learn":[164.5313499],"iteration":665,"passed_time":1.762869015,"remaining_time":0.8840814582}, -{"learn":[164.4655778],"iteration":666,"passed_time":1.765432763,"remaining_time":0.8813929688}, -{"learn":[164.3551327],"iteration":667,"passed_time":1.767945451,"remaining_time":0.8786794758}, -{"learn":[164.3051792],"iteration":668,"passed_time":1.77050047,"remaining_time":0.875987527}, -{"learn":[164.2206248],"iteration":669,"passed_time":1.773083715,"remaining_time":0.8733098895}, -{"learn":[164.1154037],"iteration":670,"passed_time":1.775642234,"remaining_time":0.8706204099}, -{"learn":[164.0671512],"iteration":671,"passed_time":1.778203822,"remaining_time":0.8679328177}, -{"learn":[164.0157729],"iteration":672,"passed_time":1.780743297,"remaining_time":0.8652348558}, -{"learn":[163.9750414],"iteration":673,"passed_time":1.783322241,"remaining_time":0.862556455}, -{"learn":[163.9143972],"iteration":674,"passed_time":1.785820835,"remaining_time":0.8598396611}, -{"learn":[163.8075698],"iteration":675,"passed_time":1.788532518,"remaining_time":0.8572256445}, -{"learn":[163.7516995],"iteration":676,"passed_time":1.791087315,"remaining_time":0.8545364885}, -{"learn":[163.6632195],"iteration":677,"passed_time":1.793645602,"remaining_time":0.8518493863}, -{"learn":[163.5923771],"iteration":678,"passed_time":1.79620856,"remaining_time":0.8491648716}, -{"learn":[163.4705736],"iteration":679,"passed_time":1.798808407,"remaining_time":0.846498074}, -{"learn":[163.3718061],"iteration":680,"passed_time":1.80139931,"remaining_time":0.8438272831}, -{"learn":[163.2934134],"iteration":681,"passed_time":1.804094154,"remaining_time":0.841205192}, -{"learn":[163.2281985],"iteration":682,"passed_time":1.80666664,"remaining_time":0.8385260979}, -{"learn":[163.2102114],"iteration":683,"passed_time":1.809159753,"remaining_time":0.8358106463}, -{"learn":[163.1441079],"iteration":684,"passed_time":1.811689176,"remaining_time":0.8331125409}, -{"learn":[163.0580932],"iteration":685,"passed_time":1.814268702,"remaining_time":0.8304378607}, -{"learn":[162.9950592],"iteration":686,"passed_time":1.816846518,"remaining_time":0.8277626785}, -{"learn":[162.9090395],"iteration":687,"passed_time":1.820498417,"remaining_time":0.8255748635}, -{"learn":[162.8920924],"iteration":688,"passed_time":1.823012534,"remaining_time":0.822869228}, -{"learn":[162.8345433],"iteration":689,"passed_time":1.825539526,"remaining_time":0.820169932}, -{"learn":[162.7700818],"iteration":690,"passed_time":1.828463854,"remaining_time":0.8176488144}, -{"learn":[162.6908036],"iteration":691,"passed_time":1.830993519,"remaining_time":0.8149508725}, -{"learn":[162.6196179],"iteration":692,"passed_time":1.833580479,"remaining_time":0.8122787979}, -{"learn":[162.5436298],"iteration":693,"passed_time":1.836164956,"remaining_time":0.8096058741}, -{"learn":[162.5286597],"iteration":694,"passed_time":1.838619098,"remaining_time":0.806876007}, -{"learn":[162.4242181],"iteration":695,"passed_time":1.841185575,"remaining_time":0.8041959984}, -{"learn":[162.3686309],"iteration":696,"passed_time":1.844108821,"remaining_time":0.8016714101}, -{"learn":[162.3080356],"iteration":697,"passed_time":1.846710088,"remaining_time":0.7990063706}, -{"learn":[162.2667814],"iteration":698,"passed_time":1.849226563,"remaining_time":0.7963050007}, -{"learn":[162.231127],"iteration":699,"passed_time":1.851788833,"remaining_time":0.7936237857}, -{"learn":[162.1489955],"iteration":700,"passed_time":1.854429432,"remaining_time":0.79097632}, -{"learn":[162.0831873],"iteration":701,"passed_time":1.856996632,"remaining_time":0.7882977154}, -{"learn":[162.0758045],"iteration":702,"passed_time":1.859439524,"remaining_time":0.7855669111}, -{"learn":[161.964918],"iteration":703,"passed_time":1.861999461,"remaining_time":0.7828861369}, -{"learn":[161.8758627],"iteration":704,"passed_time":1.864687976,"remaining_time":0.7802595076}, -{"learn":[161.8548391],"iteration":705,"passed_time":1.867161231,"remaining_time":0.777543062}, -{"learn":[161.8101211],"iteration":706,"passed_time":1.869740252,"remaining_time":0.7748711369}, -{"learn":[161.7187124],"iteration":707,"passed_time":1.872319551,"remaining_time":0.7721995889}, -{"learn":[161.6516914],"iteration":708,"passed_time":1.874843532,"remaining_time":0.7695055962}, -{"learn":[161.5661086],"iteration":709,"passed_time":1.877366643,"remaining_time":0.7668117274}, -{"learn":[161.5587169],"iteration":710,"passed_time":1.880010747,"remaining_time":0.7641675188}, -{"learn":[161.5457211],"iteration":711,"passed_time":1.882497263,"remaining_time":0.761459567}, -{"learn":[161.4999244],"iteration":712,"passed_time":1.885074068,"remaining_time":0.75878858}, -{"learn":[161.4617143],"iteration":713,"passed_time":1.887539364,"remaining_time":0.7560731907}, -{"learn":[161.4166367],"iteration":714,"passed_time":1.89009252,"remaining_time":0.753393522}, -{"learn":[161.3399772],"iteration":715,"passed_time":1.892662657,"remaining_time":0.7507209422}, -{"learn":[161.2996099],"iteration":716,"passed_time":1.895119334,"remaining_time":0.7480038653}, -{"learn":[161.2307714],"iteration":717,"passed_time":1.897725129,"remaining_time":0.7453460814}, -{"learn":[161.1928741],"iteration":718,"passed_time":1.900290766,"remaining_time":0.7426727472}, -{"learn":[161.1637091],"iteration":719,"passed_time":1.902733556,"remaining_time":0.7399519385}, -{"learn":[161.0983423],"iteration":720,"passed_time":1.905212176,"remaining_time":0.7372457658}, -{"learn":[161.0148873],"iteration":721,"passed_time":1.907853484,"remaining_time":0.7346028651}, -{"learn":[160.9451019],"iteration":722,"passed_time":1.910427526,"remaining_time":0.7319341972}, -{"learn":[160.8261927],"iteration":723,"passed_time":1.913029505,"remaining_time":0.7292764411}, -{"learn":[160.7561659],"iteration":724,"passed_time":1.91561408,"remaining_time":0.7266122371}, -{"learn":[160.6715214],"iteration":725,"passed_time":1.918175789,"remaining_time":0.7239396227}, -{"learn":[160.6394061],"iteration":726,"passed_time":1.920717446,"remaining_time":0.7212597837}, -{"learn":[160.5229188],"iteration":727,"passed_time":1.923298627,"remaining_time":0.7185950913}, -{"learn":[160.4697367],"iteration":728,"passed_time":1.925889158,"remaining_time":0.7159341039}, -{"learn":[160.3785935],"iteration":729,"passed_time":1.928536432,"remaining_time":0.7132942967}, -{"learn":[160.2862503],"iteration":730,"passed_time":1.931146517,"remaining_time":0.710640784}, -{"learn":[160.2251663],"iteration":731,"passed_time":1.933711658,"remaining_time":0.7079709349}, -{"learn":[160.1487605],"iteration":732,"passed_time":1.936320095,"remaining_time":0.7053171426}, -{"learn":[160.1240794],"iteration":733,"passed_time":1.938806306,"remaining_time":0.7026191791}, -{"learn":[160.0710998],"iteration":734,"passed_time":1.941321389,"remaining_time":0.6999322014}, -{"learn":[159.9828284],"iteration":735,"passed_time":1.943886079,"remaining_time":0.697263485}, -{"learn":[159.9184254],"iteration":736,"passed_time":1.94644954,"remaining_time":0.6945946119}, -{"learn":[159.8197422],"iteration":737,"passed_time":1.949040136,"remaining_time":0.6919356581}, -{"learn":[159.7446298],"iteration":738,"passed_time":1.951559135,"remaining_time":0.6892516024}, -{"learn":[159.6842708],"iteration":739,"passed_time":1.954121659,"remaining_time":0.6865832855}, -{"learn":[159.5813619],"iteration":740,"passed_time":1.95666878,"remaining_time":0.6839098706}, -{"learn":[159.5324978],"iteration":741,"passed_time":1.959245389,"remaining_time":0.6812470491}, -{"learn":[159.4702881],"iteration":742,"passed_time":1.961840059,"remaining_time":0.6785907067}, -{"learn":[159.3924217],"iteration":743,"passed_time":1.964361566,"remaining_time":0.6759093559}, -{"learn":[159.2892326],"iteration":744,"passed_time":1.966959472,"remaining_time":0.6732545844}, -{"learn":[159.191532],"iteration":745,"passed_time":1.96951575,"remaining_time":0.6705857915}, -{"learn":[159.118559],"iteration":746,"passed_time":1.972057024,"remaining_time":0.6679122183}, -{"learn":[159.0547218],"iteration":747,"passed_time":1.974694705,"remaining_time":0.6652714781}, -{"learn":[158.9860944],"iteration":748,"passed_time":1.977256634,"remaining_time":0.6626053608}, -{"learn":[158.9133329],"iteration":749,"passed_time":1.979803366,"remaining_time":0.6599344555}, -{"learn":[158.8576396],"iteration":750,"passed_time":1.982357936,"remaining_time":0.6572664795}, -{"learn":[158.7732692],"iteration":751,"passed_time":1.984924107,"remaining_time":0.654602631}, -{"learn":[158.6995461],"iteration":752,"passed_time":1.987553031,"remaining_time":0.6519596264}, -{"learn":[158.6461295],"iteration":753,"passed_time":1.990247907,"remaining_time":0.6493381765}, -{"learn":[158.5689125],"iteration":754,"passed_time":1.992847969,"remaining_time":0.6466857649}, -{"learn":[158.4946566],"iteration":755,"passed_time":1.995412291,"remaining_time":0.6440219564}, -{"learn":[158.4819395],"iteration":756,"passed_time":1.997874964,"remaining_time":0.6413257811}, -{"learn":[158.3932271],"iteration":757,"passed_time":2.000362722,"remaining_time":0.6386382306}, -{"learn":[158.2680788],"iteration":758,"passed_time":2.002916737,"remaining_time":0.6359722446}, -{"learn":[158.1816382],"iteration":759,"passed_time":2.005497223,"remaining_time":0.6333149126}, -{"learn":[158.1209948],"iteration":760,"passed_time":2.007991378,"remaining_time":0.6306306693}, -{"learn":[158.0317113],"iteration":761,"passed_time":2.010563331,"remaining_time":0.6279712241}, -{"learn":[157.9773785],"iteration":762,"passed_time":2.013119139,"remaining_time":0.6253069934}, -{"learn":[157.9679703],"iteration":763,"passed_time":2.015545613,"remaining_time":0.6226030951}, -{"learn":[157.8993187],"iteration":764,"passed_time":2.01812878,"remaining_time":0.6199480567}, -{"learn":[157.8641394],"iteration":765,"passed_time":2.020714633,"remaining_time":0.6172940263}, -{"learn":[157.8561322],"iteration":766,"passed_time":2.023142452,"remaining_time":0.614592166}, -{"learn":[157.7767195],"iteration":767,"passed_time":2.025706902,"remaining_time":0.6119322934}, -{"learn":[157.6659797],"iteration":768,"passed_time":2.028254414,"remaining_time":0.6092675808}, -{"learn":[157.6058352],"iteration":769,"passed_time":2.030790442,"remaining_time":0.6065997424}, -{"learn":[157.5409917],"iteration":770,"passed_time":2.033337524,"remaining_time":0.6039355291}, -{"learn":[157.5109585],"iteration":771,"passed_time":2.035903826,"remaining_time":0.6012772959}, -{"learn":[157.4239183],"iteration":772,"passed_time":2.038507025,"remaining_time":0.5986301355}, -{"learn":[157.3707664],"iteration":773,"passed_time":2.041005576,"remaining_time":0.5959525326}, -{"learn":[157.2749161],"iteration":774,"passed_time":2.043535971,"remaining_time":0.5932846368}, -{"learn":[157.2026584],"iteration":775,"passed_time":2.046072434,"remaining_time":0.5906188469}, -{"learn":[157.1490453],"iteration":776,"passed_time":2.048623614,"remaining_time":0.5879576139}, -{"learn":[157.0974185],"iteration":777,"passed_time":2.05119122,"remaining_time":0.5853013506}, -{"learn":[157.0801566],"iteration":778,"passed_time":2.053641035,"remaining_time":0.5826118981}, -{"learn":[156.9796945],"iteration":779,"passed_time":2.056259695,"remaining_time":0.5799706831}, -{"learn":[156.9137618],"iteration":780,"passed_time":2.058840665,"remaining_time":0.5773189574}, -{"learn":[156.8270067],"iteration":781,"passed_time":2.061445592,"remaining_time":0.5746740909}, -{"learn":[156.7234856],"iteration":782,"passed_time":2.064053006,"remaining_time":0.5720300157}, -{"learn":[156.5901787],"iteration":783,"passed_time":2.066793648,"remaining_time":0.5694227399}, -{"learn":[156.5333982],"iteration":784,"passed_time":2.069475505,"remaining_time":0.5667990238}, -{"learn":[156.478268],"iteration":785,"passed_time":2.072077309,"remaining_time":0.564153364}, -{"learn":[156.3858542],"iteration":786,"passed_time":2.077424095,"remaining_time":0.5622507397}, -{"learn":[156.302214],"iteration":787,"passed_time":2.080211205,"remaining_time":0.5596507302}, -{"learn":[156.239163],"iteration":788,"passed_time":2.083068177,"remaining_time":0.5570689295}, -{"learn":[156.173421],"iteration":789,"passed_time":2.085597694,"remaining_time":0.5543993869}, -{"learn":[156.1217055],"iteration":790,"passed_time":2.088063656,"remaining_time":0.5517134058}, -{"learn":[156.065658],"iteration":791,"passed_time":2.090605554,"remaining_time":0.5490479233}, -{"learn":[156.0292425],"iteration":792,"passed_time":2.093186061,"remaining_time":0.5463928305}, -{"learn":[155.9668071],"iteration":793,"passed_time":2.095689054,"remaining_time":0.5437178151}, -{"learn":[155.890493],"iteration":794,"passed_time":2.098832362,"remaining_time":0.541208345}, -{"learn":[155.8363218],"iteration":795,"passed_time":2.101440274,"remaining_time":0.5385600702}, -{"learn":[155.7761696],"iteration":796,"passed_time":2.103958972,"remaining_time":0.5358891734}, -{"learn":[155.6872043],"iteration":797,"passed_time":2.106520686,"remaining_time":0.5332295471}, -{"learn":[155.6413914],"iteration":798,"passed_time":2.109049363,"remaining_time":0.5305618548}, -{"learn":[155.631401],"iteration":799,"passed_time":2.111529322,"remaining_time":0.5278823306}, -{"learn":[155.5951873],"iteration":800,"passed_time":2.114141779,"remaining_time":0.5252362224}, -{"learn":[155.5524366],"iteration":801,"passed_time":2.11673296,"remaining_time":0.5225849452}, -{"learn":[155.4753066],"iteration":802,"passed_time":2.119303396,"remaining_time":0.5199287286}, -{"learn":[155.3967061],"iteration":803,"passed_time":2.121871126,"remaining_time":0.5172720656}, -{"learn":[155.3653802],"iteration":804,"passed_time":2.124416907,"remaining_time":0.5146103067}, -{"learn":[155.3147926],"iteration":805,"passed_time":2.126940272,"remaining_time":0.5119434401}, -{"learn":[155.2483292],"iteration":806,"passed_time":2.129816004,"remaining_time":0.5093612005}, -{"learn":[155.193335],"iteration":807,"passed_time":2.132388135,"remaining_time":0.5067060915}, -{"learn":[155.1856722],"iteration":808,"passed_time":2.134812674,"remaining_time":0.5040163422}, -{"learn":[155.1008834],"iteration":809,"passed_time":2.137403944,"remaining_time":0.5013663571}, -{"learn":[155.0038712],"iteration":810,"passed_time":2.139958015,"remaining_time":0.4987078481}, -{"learn":[154.9104913],"iteration":811,"passed_time":2.142499478,"remaining_time":0.4960466771}, -{"learn":[154.8535916],"iteration":812,"passed_time":2.145074904,"remaining_time":0.4933936126}, -{"learn":[154.8033404],"iteration":813,"passed_time":2.14763119,"remaining_time":0.4907363652}, -{"learn":[154.725405],"iteration":814,"passed_time":2.150184439,"remaining_time":0.4880786764}, -{"learn":[154.6424424],"iteration":815,"passed_time":2.152723364,"remaining_time":0.4854180135}, -{"learn":[154.5807476],"iteration":816,"passed_time":2.15523026,"remaining_time":0.4827504744}, -{"learn":[154.5071098],"iteration":817,"passed_time":2.157765392,"remaining_time":0.4800896105}, -{"learn":[154.4382791],"iteration":818,"passed_time":2.16032669,"remaining_time":0.4774348362}, -{"learn":[154.4265616],"iteration":819,"passed_time":2.163353771,"remaining_time":0.474882535}, -{"learn":[154.3337491],"iteration":820,"passed_time":2.16589477,"remaining_time":0.4722230985}, -{"learn":[154.2576509],"iteration":821,"passed_time":2.168451555,"remaining_time":0.4695673684}, -{"learn":[154.1577433],"iteration":822,"passed_time":2.170995669,"remaining_time":0.4669091536}, -{"learn":[154.0901532],"iteration":823,"passed_time":2.173576121,"remaining_time":0.4642589774}, -{"learn":[154.0559305],"iteration":824,"passed_time":2.176080678,"remaining_time":0.4615928712}, -{"learn":[154.0185414],"iteration":825,"passed_time":2.178599332,"remaining_time":0.4589301257}, -{"learn":[153.9412265],"iteration":826,"passed_time":2.181197098,"remaining_time":0.4562842782}, -{"learn":[153.9211247],"iteration":827,"passed_time":2.183642583,"remaining_time":0.4536069134}, -{"learn":[153.8574726],"iteration":828,"passed_time":2.186167842,"remaining_time":0.4509465632}, -{"learn":[153.7654705],"iteration":829,"passed_time":2.188650163,"remaining_time":0.4482777443}, -{"learn":[153.7400922],"iteration":830,"passed_time":2.191099227,"remaining_time":0.4456026105}, -{"learn":[153.6740471],"iteration":831,"passed_time":2.193680078,"remaining_time":0.4429546311}, -{"learn":[153.642455],"iteration":832,"passed_time":2.196136971,"remaining_time":0.4402819618}, -{"learn":[153.5827398],"iteration":833,"passed_time":2.198646261,"remaining_time":0.437620239}, -{"learn":[153.5245288],"iteration":834,"passed_time":2.201212202,"remaining_time":0.4349700758}, -{"learn":[153.4661062],"iteration":835,"passed_time":2.203728681,"remaining_time":0.432310411}, -{"learn":[153.3933415],"iteration":836,"passed_time":2.206403473,"remaining_time":0.4296819188}, -{"learn":[153.3287539],"iteration":837,"passed_time":2.209906016,"remaining_time":0.4272133348}, -{"learn":[153.2598922],"iteration":838,"passed_time":2.212683967,"remaining_time":0.4246032403}, -{"learn":[153.1515636],"iteration":839,"passed_time":2.215399947,"remaining_time":0.4219809423}, -{"learn":[153.1473142],"iteration":840,"passed_time":2.217976957,"remaining_time":0.4193321477}, -{"learn":[153.0338801],"iteration":841,"passed_time":2.220683417,"remaining_time":0.4167078147}, -{"learn":[153.0178343],"iteration":842,"passed_time":2.22308662,"remaining_time":0.4140268081}, -{"learn":[152.9460883],"iteration":843,"passed_time":2.225624445,"remaining_time":0.4113713429}, -{"learn":[152.918966],"iteration":844,"passed_time":2.228252036,"remaining_time":0.4087326221}, -{"learn":[152.8312041],"iteration":845,"passed_time":2.23087348,"remaining_time":0.4060928084}, -{"learn":[152.78308],"iteration":846,"passed_time":2.233445718,"remaining_time":0.4034441498}, -{"learn":[152.7487912],"iteration":847,"passed_time":2.235909903,"remaining_time":0.4007763034}, -{"learn":[152.6983273],"iteration":848,"passed_time":2.238428784,"remaining_time":0.3981186648}, -{"learn":[152.6319831],"iteration":849,"passed_time":2.240921771,"remaining_time":0.3954567832}, -{"learn":[152.5748801],"iteration":850,"passed_time":2.244034219,"remaining_time":0.3929037587}, -{"learn":[152.5100366],"iteration":851,"passed_time":2.246635426,"remaining_time":0.3902606139}, -{"learn":[152.5049602],"iteration":852,"passed_time":2.249038019,"remaining_time":0.3875833397}, -{"learn":[152.4564103],"iteration":853,"passed_time":2.251548615,"remaining_time":0.384925173}, -{"learn":[152.3800864],"iteration":854,"passed_time":2.254114708,"remaining_time":0.3822767634}, -{"learn":[152.285522],"iteration":855,"passed_time":2.256662657,"remaining_time":0.3796254936}, -{"learn":[152.2781469],"iteration":856,"passed_time":2.259046198,"remaining_time":0.3769470319}, -{"learn":[152.2041695],"iteration":857,"passed_time":2.26172987,"remaining_time":0.3743189295}, -{"learn":[152.1357107],"iteration":858,"passed_time":2.26431653,"remaining_time":0.3716747739}, -{"learn":[152.1165446],"iteration":859,"passed_time":2.2668357,"remaining_time":0.3690197652}, -{"learn":[152.0605614],"iteration":860,"passed_time":2.269351273,"remaining_time":0.3663644912}, -{"learn":[152.0541583],"iteration":861,"passed_time":2.271770947,"remaining_time":0.3636941887}, -{"learn":[151.9797206],"iteration":862,"passed_time":2.274377461,"remaining_time":0.3610541277}, -{"learn":[151.9037024],"iteration":863,"passed_time":2.27700084,"remaining_time":0.358416799}, -{"learn":[151.8984377],"iteration":864,"passed_time":2.279532699,"remaining_time":0.3557652189}, -{"learn":[151.813874],"iteration":865,"passed_time":2.282129627,"remaining_time":0.3531239838}, -{"learn":[151.7435255],"iteration":866,"passed_time":2.284673261,"remaining_time":0.3504746755}, -{"learn":[151.7219671],"iteration":867,"passed_time":2.287140004,"remaining_time":0.3478139177}, -{"learn":[151.6650861],"iteration":868,"passed_time":2.289684057,"remaining_time":0.3451652607}, -{"learn":[151.6595382],"iteration":869,"passed_time":2.292093493,"remaining_time":0.3424967288}, -{"learn":[151.6109379],"iteration":870,"passed_time":2.294594305,"remaining_time":0.3398423253}, -{"learn":[151.6069977],"iteration":871,"passed_time":2.296987511,"remaining_time":0.3371724787}, -{"learn":[151.5436183],"iteration":872,"passed_time":2.299496264,"remaining_time":0.334520075}, -{"learn":[151.4913898],"iteration":873,"passed_time":2.302023955,"remaining_time":0.3318707303}, -{"learn":[151.4202941],"iteration":874,"passed_time":2.304565783,"remaining_time":0.3292236833}, -{"learn":[151.3613494],"iteration":875,"passed_time":2.307105173,"remaining_time":0.3265765314}, -{"learn":[151.2026222],"iteration":876,"passed_time":2.30977428,"remaining_time":0.3239478181}, -{"learn":[151.1555265],"iteration":877,"passed_time":2.312727495,"remaining_time":0.3213584902}, -{"learn":[151.0772481],"iteration":878,"passed_time":2.315268104,"remaining_time":0.3187115365}, -{"learn":[150.9916595],"iteration":879,"passed_time":2.31776661,"remaining_time":0.3160590832}, -{"learn":[150.9314521],"iteration":880,"passed_time":2.320350942,"remaining_time":0.3134185722}, -{"learn":[150.8986426],"iteration":881,"passed_time":2.322840782,"remaining_time":0.3107655468}, -{"learn":[150.8855747],"iteration":882,"passed_time":2.325254395,"remaining_time":0.3081027907}, -{"learn":[150.8408177],"iteration":883,"passed_time":2.327790985,"remaining_time":0.3054567356}, -{"learn":[150.7253838],"iteration":884,"passed_time":2.330334829,"remaining_time":0.3028118704}, -{"learn":[150.706442],"iteration":885,"passed_time":2.332795803,"remaining_time":0.3001565706}, -{"learn":[150.6417125],"iteration":886,"passed_time":2.33540995,"remaining_time":0.2975212225}, -{"learn":[150.6344233],"iteration":887,"passed_time":2.337851684,"remaining_time":0.2948641764}, -{"learn":[150.5922534],"iteration":888,"passed_time":2.340379111,"remaining_time":0.2922183143}, -{"learn":[150.4628082],"iteration":889,"passed_time":2.344231178,"remaining_time":0.2897364377}, -{"learn":[150.4122494],"iteration":890,"passed_time":2.346713813,"remaining_time":0.2870839569}, -{"learn":[150.3956709],"iteration":891,"passed_time":2.349131715,"remaining_time":0.2844240193}, -{"learn":[150.3275285],"iteration":892,"passed_time":2.351630541,"remaining_time":0.2817743201}, -{"learn":[150.2969107],"iteration":893,"passed_time":2.354156332,"remaining_time":0.2791281557}, -{"learn":[150.2052382],"iteration":894,"passed_time":2.35713377,"remaining_time":0.2765352468}, -{"learn":[150.1691078],"iteration":895,"passed_time":2.359896132,"remaining_time":0.2739165153}, -{"learn":[150.1109709],"iteration":896,"passed_time":2.362463295,"remaining_time":0.2712750495}, -{"learn":[150.0576739],"iteration":897,"passed_time":2.364968801,"remaining_time":0.2686267458}, -{"learn":[149.9702923],"iteration":898,"passed_time":2.367587098,"remaining_time":0.2659914314}, -{"learn":[149.9026189],"iteration":899,"passed_time":2.370173385,"remaining_time":0.2633525983}, -{"learn":[149.8272303],"iteration":900,"passed_time":2.372887321,"remaining_time":0.2607279076}, -{"learn":[149.7448782],"iteration":901,"passed_time":2.375581801,"remaining_time":0.2581009052}, -{"learn":[149.7070366],"iteration":902,"passed_time":2.378119786,"remaining_time":0.2554569427}, -{"learn":[149.5793268],"iteration":903,"passed_time":2.380726704,"remaining_time":0.2528205349}, -{"learn":[149.5729533],"iteration":904,"passed_time":2.383145501,"remaining_time":0.2501644449}, -{"learn":[149.4734865],"iteration":905,"passed_time":2.385734784,"remaining_time":0.247526567}, -{"learn":[149.4129335],"iteration":906,"passed_time":2.388328392,"remaining_time":0.2448892398}, -{"learn":[149.3598982],"iteration":907,"passed_time":2.390912375,"remaining_time":0.2422510336}, -{"learn":[149.3562156],"iteration":908,"passed_time":2.393265633,"remaining_time":0.2395898488}, -{"learn":[149.2838875],"iteration":909,"passed_time":2.395842652,"remaining_time":0.2369514711}, -{"learn":[149.2195985],"iteration":910,"passed_time":2.398453111,"remaining_time":0.2343164949}, -{"learn":[149.137772],"iteration":911,"passed_time":2.401046726,"remaining_time":0.2316799472}, -{"learn":[149.0653388],"iteration":912,"passed_time":2.403798697,"remaining_time":0.2290585834}, -{"learn":[149.0204833],"iteration":913,"passed_time":2.406392478,"remaining_time":0.2264220493}, -{"learn":[148.9676564],"iteration":914,"passed_time":2.408983439,"remaining_time":0.2237853468}, -{"learn":[148.8282892],"iteration":915,"passed_time":2.411562604,"remaining_time":0.2211476624}, -{"learn":[148.7676855],"iteration":916,"passed_time":2.414058055,"remaining_time":0.2185025284}, -{"learn":[148.7016584],"iteration":917,"passed_time":2.416598283,"remaining_time":0.2158617203}, -{"learn":[148.597869],"iteration":918,"passed_time":2.419345837,"remaining_time":0.2132394045}, -{"learn":[148.5592363],"iteration":919,"passed_time":2.421905781,"remaining_time":0.2106005027}, -{"learn":[148.4818044],"iteration":920,"passed_time":2.42442301,"remaining_time":0.2079581083}, -{"learn":[148.4164138],"iteration":921,"passed_time":2.426973899,"remaining_time":0.2053188331}, -{"learn":[148.3558286],"iteration":922,"passed_time":2.429486374,"remaining_time":0.2026765447}, -{"learn":[148.3067852],"iteration":923,"passed_time":2.432031775,"remaining_time":0.2000372455}, -{"learn":[148.2336354],"iteration":924,"passed_time":2.434558499,"remaining_time":0.1973966351}, -{"learn":[148.1981063],"iteration":925,"passed_time":2.437044423,"remaining_time":0.1947530101}, -{"learn":[148.1542932],"iteration":926,"passed_time":2.439634579,"remaining_time":0.1921179334}, -{"learn":[148.1316522],"iteration":927,"passed_time":2.442111195,"remaining_time":0.1894741445}, -{"learn":[148.0689529],"iteration":928,"passed_time":2.444682304,"remaining_time":0.1868379371}, -{"learn":[147.9477277],"iteration":929,"passed_time":2.447268702,"remaining_time":0.1842030206}, -{"learn":[147.876007],"iteration":930,"passed_time":2.449888077,"remaining_time":0.1815706523}, -{"learn":[147.8238683],"iteration":931,"passed_time":2.452458444,"remaining_time":0.1789347363}, -{"learn":[147.7837836],"iteration":932,"passed_time":2.454940803,"remaining_time":0.1762926407}, -{"learn":[147.7406771],"iteration":933,"passed_time":2.457435585,"remaining_time":0.1736517651}, -{"learn":[147.7156061],"iteration":934,"passed_time":2.459973914,"remaining_time":0.1710142293}, -{"learn":[147.6271726],"iteration":935,"passed_time":2.462543696,"remaining_time":0.1683790561}, -{"learn":[147.5795474],"iteration":936,"passed_time":2.465062036,"remaining_time":0.1657405638}, -{"learn":[147.5196341],"iteration":937,"passed_time":2.467625958,"remaining_time":0.1631053405}, -{"learn":[147.4861583],"iteration":938,"passed_time":2.470123997,"remaining_time":0.1604659892}, -{"learn":[147.4465668],"iteration":939,"passed_time":2.472716088,"remaining_time":0.1578329418}, -{"learn":[147.362469],"iteration":940,"passed_time":2.475292135,"remaining_time":0.1551989755}, -{"learn":[147.3239782],"iteration":941,"passed_time":2.477783097,"remaining_time":0.1525598935}, -{"learn":[147.2896656],"iteration":942,"passed_time":2.480439958,"remaining_time":0.1499311534}, -{"learn":[147.2488776],"iteration":943,"passed_time":2.482986678,"remaining_time":0.1472958199}, -{"learn":[147.1936001],"iteration":944,"passed_time":2.485589251,"remaining_time":0.1446639246}, -{"learn":[147.1478732],"iteration":945,"passed_time":2.488083841,"remaining_time":0.1420259275}, -{"learn":[147.1115156],"iteration":946,"passed_time":2.490596172,"remaining_time":0.1393892261}, -{"learn":[147.0357018],"iteration":947,"passed_time":2.493193518,"remaining_time":0.1367574503}, -{"learn":[146.9633357],"iteration":948,"passed_time":2.495794504,"remaining_time":0.1341259428}, -{"learn":[146.9100555],"iteration":949,"passed_time":2.49840851,"remaining_time":0.1314951848}, -{"learn":[146.813088],"iteration":950,"passed_time":2.500984246,"remaining_time":0.1288624901}, -{"learn":[146.741552],"iteration":951,"passed_time":2.503574473,"remaining_time":0.1262306457}, -{"learn":[146.7219137],"iteration":952,"passed_time":2.506097266,"remaining_time":0.1235955629}, -{"learn":[146.6980453],"iteration":953,"passed_time":2.508584308,"remaining_time":0.1209589918}, -{"learn":[146.582191],"iteration":954,"passed_time":2.51120297,"remaining_time":0.1183289358}, -{"learn":[146.5022511],"iteration":955,"passed_time":2.513796872,"remaining_time":0.115697764}, -{"learn":[146.4254712],"iteration":956,"passed_time":2.51635728,"remaining_time":0.1130651652}, -{"learn":[146.3291937],"iteration":957,"passed_time":2.518921818,"remaining_time":0.1104328981}, -{"learn":[146.2793178],"iteration":958,"passed_time":2.521539892,"remaining_time":0.1078030611}, -{"learn":[146.1929628],"iteration":959,"passed_time":2.524101123,"remaining_time":0.1051708801}, -{"learn":[146.1008178],"iteration":960,"passed_time":2.526679301,"remaining_time":0.1025395346}, -{"learn":[146.0718436],"iteration":961,"passed_time":2.529177824,"remaining_time":0.09990515311}, -{"learn":[145.9990703],"iteration":962,"passed_time":2.531730776,"remaining_time":0.09727314508}, -{"learn":[145.958025],"iteration":963,"passed_time":2.534314868,"remaining_time":0.09464246395}, -{"learn":[145.9025629],"iteration":964,"passed_time":2.536863602,"remaining_time":0.09201059698}, -{"learn":[145.8426431],"iteration":965,"passed_time":2.53942261,"remaining_time":0.08937926369}, -{"learn":[145.8146602],"iteration":966,"passed_time":2.54200521,"remaining_time":0.08674888514}, -{"learn":[145.7309913],"iteration":967,"passed_time":2.544581636,"remaining_time":0.08411840119}, -{"learn":[145.6587865],"iteration":968,"passed_time":2.547112137,"remaining_time":0.0814865596}, -{"learn":[145.5881575],"iteration":969,"passed_time":2.549624964,"remaining_time":0.07885438032}, -{"learn":[145.5430903],"iteration":970,"passed_time":2.552174787,"remaining_time":0.07622355184}, -{"learn":[145.5097176],"iteration":971,"passed_time":2.554721367,"remaining_time":0.07359279658}, -{"learn":[145.4526352],"iteration":972,"passed_time":2.557390557,"remaining_time":0.0709656167}, -{"learn":[145.4019602],"iteration":973,"passed_time":2.559979867,"remaining_time":0.06833621821}, -{"learn":[145.3656847],"iteration":974,"passed_time":2.562491104,"remaining_time":0.0657049001}, -{"learn":[145.2857149],"iteration":975,"passed_time":2.565064117,"remaining_time":0.06307534715}, -{"learn":[145.2234128],"iteration":976,"passed_time":2.567599262,"remaining_time":0.06044501845}, -{"learn":[145.2064965],"iteration":977,"passed_time":2.570129991,"remaining_time":0.05781478508}, -{"learn":[145.1480789],"iteration":978,"passed_time":2.572740625,"remaining_time":0.05518646898}, -{"learn":[145.114356],"iteration":979,"passed_time":2.575269201,"remaining_time":0.0525565143}, -{"learn":[145.0449639],"iteration":980,"passed_time":2.577773774,"remaining_time":0.04992630144}, -{"learn":[145.0004732],"iteration":981,"passed_time":2.580372939,"remaining_time":0.04729807831}, -{"learn":[144.9514353],"iteration":982,"passed_time":2.582920269,"remaining_time":0.04466901788}, -{"learn":[144.8622853],"iteration":983,"passed_time":2.585500974,"remaining_time":0.04204066624}, -{"learn":[144.7985469],"iteration":984,"passed_time":2.588000551,"remaining_time":0.03941117591}, -{"learn":[144.7440993],"iteration":985,"passed_time":2.59054397,"remaining_time":0.03678257158}, -{"learn":[144.6718544],"iteration":986,"passed_time":2.593122684,"remaining_time":0.03415460475}, -{"learn":[144.6056144],"iteration":987,"passed_time":2.595708482,"remaining_time":0.03152682367}, -{"learn":[144.5573611],"iteration":988,"passed_time":2.598238065,"remaining_time":0.02889850224}, -{"learn":[144.4290071],"iteration":989,"passed_time":2.600849121,"remaining_time":0.02627120325}, -{"learn":[144.3823427],"iteration":990,"passed_time":2.603437829,"remaining_time":0.02364373406}, -{"learn":[144.3302253],"iteration":991,"passed_time":2.606076307,"remaining_time":0.02101674441}, -{"learn":[144.3036239],"iteration":992,"passed_time":2.608549862,"remaining_time":0.01838856902}, -{"learn":[144.2459734],"iteration":993,"passed_time":2.611065208,"remaining_time":0.01576095699}, -{"learn":[144.1843438],"iteration":994,"passed_time":2.613619159,"remaining_time":0.01313376462}, -{"learn":[144.1006371],"iteration":995,"passed_time":2.616183468,"remaining_time":0.01050676091}, -{"learn":[144.0372847],"iteration":996,"passed_time":2.618703457,"remaining_time":0.007879749619}, -{"learn":[143.949663],"iteration":997,"passed_time":2.62137623,"remaining_time":0.005253258977}, -{"learn":[143.8827635],"iteration":998,"passed_time":2.62388052,"remaining_time":0.002626507027}, -{"learn":[143.8352937],"iteration":999,"passed_time":2.62645038,"remaining_time":0} +{"learn":[2.720548453],"iteration":0,"passed_time":0.0003951929234,"remaining_time":0.3947977305}, +{"learn":[2.694132526],"iteration":1,"passed_time":0.0006962362131,"remaining_time":0.3474218703}, +{"learn":[2.665962781],"iteration":2,"passed_time":0.0009455140652,"remaining_time":0.314225841}, +{"learn":[2.642241506],"iteration":3,"passed_time":0.001230291485,"remaining_time":0.3063425797}, +{"learn":[2.62244599],"iteration":4,"passed_time":0.001523515638,"remaining_time":0.303179612}, +{"learn":[2.600649233],"iteration":5,"passed_time":0.001809247543,"remaining_time":0.2997320097}, +{"learn":[2.579687656],"iteration":6,"passed_time":0.002112787445,"remaining_time":0.2997139905}, +{"learn":[2.552523406],"iteration":7,"passed_time":0.002421562724,"remaining_time":0.3002737778}, +{"learn":[2.532397801],"iteration":8,"passed_time":0.002760626994,"remaining_time":0.3039757057}, +{"learn":[2.505681253],"iteration":9,"passed_time":0.003050145152,"remaining_time":0.3019643701}, +{"learn":[2.485061637],"iteration":10,"passed_time":0.003337710594,"remaining_time":0.3000905252}, +{"learn":[2.46683253],"iteration":11,"passed_time":0.003620524618,"remaining_time":0.2980898602}, +{"learn":[2.448770931],"iteration":12,"passed_time":0.003901345968,"remaining_time":0.29620219}, +{"learn":[2.419522373],"iteration":13,"passed_time":0.00414937758,"remaining_time":0.2922347353}, +{"learn":[2.399798866],"iteration":14,"passed_time":0.00430636448,"remaining_time":0.2827846008}, +{"learn":[2.37948966],"iteration":15,"passed_time":0.00451961127,"remaining_time":0.2779560931}, +{"learn":[2.359919906],"iteration":16,"passed_time":0.004808235911,"remaining_time":0.2780291706}, +{"learn":[2.338702652],"iteration":17,"passed_time":0.005105578028,"remaining_time":0.2785376457}, +{"learn":[2.313971843],"iteration":18,"passed_time":0.005362650904,"remaining_time":0.2768821335}, +{"learn":[2.291201055],"iteration":19,"passed_time":0.005690020571,"remaining_time":0.278811008}, +{"learn":[2.273754042],"iteration":20,"passed_time":0.00598497389,"remaining_time":0.2790137828}, +{"learn":[2.251255765],"iteration":21,"passed_time":0.006270824288,"remaining_time":0.2787666434}, +{"learn":[2.235854947],"iteration":22,"passed_time":0.006555478048,"remaining_time":0.2784653067}, +{"learn":[2.218353411],"iteration":23,"passed_time":0.006845678228,"remaining_time":0.2783909146}, +{"learn":[2.203470066],"iteration":24,"passed_time":0.007128758516,"remaining_time":0.2780215821}, +{"learn":[2.184484138],"iteration":25,"passed_time":0.007417360079,"remaining_time":0.2778657199}, +{"learn":[2.169216631],"iteration":26,"passed_time":0.007707578515,"remaining_time":0.2777582924}, +{"learn":[2.14886893],"iteration":27,"passed_time":0.007992091049,"remaining_time":0.2774397321}, +{"learn":[2.128917727],"iteration":28,"passed_time":0.008237847534,"remaining_time":0.2758258605}, +{"learn":[2.114027822],"iteration":29,"passed_time":0.008553842252,"remaining_time":0.2765742328}, +{"learn":[2.099416389],"iteration":30,"passed_time":0.008842560585,"remaining_time":0.2764013293}, +{"learn":[2.091025094],"iteration":31,"passed_time":0.009052216773,"remaining_time":0.2738295574}, +{"learn":[2.078846023],"iteration":32,"passed_time":0.009343794774,"remaining_time":0.2738015014}, +{"learn":[2.058697654],"iteration":33,"passed_time":0.009641723154,"remaining_time":0.2739383696}, +{"learn":[2.038258133],"iteration":34,"passed_time":0.009894636732,"remaining_time":0.2728092699}, +{"learn":[2.018806474],"iteration":35,"passed_time":0.0102079044,"remaining_time":0.2733449955}, +{"learn":[1.997759806],"iteration":36,"passed_time":0.01049849932,"remaining_time":0.2732447256}, +{"learn":[1.981053234],"iteration":37,"passed_time":0.01078968981,"remaining_time":0.2731495158}, +{"learn":[1.965194358],"iteration":38,"passed_time":0.01107934162,"remaining_time":0.2730063409}, +{"learn":[1.948816586],"iteration":39,"passed_time":0.01136867171,"remaining_time":0.2728481209}, +{"learn":[1.935581118],"iteration":40,"passed_time":0.01166108777,"remaining_time":0.272755687}, +{"learn":[1.917987593],"iteration":41,"passed_time":0.01195310426,"remaining_time":0.2726446162}, +{"learn":[1.905417901],"iteration":42,"passed_time":0.01224265893,"remaining_time":0.2724703394}, +{"learn":[1.889406833],"iteration":43,"passed_time":0.01252788207,"remaining_time":0.2721967105}, +{"learn":[1.874866473],"iteration":44,"passed_time":0.01281789522,"remaining_time":0.2720242207}, +{"learn":[1.861003861],"iteration":45,"passed_time":0.01310826004,"remaining_time":0.2718539148}, +{"learn":[1.844352059],"iteration":46,"passed_time":0.01343506239,"remaining_time":0.272417329}, +{"learn":[1.823538848],"iteration":47,"passed_time":0.01381168022,"remaining_time":0.2739316577}, +{"learn":[1.812123053],"iteration":48,"passed_time":0.01407036583,"remaining_time":0.2730799573}, +{"learn":[1.795066675],"iteration":49,"passed_time":0.01436507666,"remaining_time":0.2729364565}, +{"learn":[1.780182169],"iteration":50,"passed_time":0.0146999992,"remaining_time":0.2735352792}, +{"learn":[1.767495056],"iteration":51,"passed_time":0.01491318088,"remaining_time":0.2718787592}, +{"learn":[1.75235765],"iteration":52,"passed_time":0.01530241439,"remaining_time":0.2734223854}, +{"learn":[1.739457307],"iteration":53,"passed_time":0.0156063976,"remaining_time":0.2734009654}, +{"learn":[1.723484894],"iteration":54,"passed_time":0.01593990064,"remaining_time":0.2738764746}, +{"learn":[1.706710813],"iteration":55,"passed_time":0.01629620456,"remaining_time":0.2747074482}, +{"learn":[1.690889319],"iteration":56,"passed_time":0.01659014552,"remaining_time":0.2744650391}, +{"learn":[1.675855646],"iteration":57,"passed_time":0.01687940052,"remaining_time":0.2741447463}, +{"learn":[1.660674238],"iteration":58,"passed_time":0.01716932306,"remaining_time":0.2738361526}, +{"learn":[1.647618507],"iteration":59,"passed_time":0.01745841479,"remaining_time":0.273515165}, +{"learn":[1.635099101],"iteration":60,"passed_time":0.01774743314,"remaining_time":0.2731940938}, +{"learn":[1.621909677],"iteration":61,"passed_time":0.01803655345,"remaining_time":0.272875599}, +{"learn":[1.609620956],"iteration":62,"passed_time":0.01832397801,"remaining_time":0.2725328158}, +{"learn":[1.59916655],"iteration":63,"passed_time":0.01860835242,"remaining_time":0.2721471541}, +{"learn":[1.59017611],"iteration":64,"passed_time":0.01879773397,"remaining_time":0.2703981732}, +{"learn":[1.580881161],"iteration":65,"passed_time":0.01908463323,"remaining_time":0.2700764763}, +{"learn":[1.569336886],"iteration":66,"passed_time":0.0194430769,"remaining_time":0.2707521007}, +{"learn":[1.558039503],"iteration":67,"passed_time":0.01973310072,"remaining_time":0.2704595569}, +{"learn":[1.546879195],"iteration":68,"passed_time":0.02001446252,"remaining_time":0.2700502117}, +{"learn":[1.532234119],"iteration":69,"passed_time":0.02029546127,"remaining_time":0.2696396997}, +{"learn":[1.518550263],"iteration":70,"passed_time":0.0205850304,"remaining_time":0.2693449753}, +{"learn":[1.507253369],"iteration":71,"passed_time":0.02086809278,"remaining_time":0.2689665292}, +{"learn":[1.496695354],"iteration":72,"passed_time":0.02115003327,"remaining_time":0.2685764498}, +{"learn":[1.487942866],"iteration":73,"passed_time":0.02143742028,"remaining_time":0.2682574483}, +{"learn":[1.476409462],"iteration":74,"passed_time":0.02171724305,"remaining_time":0.2678459976}, +{"learn":[1.465616052],"iteration":75,"passed_time":0.02200182,"remaining_time":0.2674958116}, +{"learn":[1.455057498],"iteration":76,"passed_time":0.02228325723,"remaining_time":0.2671096939}, +{"learn":[1.44296708],"iteration":77,"passed_time":0.02257213161,"remaining_time":0.266814171}, +{"learn":[1.429826279],"iteration":78,"passed_time":0.02285258129,"remaining_time":0.2664205996}, +{"learn":[1.41974668],"iteration":79,"passed_time":0.0231344801,"remaining_time":0.2660465211}, +{"learn":[1.409456426],"iteration":80,"passed_time":0.02341864748,"remaining_time":0.2657004573}, +{"learn":[1.397457911],"iteration":81,"passed_time":0.02369919913,"remaining_time":0.2653154244}, +{"learn":[1.388393198],"iteration":82,"passed_time":0.02398717481,"remaining_time":0.2650149314}, +{"learn":[1.378229855],"iteration":83,"passed_time":0.02427099292,"remaining_time":0.264669399}, +{"learn":[1.366877086],"iteration":84,"passed_time":0.02455525607,"remaining_time":0.2643301095}, +{"learn":[1.35789815],"iteration":85,"passed_time":0.02487957696,"remaining_time":0.2644178296}, +{"learn":[1.348325218],"iteration":86,"passed_time":0.02517253727,"remaining_time":0.2641669715}, +{"learn":[1.341262764],"iteration":87,"passed_time":0.02545080517,"remaining_time":0.2637628899}, +{"learn":[1.332426051],"iteration":88,"passed_time":0.02573063276,"remaining_time":0.2633776005}, +{"learn":[1.321842196],"iteration":89,"passed_time":0.02601389148,"remaining_time":0.2630293472}, +{"learn":[1.311609427],"iteration":90,"passed_time":0.02629555296,"remaining_time":0.2626665674}, +{"learn":[1.30136676],"iteration":91,"passed_time":0.02657980577,"remaining_time":0.2623311265}, +{"learn":[1.29288076],"iteration":92,"passed_time":0.02686710116,"remaining_time":0.2620264597}, +{"learn":[1.283555061],"iteration":93,"passed_time":0.02707955605,"remaining_time":0.2610008274}, +{"learn":[1.274734646],"iteration":94,"passed_time":0.02736259948,"remaining_time":0.2606647634}, +{"learn":[1.266646838],"iteration":95,"passed_time":0.02764399986,"remaining_time":0.260314332}, +{"learn":[1.256044394],"iteration":96,"passed_time":0.02858719539,"remaining_time":0.2661261592}, +{"learn":[1.24709217],"iteration":97,"passed_time":0.02954440165,"remaining_time":0.2719290846}, +{"learn":[1.237743899],"iteration":98,"passed_time":0.03034450493,"remaining_time":0.2761656458}, +{"learn":[1.230171332],"iteration":99,"passed_time":0.03063381676,"remaining_time":0.2757043508}, +{"learn":[1.222258795],"iteration":100,"passed_time":0.03092425392,"remaining_time":0.275256478}, +{"learn":[1.215322426],"iteration":101,"passed_time":0.03120507286,"remaining_time":0.274727014}, +{"learn":[1.206525381],"iteration":102,"passed_time":0.03148241452,"remaining_time":0.2741720954}, +{"learn":[1.199850954],"iteration":103,"passed_time":0.03176604077,"remaining_time":0.273676659}, +{"learn":[1.191762579],"iteration":104,"passed_time":0.03204901187,"remaining_time":0.2731796726}, +{"learn":[1.181346426],"iteration":105,"passed_time":0.03233051248,"remaining_time":0.2726743223}, +{"learn":[1.174714331],"iteration":106,"passed_time":0.03261577249,"remaining_time":0.2722045311}, +{"learn":[1.165924876],"iteration":107,"passed_time":0.03285832622,"remaining_time":0.2713854351}, +{"learn":[1.158899684],"iteration":108,"passed_time":0.03328502303,"remaining_time":0.2720821608}, +{"learn":[1.155144167],"iteration":109,"passed_time":0.03372525625,"remaining_time":0.2728679824}, +{"learn":[1.144890143],"iteration":110,"passed_time":0.03400815501,"remaining_time":0.2723716198}, +{"learn":[1.139498457],"iteration":111,"passed_time":0.03415819769,"remaining_time":0.2708257102}, +{"learn":[1.131987531],"iteration":112,"passed_time":0.0344438142,"remaining_time":0.2703687009}, +{"learn":[1.125690542],"iteration":113,"passed_time":0.03472902563,"remaining_time":0.2699115501}, +{"learn":[1.118390562],"iteration":114,"passed_time":0.03494072582,"remaining_time":0.2688916726}, +{"learn":[1.113385794],"iteration":115,"passed_time":0.03522147897,"remaining_time":0.2684119604}, +{"learn":[1.107535431],"iteration":116,"passed_time":0.03546375266,"remaining_time":0.2676452445}, +{"learn":[1.099983842],"iteration":117,"passed_time":0.03574897305,"remaining_time":0.2672084257}, +{"learn":[1.095151867],"iteration":118,"passed_time":0.03603270746,"remaining_time":0.2667631536}, +{"learn":[1.090218555],"iteration":119,"passed_time":0.03624174845,"remaining_time":0.265772822}, +{"learn":[1.085575948],"iteration":120,"passed_time":0.03652109691,"remaining_time":0.2653061503}, +{"learn":[1.078250547],"iteration":121,"passed_time":0.03680310284,"remaining_time":0.2648616746}, +{"learn":[1.069744163],"iteration":122,"passed_time":0.03708683415,"remaining_time":0.2644321427}, +{"learn":[1.064194254],"iteration":123,"passed_time":0.03736600212,"remaining_time":0.2639727246}, +{"learn":[1.05880538],"iteration":124,"passed_time":0.03764640668,"remaining_time":0.2635248467}, +{"learn":[1.05212947],"iteration":125,"passed_time":0.03792698071,"remaining_time":0.2630808027}, +{"learn":[1.045333516],"iteration":126,"passed_time":0.03820772421,"remaining_time":0.2626404979}, +{"learn":[1.038221244],"iteration":127,"passed_time":0.03848716085,"remaining_time":0.2621937833}, +{"learn":[1.03178127],"iteration":128,"passed_time":0.03881302662,"remaining_time":0.2620631488}, +{"learn":[1.025456048],"iteration":129,"passed_time":0.03909686403,"remaining_time":0.2616482439}, +{"learn":[1.017386344],"iteration":130,"passed_time":0.03937720107,"remaining_time":0.2612121201}, +{"learn":[1.011233174],"iteration":131,"passed_time":0.03966361569,"remaining_time":0.2608183213}, +{"learn":[1.003295287],"iteration":132,"passed_time":0.03994406537,"remaining_time":0.2603872532}, +{"learn":[0.9988004203],"iteration":133,"passed_time":0.04022701442,"remaining_time":0.2599745857}, +{"learn":[0.991259183],"iteration":134,"passed_time":0.04050901794,"remaining_time":0.2595577816}, +{"learn":[0.985552894],"iteration":135,"passed_time":0.04079023817,"remaining_time":0.2591379837}, +{"learn":[0.9826004845],"iteration":136,"passed_time":0.04094306715,"remaining_time":0.2579114376}, +{"learn":[0.9763826175],"iteration":137,"passed_time":0.04122653357,"remaining_time":0.2575164633}, +{"learn":[0.9675159782],"iteration":138,"passed_time":0.04144028568,"remaining_time":0.256691266}, +{"learn":[0.9597410543],"iteration":139,"passed_time":0.04168707071,"remaining_time":0.2560777201}, +{"learn":[0.9534439273],"iteration":140,"passed_time":0.04197228283,"remaining_time":0.2557034819}, +{"learn":[0.9475512675],"iteration":141,"passed_time":0.04234897506,"remaining_time":0.2558832436}, +{"learn":[0.9403686879],"iteration":142,"passed_time":0.04338249023,"remaining_time":0.2599915673}, +{"learn":[0.9352489275],"iteration":143,"passed_time":0.04454170335,"remaining_time":0.264775681}, +{"learn":[0.9288031078],"iteration":144,"passed_time":0.04483655506,"remaining_time":0.264381066}, +{"learn":[0.9230362005],"iteration":145,"passed_time":0.04512363585,"remaining_time":0.2639423631}, +{"learn":[0.9184094146],"iteration":146,"passed_time":0.04530826563,"remaining_time":0.2629112285}, +{"learn":[0.9119617162],"iteration":147,"passed_time":0.04560401706,"remaining_time":0.2625312333}, +{"learn":[0.9070000136],"iteration":148,"passed_time":0.04588386015,"remaining_time":0.26206151}, +{"learn":[0.9024889187],"iteration":149,"passed_time":0.04616648817,"remaining_time":0.2616100996}, +{"learn":[0.9013939037],"iteration":150,"passed_time":0.04631770062,"remaining_time":0.2604220386}, +{"learn":[0.8965030031],"iteration":151,"passed_time":0.04660485513,"remaining_time":0.2600060339}, +{"learn":[0.8912640457],"iteration":152,"passed_time":0.04689019366,"remaining_time":0.2595816603}, +{"learn":[0.8865312283],"iteration":153,"passed_time":0.04768765841,"remaining_time":0.2619724611}, +{"learn":[0.8815965524],"iteration":154,"passed_time":0.0479334676,"remaining_time":0.2613147105}, +{"learn":[0.8758761069],"iteration":155,"passed_time":0.04822792318,"remaining_time":0.2609254305}, +{"learn":[0.8731888725],"iteration":156,"passed_time":0.04840949661,"remaining_time":0.2599312461}, +{"learn":[0.8700777917],"iteration":157,"passed_time":0.04868892292,"remaining_time":0.2594688171}, +{"learn":[0.8632749945],"iteration":158,"passed_time":0.04897162396,"remaining_time":0.259026011}, +{"learn":[0.8570227759],"iteration":159,"passed_time":0.04925482309,"remaining_time":0.2585878212}, +{"learn":[0.8509619379],"iteration":160,"passed_time":0.04953821235,"remaining_time":0.2581525476}, +{"learn":[0.8477605183],"iteration":161,"passed_time":0.04974681485,"remaining_time":0.2573322892}, +{"learn":[0.8423093773],"iteration":162,"passed_time":0.05003527105,"remaining_time":0.256929582}, +{"learn":[0.8369026126],"iteration":163,"passed_time":0.05031791009,"remaining_time":0.2564986149}, +{"learn":[0.8312505838],"iteration":164,"passed_time":0.05060282082,"remaining_time":0.2560809417}, +{"learn":[0.8252839369],"iteration":165,"passed_time":0.05089394586,"remaining_time":0.2556960894}, +{"learn":[0.819747486],"iteration":166,"passed_time":0.05117736303,"remaining_time":0.2552739126}, +{"learn":[0.8144923156],"iteration":167,"passed_time":0.05146400119,"remaining_time":0.2548693392}, +{"learn":[0.8088333023],"iteration":168,"passed_time":0.05186925807,"remaining_time":0.2550494287}, +{"learn":[0.8037095467],"iteration":169,"passed_time":0.05215340858,"remaining_time":0.2546313478}, +{"learn":[0.8005175594],"iteration":170,"passed_time":0.05243703414,"remaining_time":0.2542122883}, +{"learn":[0.7975637386],"iteration":171,"passed_time":0.05271909312,"remaining_time":0.2537872622}, +{"learn":[0.7938281238],"iteration":172,"passed_time":0.05299860829,"remaining_time":0.2533517287}, +{"learn":[0.7884839504],"iteration":173,"passed_time":0.0532796401,"remaining_time":0.2529251881}, +{"learn":[0.78348888],"iteration":174,"passed_time":0.0536012088,"remaining_time":0.2526914129}, +{"learn":[0.7784019057],"iteration":175,"passed_time":0.05388757278,"remaining_time":0.252291818}, +{"learn":[0.7747173146],"iteration":176,"passed_time":0.05417184385,"remaining_time":0.2518837711}, +{"learn":[0.7696768673],"iteration":177,"passed_time":0.054463096,"remaining_time":0.2515093534}, +{"learn":[0.7659458239],"iteration":178,"passed_time":0.05474528173,"remaining_time":0.251094281}, +{"learn":[0.760855627],"iteration":179,"passed_time":0.0550295342,"remaining_time":0.2506901003}, +{"learn":[0.756588947],"iteration":180,"passed_time":0.05531234719,"remaining_time":0.2502807312}, +{"learn":[0.7514675237],"iteration":181,"passed_time":0.05560018992,"remaining_time":0.2498953591}, +{"learn":[0.7468763344],"iteration":182,"passed_time":0.05588720802,"remaining_time":0.2495073713}, +{"learn":[0.741581273],"iteration":183,"passed_time":0.05617503422,"remaining_time":0.2491240648}, +{"learn":[0.7386262233],"iteration":184,"passed_time":0.05645521212,"remaining_time":0.2487080967}, +{"learn":[0.7341394915],"iteration":185,"passed_time":0.05673900578,"remaining_time":0.2483094124}, +{"learn":[0.7293541795],"iteration":186,"passed_time":0.05775390142,"remaining_time":0.2510904912}, +{"learn":[0.7241985116],"iteration":187,"passed_time":0.05890366165,"remaining_time":0.2544136876}, +{"learn":[0.7215936293],"iteration":188,"passed_time":0.0594207618,"remaining_time":0.2549748033}, +{"learn":[0.7178417645],"iteration":189,"passed_time":0.0597185803,"remaining_time":0.2545897371}, +{"learn":[0.7132823145],"iteration":190,"passed_time":0.06001053272,"remaining_time":0.2541807381}, +{"learn":[0.7098593249],"iteration":191,"passed_time":0.06029776473,"remaining_time":0.2537530932}, +{"learn":[0.7071647344],"iteration":192,"passed_time":0.0605835521,"remaining_time":0.2533208629}, +{"learn":[0.7054845821],"iteration":193,"passed_time":0.06076473802,"remaining_time":0.252455561}, +{"learn":[0.7012562214],"iteration":194,"passed_time":0.06105520584,"remaining_time":0.2520484138}, +{"learn":[0.6971713518],"iteration":195,"passed_time":0.06173056909,"remaining_time":0.253221314}, +{"learn":[0.694815285],"iteration":196,"passed_time":0.06202818229,"remaining_time":0.2528356872}, +{"learn":[0.6902237708],"iteration":197,"passed_time":0.06233019454,"remaining_time":0.2524687678}, +{"learn":[0.6861141064],"iteration":198,"passed_time":0.06261883571,"remaining_time":0.2520486804}, +{"learn":[0.6815513809],"iteration":199,"passed_time":0.06290838625,"remaining_time":0.251633545}, +{"learn":[0.6774701245],"iteration":200,"passed_time":0.06320001557,"remaining_time":0.2512279226}, +{"learn":[0.6733501231],"iteration":201,"passed_time":0.06348850519,"remaining_time":0.2508110254}, +{"learn":[0.6688357144],"iteration":202,"passed_time":0.06377923548,"remaining_time":0.2504041905}, +{"learn":[0.6649493154],"iteration":203,"passed_time":0.06406659322,"remaining_time":0.2499853343}, +{"learn":[0.6608035714],"iteration":204,"passed_time":0.06435770035,"remaining_time":0.2495823014}, +{"learn":[0.6577545713],"iteration":205,"passed_time":0.06464609593,"remaining_time":0.2491699037}, +{"learn":[0.6538812252],"iteration":206,"passed_time":0.06493762502,"remaining_time":0.2487707084}, +{"learn":[0.6514941839],"iteration":207,"passed_time":0.06522774012,"remaining_time":0.2483671643}, +{"learn":[0.6474949116],"iteration":208,"passed_time":0.06551895403,"remaining_time":0.2479688643}, +{"learn":[0.6453968912],"iteration":209,"passed_time":0.06597659602,"remaining_time":0.2481976707}, +{"learn":[0.6442074492],"iteration":210,"passed_time":0.06618960203,"remaining_time":0.2475051943}, +{"learn":[0.6422324037],"iteration":211,"passed_time":0.06647552132,"remaining_time":0.2470882585}, +{"learn":[0.6379562306],"iteration":212,"passed_time":0.06676285632,"remaining_time":0.2466777837}, +{"learn":[0.6360399508],"iteration":213,"passed_time":0.06700641863,"remaining_time":0.2461076871}, +{"learn":[0.634886761],"iteration":214,"passed_time":0.06721719119,"remaining_time":0.2454209074}, +{"learn":[0.631252193],"iteration":215,"passed_time":0.06750980291,"remaining_time":0.2450355809}, +{"learn":[0.6275602322],"iteration":216,"passed_time":0.06783162615,"remaining_time":0.2447565128}, +{"learn":[0.6240837299],"iteration":217,"passed_time":0.06811933489,"remaining_time":0.2443546784}, +{"learn":[0.6204946073],"iteration":218,"passed_time":0.0684128377,"remaining_time":0.2439745491}, +{"learn":[0.6165918497],"iteration":219,"passed_time":0.06870574083,"remaining_time":0.2435930811}, +{"learn":[0.6150392692],"iteration":220,"passed_time":0.06899673188,"remaining_time":0.2432056748}, +{"learn":[0.6111750638],"iteration":221,"passed_time":0.06928998255,"remaining_time":0.242827056}, +{"learn":[0.6073269155],"iteration":222,"passed_time":0.06958609221,"remaining_time":0.2424591643}, +{"learn":[0.6040166846],"iteration":223,"passed_time":0.06987591969,"remaining_time":0.2420701503}, +{"learn":[0.6020209723],"iteration":224,"passed_time":0.07017190293,"remaining_time":0.2417032212}, +{"learn":[0.5986587466],"iteration":225,"passed_time":0.07046419361,"remaining_time":0.2413242737}, +{"learn":[0.5951814994],"iteration":226,"passed_time":0.07076467233,"remaining_time":0.2409739723}, +{"learn":[0.5914308796],"iteration":227,"passed_time":0.07106740759,"remaining_time":0.2406317485}, +{"learn":[0.5878636989],"iteration":228,"passed_time":0.07138427412,"remaining_time":0.2403374469}, +{"learn":[0.5867378452],"iteration":229,"passed_time":0.07244460411,"remaining_time":0.2425319355}, +{"learn":[0.5857540315],"iteration":230,"passed_time":0.07301903299,"remaining_time":0.2430806769}, +{"learn":[0.5829123686],"iteration":231,"passed_time":0.07390967463,"remaining_time":0.2446665091}, +{"learn":[0.5793798766],"iteration":232,"passed_time":0.07420286606,"remaining_time":0.2442643703}, +{"learn":[0.5778402242],"iteration":233,"passed_time":0.07448729765,"remaining_time":0.2438344872}, +{"learn":[0.5749412626],"iteration":234,"passed_time":0.0747692929,"remaining_time":0.2433979109}, +{"learn":[0.5713108255],"iteration":235,"passed_time":0.07505387915,"remaining_time":0.2429710325}, +{"learn":[0.5699338593],"iteration":236,"passed_time":0.07583370537,"remaining_time":0.244139735}, +{"learn":[0.5689752784],"iteration":237,"passed_time":0.07605053932,"remaining_time":0.2434895419}, +{"learn":[0.5653006296],"iteration":238,"passed_time":0.07634218277,"remaining_time":0.2430811761}, +{"learn":[0.5615547578],"iteration":239,"passed_time":0.07663176293,"remaining_time":0.2426672493}, +{"learn":[0.5605843782],"iteration":240,"passed_time":0.0768412648,"remaining_time":0.2420021576}, +{"learn":[0.5570831909],"iteration":241,"passed_time":0.07712852333,"remaining_time":0.241584383}, +{"learn":[0.5551767153],"iteration":242,"passed_time":0.07741330178,"remaining_time":0.2411599566}, +{"learn":[0.5517340672],"iteration":243,"passed_time":0.07770093543,"remaining_time":0.2407455212}, +{"learn":[0.5482946073],"iteration":244,"passed_time":0.07798657054,"remaining_time":0.2403259623}, +{"learn":[0.5445822795],"iteration":245,"passed_time":0.07827115679,"remaining_time":0.2399042773}, +{"learn":[0.5412988489],"iteration":246,"passed_time":0.07855611057,"remaining_time":0.2394848229}, +{"learn":[0.537638269],"iteration":247,"passed_time":0.07884267468,"remaining_time":0.2390713361}, +{"learn":[0.5359182855],"iteration":248,"passed_time":0.07996330054,"remaining_time":0.2411744526}, +{"learn":[0.5340162907],"iteration":249,"passed_time":0.08046196302,"remaining_time":0.2413858891}, +{"learn":[0.5330792456],"iteration":250,"passed_time":0.08067585429,"remaining_time":0.2407418919}, +{"learn":[0.5300793197],"iteration":251,"passed_time":0.08096181526,"remaining_time":0.2403152294}, +{"learn":[0.5287726448],"iteration":252,"passed_time":0.08124473503,"remaining_time":0.2398806999}, +{"learn":[0.5253292978],"iteration":253,"passed_time":0.08153173005,"remaining_time":0.2394593331}, +{"learn":[0.5236371148],"iteration":254,"passed_time":0.08181294856,"remaining_time":0.2390221438}, +{"learn":[0.5202606925],"iteration":255,"passed_time":0.08209753963,"remaining_time":0.2385959745}, +{"learn":[0.51861805],"iteration":256,"passed_time":0.08239955738,"remaining_time":0.2382212885}, +{"learn":[0.5170592241],"iteration":257,"passed_time":0.08267990338,"remaining_time":0.2377848384}, +{"learn":[0.5153453445],"iteration":258,"passed_time":0.08295564367,"remaining_time":0.2373364168}, +{"learn":[0.5144666776],"iteration":259,"passed_time":0.08316315907,"remaining_time":0.236695145}, +{"learn":[0.5114669221],"iteration":260,"passed_time":0.08344961123,"remaining_time":0.2362807}, +{"learn":[0.5077937675],"iteration":261,"passed_time":0.08372932309,"remaining_time":0.235848246}, +{"learn":[0.5044954318],"iteration":262,"passed_time":0.08401303821,"remaining_time":0.2354281717}, +{"learn":[0.5036610776],"iteration":263,"passed_time":0.08422171305,"remaining_time":0.2347999273}, +{"learn":[0.5021053288],"iteration":264,"passed_time":0.0845031179,"remaining_time":0.2343765723}, +{"learn":[0.4995714595],"iteration":265,"passed_time":0.08478275812,"remaining_time":0.2339494153}, +{"learn":[0.4979367775],"iteration":266,"passed_time":0.08506575642,"remaining_time":0.2335325822}, +{"learn":[0.4950812453],"iteration":267,"passed_time":0.08535385129,"remaining_time":0.2331306685}, +{"learn":[0.4937947389],"iteration":268,"passed_time":0.08564338771,"remaining_time":0.2327335183}, +{"learn":[0.4908733419],"iteration":269,"passed_time":0.08666187154,"remaining_time":0.234308023}, +{"learn":[0.489990093],"iteration":270,"passed_time":0.08761814949,"remaining_time":0.2356960553}, +{"learn":[0.4876650351],"iteration":271,"passed_time":0.08840181225,"remaining_time":0.2366048504}, +{"learn":[0.4860612079],"iteration":272,"passed_time":0.08869154156,"remaining_time":0.2361859001}, +{"learn":[0.4852191574],"iteration":273,"passed_time":0.08893685301,"remaining_time":0.2356502018}, +{"learn":[0.4835301223],"iteration":274,"passed_time":0.08921886135,"remaining_time":0.2352133618}, +{"learn":[0.4819293765],"iteration":275,"passed_time":0.08996835036,"remaining_time":0.2360039336}, +{"learn":[0.4790610154],"iteration":276,"passed_time":0.09025860359,"remaining_time":0.2355847307}, +{"learn":[0.4761177809],"iteration":277,"passed_time":0.09054532546,"remaining_time":0.2351572841}, +{"learn":[0.4731417045],"iteration":278,"passed_time":0.09082900613,"remaining_time":0.2347229872}, +{"learn":[0.4703040294],"iteration":279,"passed_time":0.09111721054,"remaining_time":0.2343013985}, +{"learn":[0.4689904967],"iteration":280,"passed_time":0.0914036286,"remaining_time":0.2338761885}, +{"learn":[0.4659933902],"iteration":281,"passed_time":0.09168663931,"remaining_time":0.2334432873}, +{"learn":[0.4646420809],"iteration":282,"passed_time":0.09196970995,"remaining_time":0.2330115973}, +{"learn":[0.461772349],"iteration":283,"passed_time":0.09225810484,"remaining_time":0.232594377}, +{"learn":[0.4590557907],"iteration":284,"passed_time":0.09254444023,"remaining_time":0.2321728939}, +{"learn":[0.4582481745],"iteration":285,"passed_time":0.09282193828,"remaining_time":0.2317302935}, +{"learn":[0.4574752221],"iteration":286,"passed_time":0.09306548784,"remaining_time":0.2312045046}, +{"learn":[0.4566830422],"iteration":287,"passed_time":0.09334321081,"remaining_time":0.2307651601}, +{"learn":[0.453866822],"iteration":288,"passed_time":0.09362725867,"remaining_time":0.2303424945}, +{"learn":[0.4510507948],"iteration":289,"passed_time":0.09413976654,"remaining_time":0.2304801181}, +{"learn":[0.449585012],"iteration":290,"passed_time":0.094995664,"remaining_time":0.2314499168}, +{"learn":[0.4468245728],"iteration":291,"passed_time":0.09528759989,"remaining_time":0.231039797}, +{"learn":[0.4440874051],"iteration":292,"passed_time":0.09557371862,"remaining_time":0.2306164473}, +{"learn":[0.442973228],"iteration":293,"passed_time":0.09585946844,"remaining_time":0.2301931453}, +{"learn":[0.4401695033],"iteration":294,"passed_time":0.09614490205,"remaining_time":0.2297700201}, +{"learn":[0.439441154],"iteration":295,"passed_time":0.09638855253,"remaining_time":0.2292484493}, +{"learn":[0.4368120734],"iteration":296,"passed_time":0.09667474532,"remaining_time":0.2288294477}, +{"learn":[0.4353646799],"iteration":297,"passed_time":0.09698761445,"remaining_time":0.228474179}, +{"learn":[0.4339773957],"iteration":298,"passed_time":0.09726986598,"remaining_time":0.2280474115}, +{"learn":[0.4313099305],"iteration":299,"passed_time":0.09755361451,"remaining_time":0.2276251005}, +{"learn":[0.4286837731],"iteration":300,"passed_time":0.09783928303,"remaining_time":0.2272081689}, +{"learn":[0.4274361531],"iteration":301,"passed_time":0.09811537501,"remaining_time":0.2267699727}, +{"learn":[0.4248176413],"iteration":302,"passed_time":0.09839498078,"remaining_time":0.2263409294}, +{"learn":[0.4221721801],"iteration":303,"passed_time":0.09867900488,"remaining_time":0.2259229848}, +{"learn":[0.4196192053],"iteration":304,"passed_time":0.09896304929,"remaining_time":0.2255059648}, +{"learn":[0.4170197109],"iteration":305,"passed_time":0.09924766138,"remaining_time":0.2250911013}, +{"learn":[0.4144317164],"iteration":306,"passed_time":0.0995278379,"remaining_time":0.2246670738}, +{"learn":[0.4133654445],"iteration":307,"passed_time":0.09981596894,"remaining_time":0.2242618523}, +{"learn":[0.4108771099],"iteration":308,"passed_time":0.1005870439,"remaining_time":0.2249373701}, +{"learn":[0.4083462032],"iteration":309,"passed_time":0.1008837219,"remaining_time":0.2245476392}, +{"learn":[0.4058195874],"iteration":310,"passed_time":0.1018129794,"remaining_time":0.2255599448}, +{"learn":[0.4033840149],"iteration":311,"passed_time":0.1027651077,"remaining_time":0.2266102376}, +{"learn":[0.4009690783],"iteration":312,"passed_time":0.1032487881,"remaining_time":0.2266195446}, +{"learn":[0.3984851321],"iteration":313,"passed_time":0.1038074957,"remaining_time":0.2267896244}, +{"learn":[0.3960536258],"iteration":314,"passed_time":0.1042353058,"remaining_time":0.2266704269}, +{"learn":[0.3937399775],"iteration":315,"passed_time":0.1045288352,"remaining_time":0.2262586179}, +{"learn":[0.3913785278],"iteration":316,"passed_time":0.1048171226,"remaining_time":0.2258362609}, +{"learn":[0.3902511385],"iteration":317,"passed_time":0.1050993359,"remaining_time":0.2254017203}, +{"learn":[0.3879371581],"iteration":318,"passed_time":0.1053867077,"remaining_time":0.2249791472}, +{"learn":[0.3855565989],"iteration":319,"passed_time":0.1056729332,"remaining_time":0.2245549831}, +{"learn":[0.3831975823],"iteration":320,"passed_time":0.1059566428,"remaining_time":0.2241263567}, +{"learn":[0.3809406857],"iteration":321,"passed_time":0.1062446392,"remaining_time":0.2237076565}, +{"learn":[0.3786286136],"iteration":322,"passed_time":0.106532454,"remaining_time":0.2232893851}, +{"learn":[0.3764052116],"iteration":323,"passed_time":0.1068172022,"remaining_time":0.2228655206}, +{"learn":[0.3742007091],"iteration":324,"passed_time":0.1071059649,"remaining_time":0.2224508503}, +{"learn":[0.371787124],"iteration":325,"passed_time":0.1073893084,"remaining_time":0.222025748}, +{"learn":[0.3695457897],"iteration":326,"passed_time":0.1076736814,"remaining_time":0.2216036318}, +{"learn":[0.3673118771],"iteration":327,"passed_time":0.1079937913,"remaining_time":0.2212555725}, +{"learn":[0.3650981961],"iteration":328,"passed_time":0.1082973416,"remaining_time":0.2208739094}, +{"learn":[0.3629793409],"iteration":329,"passed_time":0.1085912853,"remaining_time":0.2204732156}, +{"learn":[0.3608030751],"iteration":330,"passed_time":0.1088855111,"remaining_time":0.220073737}, +{"learn":[0.3586407996],"iteration":331,"passed_time":0.1091777984,"remaining_time":0.2196709919}, +{"learn":[0.3565012233],"iteration":332,"passed_time":0.1094639629,"remaining_time":0.2192566464}, +{"learn":[0.3543720263],"iteration":333,"passed_time":0.109772216,"remaining_time":0.2188871133}, +{"learn":[0.352262113],"iteration":334,"passed_time":0.110058035,"remaining_time":0.2184734128}, +{"learn":[0.3512516937],"iteration":335,"passed_time":0.110342417,"remaining_time":0.2180576336}, +{"learn":[0.3492337768],"iteration":336,"passed_time":0.1106278375,"remaining_time":0.2176446774}, +{"learn":[0.3471658858],"iteration":337,"passed_time":0.1109162686,"remaining_time":0.2172383722}, +{"learn":[0.3449827275],"iteration":338,"passed_time":0.1112005221,"remaining_time":0.2168246168}, +{"learn":[0.3429391736],"iteration":339,"passed_time":0.1114863195,"remaining_time":0.2164146201}, +{"learn":[0.3409205619],"iteration":340,"passed_time":0.1117747691,"remaining_time":0.2160104776}, +{"learn":[0.3389112803],"iteration":341,"passed_time":0.1120644557,"remaining_time":0.2156093914}, +{"learn":[0.3368019015],"iteration":342,"passed_time":0.1123506898,"remaining_time":0.2152023417}, +{"learn":[0.3348896422],"iteration":343,"passed_time":0.1126635579,"remaining_time":0.2148467849}, +{"learn":[0.3328188678],"iteration":344,"passed_time":0.1129455739,"remaining_time":0.2144329011}, +{"learn":[0.330770881],"iteration":345,"passed_time":0.1132344141,"remaining_time":0.2140326787}, +{"learn":[0.3288491545],"iteration":346,"passed_time":0.1135227722,"remaining_time":0.2136321908}, +{"learn":[0.3268400418],"iteration":347,"passed_time":0.1138134394,"remaining_time":0.2132366738}, +{"learn":[0.3248530006],"iteration":348,"passed_time":0.11462399,"remaining_time":0.2138115115}, +{"learn":[0.3228877756],"iteration":349,"passed_time":0.1149146835,"remaining_time":0.2134129836}, +{"learn":[0.3209441146],"iteration":350,"passed_time":0.1152082014,"remaining_time":0.2130202927}, +{"learn":[0.3190217684],"iteration":351,"passed_time":0.1154954004,"remaining_time":0.2126165325}, +{"learn":[0.3171204912],"iteration":352,"passed_time":0.1162784221,"remaining_time":0.2131222071}, +{"learn":[0.3152400401],"iteration":353,"passed_time":0.1168699067,"remaining_time":0.2132710727}, +{"learn":[0.3133801751],"iteration":354,"passed_time":0.1179806085,"remaining_time":0.2143591337}, +{"learn":[0.3115406593],"iteration":355,"passed_time":0.1182989668,"remaining_time":0.2140015018}, +{"learn":[0.3097212587],"iteration":356,"passed_time":0.1185899438,"remaining_time":0.2135947726}, +{"learn":[0.3079217423],"iteration":357,"passed_time":0.1188750977,"remaining_time":0.2131782478}, +{"learn":[0.3061418818],"iteration":358,"passed_time":0.1191604286,"remaining_time":0.2127627709}, +{"learn":[0.3042720565],"iteration":359,"passed_time":0.1194473579,"remaining_time":0.2123508584}, +{"learn":[0.3025323575],"iteration":360,"passed_time":0.1197315562,"remaining_time":0.2119348045}, +{"learn":[0.3007982114],"iteration":361,"passed_time":0.1200155834,"remaining_time":0.2115191774}, +{"learn":[0.2990899802],"iteration":362,"passed_time":0.1203052935,"remaining_time":0.2111142478}, +{"learn":[0.2973890667],"iteration":363,"passed_time":0.120590992,"remaining_time":0.210702942}, +{"learn":[0.2957066731],"iteration":364,"passed_time":0.1208762785,"remaining_time":0.2102916078}, +{"learn":[0.2940425881],"iteration":365,"passed_time":0.1211615912,"remaining_time":0.2098810077}, +{"learn":[0.2923310783],"iteration":366,"passed_time":0.1214478222,"remaining_time":0.2094726743}, +{"learn":[0.2906984762],"iteration":367,"passed_time":0.1217361582,"remaining_time":0.2090686195}, +{"learn":[0.2890836246],"iteration":368,"passed_time":0.122041213,"remaining_time":0.2086937816}, +{"learn":[0.2874722602],"iteration":369,"passed_time":0.1223305734,"remaining_time":0.208292598}, +{"learn":[0.2858201756],"iteration":370,"passed_time":0.1226170097,"remaining_time":0.2078870596}, +{"learn":[0.2842350208],"iteration":371,"passed_time":0.1229017885,"remaining_time":0.2074793634}, +{"learn":[0.2826533434],"iteration":372,"passed_time":0.1231866107,"remaining_time":0.2070723993}, +{"learn":[0.2812349319],"iteration":373,"passed_time":0.1234725924,"remaining_time":0.2066680289}, +{"learn":[0.2798347797],"iteration":374,"passed_time":0.123759101,"remaining_time":0.2062651683}, +{"learn":[0.2784525935],"iteration":375,"passed_time":0.1240437499,"remaining_time":0.2058598403}, +{"learn":[0.2769232854],"iteration":376,"passed_time":0.1243296851,"remaining_time":0.205457278}, +{"learn":[0.2753972495],"iteration":377,"passed_time":0.1246183645,"remaining_time":0.2050598484}, +{"learn":[0.273972415],"iteration":378,"passed_time":0.1249027334,"remaining_time":0.2046559299}, +{"learn":[0.2726364939],"iteration":379,"passed_time":0.1251884894,"remaining_time":0.2042549038}, +{"learn":[0.2711429807],"iteration":380,"passed_time":0.1254749102,"remaining_time":0.2038555628}, +{"learn":[0.2698320566],"iteration":381,"passed_time":0.1257603404,"remaining_time":0.2034552103}, +{"learn":[0.2683442697],"iteration":382,"passed_time":0.1260478893,"remaining_time":0.2030588713}, +{"learn":[0.2668921831],"iteration":383,"passed_time":0.1263350245,"remaining_time":0.2026624351}, +{"learn":[0.2656189592],"iteration":384,"passed_time":0.1266216175,"remaining_time":0.2022657008}, +{"learn":[0.2641737179],"iteration":385,"passed_time":0.1269067494,"remaining_time":0.2018672128}, +{"learn":[0.262751108],"iteration":386,"passed_time":0.1271969265,"remaining_time":0.2014773022}, +{"learn":[0.2615144215],"iteration":387,"passed_time":0.1274877333,"remaining_time":0.2010888989}, +{"learn":[0.2601104185],"iteration":388,"passed_time":0.1277733884,"remaining_time":0.2006929056}, +{"learn":[0.258716582],"iteration":389,"passed_time":0.1285157792,"remaining_time":0.2010118598}, +{"learn":[0.2573362185],"iteration":390,"passed_time":0.1288096571,"remaining_time":0.2006268061}, +{"learn":[0.2561422872],"iteration":391,"passed_time":0.1290955502,"remaining_time":0.200229833}, +{"learn":[0.2549633635],"iteration":392,"passed_time":0.1293776536,"remaining_time":0.1998275719}, +{"learn":[0.2536108344],"iteration":393,"passed_time":0.1296656782,"remaining_time":0.199435028}, +{"learn":[0.2524538284],"iteration":394,"passed_time":0.1299521845,"remaining_time":0.1990406876}, +{"learn":[0.2511280234],"iteration":395,"passed_time":0.1302442764,"remaining_time":0.1986554115}, +{"learn":[0.2498027232],"iteration":396,"passed_time":0.131150587,"remaining_time":0.1992035364}, +{"learn":[0.2484902125],"iteration":397,"passed_time":0.1322452392,"remaining_time":0.2000292311}, +{"learn":[0.2471975475],"iteration":398,"passed_time":0.1328195854,"remaining_time":0.200061581}, +{"learn":[0.2460918633],"iteration":399,"passed_time":0.1331088476,"remaining_time":0.1996632714}, +{"learn":[0.244642729],"iteration":400,"passed_time":0.1333949164,"remaining_time":0.1992607355}, +{"learn":[0.243209397],"iteration":401,"passed_time":0.1336823527,"remaining_time":0.1988608132}, +{"learn":[0.2419414973],"iteration":402,"passed_time":0.1339671611,"remaining_time":0.1984575563}, +{"learn":[0.2406858219],"iteration":403,"passed_time":0.1342534889,"remaining_time":0.1980571272}, +{"learn":[0.2394422483],"iteration":404,"passed_time":0.1345383838,"remaining_time":0.1976551564}, +{"learn":[0.2382106553],"iteration":405,"passed_time":0.1348241281,"remaining_time":0.1972550051}, +{"learn":[0.2371607773],"iteration":406,"passed_time":0.1351102544,"remaining_time":0.1968559726}, +{"learn":[0.2359474664],"iteration":407,"passed_time":0.1353928735,"remaining_time":0.1964524046}, +{"learn":[0.2347433893],"iteration":408,"passed_time":0.1356761439,"remaining_time":0.1960503693}, +{"learn":[0.2335481743],"iteration":409,"passed_time":0.1359699002,"remaining_time":0.1956640028}, +{"learn":[0.2323644655],"iteration":410,"passed_time":0.1362665152,"remaining_time":0.1952821836}, +{"learn":[0.2313569304],"iteration":411,"passed_time":0.1365559655,"remaining_time":0.1948905527}, +{"learn":[0.230361828],"iteration":412,"passed_time":0.1368476213,"remaining_time":0.1945025514}, +{"learn":[0.2292017884],"iteration":413,"passed_time":0.137136319,"remaining_time":0.1941108284}, +{"learn":[0.2280542974],"iteration":414,"passed_time":0.1374201106,"remaining_time":0.193712686}, +{"learn":[0.2269115435],"iteration":415,"passed_time":0.1377073085,"remaining_time":0.1933198754}, +{"learn":[0.22560725],"iteration":416,"passed_time":0.1379898163,"remaining_time":0.1929210142}, +{"learn":[0.2244835387],"iteration":417,"passed_time":0.1382753391,"remaining_time":0.1925269076}, +{"learn":[0.2233706376],"iteration":418,"passed_time":0.1385582734,"remaining_time":0.1921297299}, +{"learn":[0.222096638],"iteration":419,"passed_time":0.1388396045,"remaining_time":0.1917308824}, +{"learn":[0.2209968974],"iteration":420,"passed_time":0.1391226083,"remaining_time":0.1913348936}, +{"learn":[0.2199083794],"iteration":421,"passed_time":0.1394058533,"remaining_time":0.1909397706}, +{"learn":[0.2188302271],"iteration":422,"passed_time":0.1396891351,"remaining_time":0.1905452268}, +{"learn":[0.2177579169],"iteration":423,"passed_time":0.1399719326,"remaining_time":0.1901505499}, +{"learn":[0.2165262863],"iteration":424,"passed_time":0.140251436,"remaining_time":0.1897519429}, +{"learn":[0.2154718276],"iteration":425,"passed_time":0.1405455272,"remaining_time":0.1893735507}, +{"learn":[0.214578462],"iteration":426,"passed_time":0.1408345703,"remaining_time":0.1889887794}, +{"learn":[0.213539613],"iteration":427,"passed_time":0.1411202933,"remaining_time":0.1886000181}, +{"learn":[0.2125091121],"iteration":428,"passed_time":0.1414027732,"remaining_time":0.1882074207}, +{"learn":[0.2113184565],"iteration":429,"passed_time":0.1417224415,"remaining_time":0.1878646318}, +{"learn":[0.2103023374],"iteration":430,"passed_time":0.1420027314,"remaining_time":0.1874699632}, +{"learn":[0.2092959964],"iteration":431,"passed_time":0.14228511,"remaining_time":0.1870785706}, +{"learn":[0.2084446061],"iteration":432,"passed_time":0.1425697813,"remaining_time":0.1866906836}, +{"learn":[0.2074531577],"iteration":433,"passed_time":0.1428561202,"remaining_time":0.186305447}, +{"learn":[0.2064681693],"iteration":434,"passed_time":0.1431387544,"remaining_time":0.1859158534}, +{"learn":[0.2052339375],"iteration":435,"passed_time":0.1434211148,"remaining_time":0.1855263962}, +{"learn":[0.204263604],"iteration":436,"passed_time":0.1437037504,"remaining_time":0.1851377836}, +{"learn":[0.2031382559],"iteration":437,"passed_time":0.1439894127,"remaining_time":0.1847535386}, +{"learn":[0.202326925],"iteration":438,"passed_time":0.1442719666,"remaining_time":0.1843657706}, +{"learn":[0.2013776755],"iteration":439,"passed_time":0.1445549739,"remaining_time":0.1839790577}, +{"learn":[0.2004362935],"iteration":440,"passed_time":0.1449520724,"remaining_time":0.1837374341}, +{"learn":[0.1992514732],"iteration":441,"passed_time":0.1459526159,"remaining_time":0.1842569224}, +{"learn":[0.198322366],"iteration":442,"passed_time":0.1470195474,"remaining_time":0.1848530201}, +{"learn":[0.1974022008],"iteration":443,"passed_time":0.1473189152,"remaining_time":0.1844804434}, +{"learn":[0.1966282812],"iteration":444,"passed_time":0.1476065151,"remaining_time":0.1840935189}, +{"learn":[0.1957216981],"iteration":445,"passed_time":0.1478915926,"remaining_time":0.1837039065}, +{"learn":[0.1945737677],"iteration":446,"passed_time":0.1481784329,"remaining_time":0.1833169428}, +{"learn":[0.1942656523],"iteration":447,"passed_time":0.1484622693,"remaining_time":0.1829267247}, +{"learn":[0.1935122053],"iteration":448,"passed_time":0.1487471793,"remaining_time":0.182538298}, +{"learn":[0.1926267956],"iteration":449,"passed_time":0.1490354523,"remaining_time":0.1821544417}, +{"learn":[0.1915043929],"iteration":450,"passed_time":0.1493212142,"remaining_time":0.1817679525}, +{"learn":[0.1906287872],"iteration":451,"passed_time":0.1496046258,"remaining_time":0.1813790596}, +{"learn":[0.1903310612],"iteration":452,"passed_time":0.1498849246,"remaining_time":0.1809868737}, +{"learn":[0.1894664535],"iteration":453,"passed_time":0.1502634283,"remaining_time":0.1807132861}, +{"learn":[0.1883692008],"iteration":454,"passed_time":0.1505464611,"remaining_time":0.180324882}, +{"learn":[0.1875177468],"iteration":455,"passed_time":0.150827269,"remaining_time":0.1799342858}, +{"learn":[0.1872284548],"iteration":456,"passed_time":0.15110939,"remaining_time":0.1795457303}, +{"learn":[0.1863915061],"iteration":457,"passed_time":0.1513932067,"remaining_time":0.1791596464}, +{"learn":[0.1855515906],"iteration":458,"passed_time":0.1516732644,"remaining_time":0.1787695775}, +{"learn":[0.1852694706],"iteration":459,"passed_time":0.1519551922,"remaining_time":0.1783821821}, +{"learn":[0.184202318],"iteration":460,"passed_time":0.152241006,"remaining_time":0.177999788}, +{"learn":[0.1835116852],"iteration":461,"passed_time":0.1525257194,"remaining_time":0.1776165304}, +{"learn":[0.1824619909],"iteration":462,"passed_time":0.1528071756,"remaining_time":0.1772299207}, +{"learn":[0.1821862772],"iteration":463,"passed_time":0.1530878168,"remaining_time":0.1768428228}, +{"learn":[0.1813861123],"iteration":464,"passed_time":0.1533703218,"remaining_time":0.1764583273}, +{"learn":[0.180577004],"iteration":465,"passed_time":0.1536564778,"remaining_time":0.176078453}, +{"learn":[0.179775751],"iteration":466,"passed_time":0.1539424298,"remaining_time":0.1756987475}, +{"learn":[0.1791143457],"iteration":467,"passed_time":0.1542254842,"remaining_time":0.1753161487}, +{"learn":[0.1780970791],"iteration":468,"passed_time":0.154510354,"remaining_time":0.1749360297}, +{"learn":[0.1778325967],"iteration":469,"passed_time":0.1547848108,"remaining_time":0.1745445739}, +{"learn":[0.1770499358],"iteration":470,"passed_time":0.1550685996,"remaining_time":0.174164096}, +{"learn":[0.1762867001],"iteration":471,"passed_time":0.1553533436,"remaining_time":0.1737850963}, +{"learn":[0.1752920356],"iteration":472,"passed_time":0.1556354285,"remaining_time":0.1734035323}, +{"learn":[0.1750350809],"iteration":473,"passed_time":0.155909297,"remaining_time":0.1730132705}, +{"learn":[0.1742889145],"iteration":474,"passed_time":0.1567246283,"remaining_time":0.1732219576}, +{"learn":[0.1733116329],"iteration":475,"passed_time":0.157026954,"remaining_time":0.1728616048}, +{"learn":[0.1730602007],"iteration":476,"passed_time":0.1573139194,"remaining_time":0.1724846537}, +{"learn":[0.1723061384],"iteration":477,"passed_time":0.1575977985,"remaining_time":0.1721047088}, +{"learn":[0.1716897013],"iteration":478,"passed_time":0.1578886741,"remaining_time":0.171732775}, +{"learn":[0.1707302104],"iteration":479,"passed_time":0.1581774913,"remaining_time":0.1713589489}, +{"learn":[0.1697799796],"iteration":480,"passed_time":0.1584599702,"remaining_time":0.1709786373}, +{"learn":[0.1695356131],"iteration":481,"passed_time":0.1587415944,"remaining_time":0.1705978131}, +{"learn":[0.1685918578],"iteration":482,"passed_time":0.1590308959,"remaining_time":0.1702256174}, +{"learn":[0.1677024633],"iteration":483,"passed_time":0.1593175334,"remaining_time":0.1698509241}, +{"learn":[0.1674619789],"iteration":484,"passed_time":0.159899903,"remaining_time":0.1697906187}, +{"learn":[0.166868696],"iteration":485,"passed_time":0.1609244286,"remaining_time":0.1701957949}, +{"learn":[0.1659938948],"iteration":486,"passed_time":0.1618340063,"remaining_time":0.1704740149}, +{"learn":[0.1651169886],"iteration":487,"passed_time":0.1621227729,"remaining_time":0.170096024}, +{"learn":[0.164881953],"iteration":488,"passed_time":0.1624085427,"remaining_time":0.1697152665}, +{"learn":[0.164080098],"iteration":489,"passed_time":0.1626938285,"remaining_time":0.169334393}, +{"learn":[0.1632295294],"iteration":490,"passed_time":0.1629784974,"remaining_time":0.1689532692}, +{"learn":[0.1624406999],"iteration":491,"passed_time":0.1632687014,"remaining_time":0.1685782527}, +{"learn":[0.1615938246],"iteration":492,"passed_time":0.163555539,"remaining_time":0.1682001182}, +{"learn":[0.1613660756],"iteration":493,"passed_time":0.1638338865,"remaining_time":0.167813657}, +{"learn":[0.1605923029],"iteration":494,"passed_time":0.16416757,"remaining_time":0.1674840866}, +{"learn":[0.1597013663],"iteration":495,"passed_time":0.1645016852,"remaining_time":0.1671549381}, +{"learn":[0.1591674861],"iteration":496,"passed_time":0.1647916322,"remaining_time":0.1667810684}, +{"learn":[0.1583439593],"iteration":497,"passed_time":0.1650795937,"remaining_time":0.1664055342}, +{"learn":[0.1581226754],"iteration":498,"passed_time":0.1653591633,"remaining_time":0.1660219255}, +{"learn":[0.1573095914],"iteration":499,"passed_time":0.1656454278,"remaining_time":0.1656454278}, +{"learn":[0.1565622665],"iteration":500,"passed_time":0.165932738,"remaining_time":0.1652703318}, +{"learn":[0.1556968958],"iteration":501,"passed_time":0.1662181237,"remaining_time":0.1648936765}, +{"learn":[0.1549614062],"iteration":502,"passed_time":0.166502319,"remaining_time":0.1645162078}, +{"learn":[0.1541084372],"iteration":503,"passed_time":0.1667872814,"remaining_time":0.1641398642}, +{"learn":[0.1537788073],"iteration":504,"passed_time":0.1670671947,"remaining_time":0.1637589335}, +{"learn":[0.1529959395],"iteration":505,"passed_time":0.1673482048,"remaining_time":0.1633794727}, +{"learn":[0.1522785174],"iteration":506,"passed_time":0.1676335503,"remaining_time":0.1630046159}, +{"learn":[0.1514434776],"iteration":507,"passed_time":0.1679180421,"remaining_time":0.1626292849}, +{"learn":[0.1512343668],"iteration":508,"passed_time":0.168196731,"remaining_time":0.162248713}, +{"learn":[0.1504705517],"iteration":509,"passed_time":0.1684837077,"remaining_time":0.1618765035}, +{"learn":[0.1497704987],"iteration":510,"passed_time":0.1687655411,"remaining_time":0.1614997057}, +{"learn":[0.1489523715],"iteration":511,"passed_time":0.1690496286,"remaining_time":0.1611254272}, +{"learn":[0.1481975652],"iteration":512,"passed_time":0.1693687237,"remaining_time":0.1607847338}, +{"learn":[0.1479938963],"iteration":513,"passed_time":0.1696482082,"remaining_time":0.1604066716}, +{"learn":[0.1473105419],"iteration":514,"passed_time":0.1699303764,"remaining_time":0.1600315195}, +{"learn":[0.1464826066],"iteration":515,"passed_time":0.1702107579,"remaining_time":0.159655052}, +{"learn":[0.1457456553],"iteration":516,"passed_time":0.1704973871,"remaining_time":0.159284793}, +{"learn":[0.1455467633],"iteration":517,"passed_time":0.1708069147,"remaining_time":0.1589361639}, +{"learn":[0.1448187855],"iteration":518,"passed_time":0.171093763,"remaining_time":0.1585666666}, +{"learn":[0.1440991087],"iteration":519,"passed_time":0.171377185,"remaining_time":0.1581943246}, +{"learn":[0.1439033723],"iteration":520,"passed_time":0.17165809,"remaining_time":0.1578200098}, +{"learn":[0.1432458064],"iteration":521,"passed_time":0.1719426859,"remaining_time":0.1574494327}, +{"learn":[0.1424510452],"iteration":522,"passed_time":0.1722303722,"remaining_time":0.157082003}, +{"learn":[0.1422601657],"iteration":523,"passed_time":0.172511661,"remaining_time":0.1567090661}, +{"learn":[0.1414632321],"iteration":524,"passed_time":0.1727995234,"remaining_time":0.1563424259}, +{"learn":[0.1406834466],"iteration":525,"passed_time":0.1730877054,"remaining_time":0.1559763733}, +{"learn":[0.1399134368],"iteration":526,"passed_time":0.1733731738,"remaining_time":0.1556081807}, +{"learn":[0.1397228245],"iteration":527,"passed_time":0.1736590883,"remaining_time":0.1552407001}, +{"learn":[0.1389419392],"iteration":528,"passed_time":0.1739434203,"remaining_time":0.154872119}, +{"learn":[0.1381864355],"iteration":529,"passed_time":0.1744143031,"remaining_time":0.1546692877}, +{"learn":[0.1379998862],"iteration":530,"passed_time":0.1747034276,"remaining_time":0.1543049106}, +{"learn":[0.1372311871],"iteration":531,"passed_time":0.1749894382,"remaining_time":0.1539380772}, +{"learn":[0.1364899027],"iteration":532,"passed_time":0.1752765727,"remaining_time":0.1535725318}, +{"learn":[0.1363073202],"iteration":533,"passed_time":0.17555886,"remaining_time":0.1532030501}, +{"learn":[0.1355766579],"iteration":534,"passed_time":0.1758451996,"remaining_time":0.1528374164}, +{"learn":[0.1348232278],"iteration":535,"passed_time":0.1761343771,"remaining_time":0.1524745354}, +{"learn":[0.1346445205],"iteration":536,"passed_time":0.1764172355,"remaining_time":0.1521064805}, +{"learn":[0.1339276102],"iteration":537,"passed_time":0.1767030673,"remaining_time":0.1517412957}, +{"learn":[0.1334572584],"iteration":538,"passed_time":0.176987316,"remaining_time":0.1513750513}, +{"learn":[0.1326929159],"iteration":539,"passed_time":0.1772771989,"remaining_time":0.1510139102}, +{"learn":[0.1319912385],"iteration":540,"passed_time":0.1775600615,"remaining_time":0.1506470762}, +{"learn":[0.1318185642],"iteration":541,"passed_time":0.1778377945,"remaining_time":0.1502762175}, +{"learn":[0.1313594745],"iteration":542,"passed_time":0.1782173608,"remaining_time":0.1499914068}, +{"learn":[0.1306579732],"iteration":543,"passed_time":0.1785920539,"remaining_time":0.1497021628}, +{"learn":[0.1302056808],"iteration":544,"passed_time":0.1788868284,"remaining_time":0.1493458843}, +{"learn":[0.1297643002],"iteration":545,"passed_time":0.1791757582,"remaining_time":0.1489849711}, +{"learn":[0.1293283458],"iteration":546,"passed_time":0.1794666721,"remaining_time":0.1486259643}, +{"learn":[0.128651421],"iteration":547,"passed_time":0.1797578881,"remaining_time":0.1482674552}, +{"learn":[0.1284865042],"iteration":548,"passed_time":0.1800462465,"remaining_time":0.1479068436}, +{"learn":[0.1278011865],"iteration":549,"passed_time":0.1803361794,"remaining_time":0.1475477831}, +{"learn":[0.1271367054],"iteration":550,"passed_time":0.1806229767,"remaining_time":0.1471864184}, +{"learn":[0.126975263],"iteration":551,"passed_time":0.1809090148,"remaining_time":0.1468247077}, +{"learn":[0.1262506419],"iteration":552,"passed_time":0.181198411,"remaining_time":0.146465985}, +{"learn":[0.1255985334],"iteration":553,"passed_time":0.1814854556,"remaining_time":0.1461056195}, +{"learn":[0.1251726031],"iteration":554,"passed_time":0.1817740575,"remaining_time":0.1457467669}, +{"learn":[0.1245084283],"iteration":555,"passed_time":0.1820571768,"remaining_time":0.1453837886}, +{"learn":[0.1243518475],"iteration":556,"passed_time":0.1823411502,"remaining_time":0.1450217766}, +{"learn":[0.1239331759],"iteration":557,"passed_time":0.1826286388,"remaining_time":0.1446628286}, +{"learn":[0.1235189099],"iteration":558,"passed_time":0.1829162246,"remaining_time":0.144304213}, +{"learn":[0.1231151164],"iteration":559,"passed_time":0.1832003231,"remaining_time":0.143943111}, +{"learn":[0.1224634185],"iteration":560,"passed_time":0.1834918029,"remaining_time":0.1435880597}, +{"learn":[0.1221509578],"iteration":561,"passed_time":0.1837781614,"remaining_time":0.1432292432}, +{"learn":[0.1220005479],"iteration":562,"passed_time":0.1840615204,"remaining_time":0.1428683559}, +{"learn":[0.1216927557],"iteration":563,"passed_time":0.1843488891,"remaining_time":0.1425108434}, +{"learn":[0.1213884866],"iteration":564,"passed_time":0.1846347406,"remaining_time":0.1421524109}, +{"learn":[0.1212418308],"iteration":565,"passed_time":0.1849211342,"remaining_time":0.1417946506}, +{"learn":[0.1209421023],"iteration":566,"passed_time":0.1852104084,"remaining_time":0.1414393419}, +{"learn":[0.1206458075],"iteration":567,"passed_time":0.1854964655,"remaining_time":0.1410818188}, +{"learn":[0.120502796],"iteration":568,"passed_time":0.1857817014,"remaining_time":0.140723925}, +{"learn":[0.1198904821],"iteration":569,"passed_time":0.1860717421,"remaining_time":0.1403699107}, +{"learn":[0.1192860569],"iteration":570,"passed_time":0.1863600684,"remaining_time":0.1400148325}, +{"learn":[0.1186053896],"iteration":571,"passed_time":0.1866510223,"remaining_time":0.1396619537}, +{"learn":[0.1184663074],"iteration":572,"passed_time":0.1869339538,"remaining_time":0.1393033128}, +{"learn":[0.1181809947],"iteration":573,"passed_time":0.1872243424,"remaining_time":0.1389504701}, +{"learn":[0.1178989484],"iteration":574,"passed_time":0.187508343,"remaining_time":0.1385931231}, +{"learn":[0.117763306],"iteration":575,"passed_time":0.1878019737,"remaining_time":0.1382431195}, +{"learn":[0.1171752824],"iteration":576,"passed_time":0.1880949791,"remaining_time":0.1378928529}, +{"learn":[0.1165072166],"iteration":577,"passed_time":0.1883888946,"remaining_time":0.137543449}, +{"learn":[0.1163743402],"iteration":578,"passed_time":0.1886859704,"remaining_time":0.1371965346}, +{"learn":[0.1161006516],"iteration":579,"passed_time":0.1891445669,"remaining_time":0.1369667553}, +{"learn":[0.1158300937],"iteration":580,"passed_time":0.189461915,"remaining_time":0.1366343242}, +{"learn":[0.1157004883],"iteration":581,"passed_time":0.1897908991,"remaining_time":0.1363103021}, +{"learn":[0.115128317],"iteration":582,"passed_time":0.1900772448,"remaining_time":0.1359557652}, +{"learn":[0.1147615824],"iteration":583,"passed_time":0.1903677991,"remaining_time":0.1356044596}, +{"learn":[0.1141551201],"iteration":584,"passed_time":0.1906540156,"remaining_time":0.1352502846}, +{"learn":[0.1138936482],"iteration":585,"passed_time":0.1909376154,"remaining_time":0.1348944928}, +{"learn":[0.1137684382],"iteration":586,"passed_time":0.1912201587,"remaining_time":0.1345382036}, +{"learn":[0.1135030363],"iteration":587,"passed_time":0.1915026406,"remaining_time":0.1341821223}, +{"learn":[0.113247852],"iteration":588,"passed_time":0.1917841898,"remaining_time":0.1338256401}, +{"learn":[0.1131255946],"iteration":589,"passed_time":0.1921130241,"remaining_time":0.133502271}, +{"learn":[0.1125733893],"iteration":590,"passed_time":0.1923971608,"remaining_time":0.1331479506}, +{"learn":[0.1123238109],"iteration":591,"passed_time":0.1926813541,"remaining_time":0.1327939062}, +{"learn":[0.1120695237],"iteration":592,"passed_time":0.1929687077,"remaining_time":0.1324422665}, +{"learn":[0.1119510071],"iteration":593,"passed_time":0.1932485628,"remaining_time":0.132085718}, +{"learn":[0.1113103875],"iteration":594,"passed_time":0.1935335693,"remaining_time":0.1317329337}, +{"learn":[0.11106781],"iteration":595,"passed_time":0.1938210765,"remaining_time":0.131382072}, +{"learn":[0.1108202527],"iteration":596,"passed_time":0.1941013054,"remaining_time":0.1310265093}, +{"learn":[0.1107003178],"iteration":597,"passed_time":0.1943811123,"remaining_time":0.130670915}, +{"learn":[0.110463556],"iteration":598,"passed_time":0.1946630108,"remaining_time":0.1303169738}, +{"learn":[0.1102220389],"iteration":599,"passed_time":0.1949473639,"remaining_time":0.1299649092}, +{"learn":[0.1101050784],"iteration":600,"passed_time":0.1952230005,"remaining_time":0.1296072832}, +{"learn":[0.1095232957],"iteration":601,"passed_time":0.1955112893,"remaining_time":0.1292582942}, +{"learn":[0.1092932582],"iteration":602,"passed_time":0.1957927296,"remaining_time":0.1289049978}, +{"learn":[0.1089722558],"iteration":603,"passed_time":0.196075421,"remaining_time":0.1285527595}, +{"learn":[0.1087394921],"iteration":604,"passed_time":0.1963600537,"remaining_time":0.1282020186}, +{"learn":[0.1086169239],"iteration":605,"passed_time":0.1966385352,"remaining_time":0.1278474965}, +{"learn":[0.1083030052],"iteration":606,"passed_time":0.1969209076,"remaining_time":0.1274957442}, +{"learn":[0.1080826031],"iteration":607,"passed_time":0.1972076426,"remaining_time":0.1271470327}, +{"learn":[0.1077747825],"iteration":608,"passed_time":0.197490116,"remaining_time":0.1267957887}, +{"learn":[0.1075515682],"iteration":609,"passed_time":0.1977726503,"remaining_time":0.1264448092}, +{"learn":[0.1074337089],"iteration":610,"passed_time":0.1980551143,"remaining_time":0.126094009}, +{"learn":[0.1071327134],"iteration":611,"passed_time":0.1983937863,"remaining_time":0.1257790671}, +{"learn":[0.1067912465],"iteration":612,"passed_time":0.1986771521,"remaining_time":0.1254291319}, +{"learn":[0.1065823364],"iteration":613,"passed_time":0.1989650823,"remaining_time":0.125082283}, +{"learn":[0.1064684631],"iteration":614,"passed_time":0.1992459057,"remaining_time":0.1247311768}, +{"learn":[0.1061773936],"iteration":615,"passed_time":0.19952818,"remaining_time":0.1243812031}, +{"learn":[0.1058474815],"iteration":616,"passed_time":0.1998135123,"remaining_time":0.1240333472}, +{"learn":[0.1056385983],"iteration":617,"passed_time":0.2000948807,"remaining_time":0.1236832434}, +{"learn":[0.1053564437],"iteration":618,"passed_time":0.2003760916,"remaining_time":0.1233332648}, +{"learn":[0.1051584918],"iteration":619,"passed_time":0.2006579501,"remaining_time":0.1229839049}, +{"learn":[0.105049851],"iteration":620,"passed_time":0.2009361801,"remaining_time":0.1226325479}, +{"learn":[0.1047332913],"iteration":621,"passed_time":0.201219847,"remaining_time":0.1222847302}, +{"learn":[0.1044604814],"iteration":622,"passed_time":0.2015076154,"remaining_time":0.1219396003}, +{"learn":[0.104262396],"iteration":623,"passed_time":0.2017954013,"remaining_time":0.1215946649}, +{"learn":[0.104157296],"iteration":624,"passed_time":0.2020759085,"remaining_time":0.1212455451}, +{"learn":[0.1038594951],"iteration":625,"passed_time":0.2023626441,"remaining_time":0.1209003656}, +{"learn":[0.1035571289],"iteration":626,"passed_time":0.2026492013,"remaining_time":0.1205552665}, +{"learn":[0.1034549959],"iteration":627,"passed_time":0.2029302183,"remaining_time":0.120207072}, +{"learn":[0.1031944209],"iteration":628,"passed_time":0.2032286692,"remaining_time":0.1198693741}, +{"learn":[0.1029076131],"iteration":629,"passed_time":0.203558396,"remaining_time":0.1195501691}, +{"learn":[0.1027270235],"iteration":630,"passed_time":0.2038530851,"remaining_time":0.1192104412}, +{"learn":[0.1026283302],"iteration":631,"passed_time":0.2041375708,"remaining_time":0.1188649146}, +{"learn":[0.1023402544],"iteration":632,"passed_time":0.204423839,"remaining_time":0.1185206144}, +{"learn":[0.1020633618],"iteration":633,"passed_time":0.2047100924,"remaining_time":0.1181764887}, +{"learn":[0.1018160263],"iteration":634,"passed_time":0.2049967709,"remaining_time":0.1178327896}, +{"learn":[0.1017207487],"iteration":635,"passed_time":0.2052786367,"remaining_time":0.1174865153}, +{"learn":[0.1014436567],"iteration":636,"passed_time":0.2055658487,"remaining_time":0.1171434899}, +{"learn":[0.1011769013],"iteration":637,"passed_time":0.2059099685,"remaining_time":0.1168329288}, +{"learn":[0.100938386],"iteration":638,"passed_time":0.2061972601,"remaining_time":0.1164901579}, +{"learn":[0.1007644556],"iteration":639,"passed_time":0.2064798165,"remaining_time":0.1161448968}, +{"learn":[0.1006729994],"iteration":640,"passed_time":0.2067640914,"remaining_time":0.1158007938}, +{"learn":[0.100408312],"iteration":641,"passed_time":0.2070506768,"remaining_time":0.1154581656}, +{"learn":[0.1002454169],"iteration":642,"passed_time":0.2073339128,"remaining_time":0.1151138521}, +{"learn":[0.09999146133],"iteration":643,"passed_time":0.2076173909,"remaining_time":0.1147698621}, +{"learn":[0.09988192235],"iteration":644,"passed_time":0.2078941911,"remaining_time":0.1144223843}, +{"learn":[0.09965573072],"iteration":645,"passed_time":0.2081777102,"remaining_time":0.1140788072}, +{"learn":[0.09940834207],"iteration":646,"passed_time":0.2084623988,"remaining_time":0.1137360537}, +{"learn":[0.09915829194],"iteration":647,"passed_time":0.2087473936,"remaining_time":0.1133936459}, +{"learn":[0.099052778],"iteration":648,"passed_time":0.2090303802,"remaining_time":0.1130503289}, +{"learn":[0.09881247576],"iteration":649,"passed_time":0.2093146106,"remaining_time":0.1127078672}, +{"learn":[0.09822775214],"iteration":650,"passed_time":0.2096013314,"remaining_time":0.1123669196}, +{"learn":[0.09812471649],"iteration":651,"passed_time":0.2098834765,"remaining_time":0.112023696}, +{"learn":[0.09762716361],"iteration":652,"passed_time":0.2101745488,"remaining_time":0.1116854034}, +{"learn":[0.09752564648],"iteration":653,"passed_time":0.2104557432,"remaining_time":0.1113420293}, +{"learn":[0.0969513233],"iteration":654,"passed_time":0.2107384891,"remaining_time":0.1109996622}, +{"learn":[0.09636180626],"iteration":655,"passed_time":0.2110250711,"remaining_time":0.1106594885}, +{"learn":[0.09577630716],"iteration":656,"passed_time":0.2113140853,"remaining_time":0.1103207477}, +{"learn":[0.09519479662],"iteration":657,"passed_time":0.2116049255,"remaining_time":0.1099831072}, +{"learn":[0.09461724554],"iteration":658,"passed_time":0.2118956007,"remaining_time":0.1096455233}, +{"learn":[0.09404362503],"iteration":659,"passed_time":0.2121822075,"remaining_time":0.1093059857}, +{"learn":[0.09347390648],"iteration":660,"passed_time":0.2124676315,"remaining_time":0.1089660016}, +{"learn":[0.09290806149],"iteration":661,"passed_time":0.212760652,"remaining_time":0.108630061}, +{"learn":[0.09238318762],"iteration":662,"passed_time":0.2130460023,"remaining_time":0.1082903511}, +{"learn":[0.091939649],"iteration":663,"passed_time":0.2133328302,"remaining_time":0.1079515527}, +{"learn":[0.09150136136],"iteration":664,"passed_time":0.2136240789,"remaining_time":0.1076151375}, +{"learn":[0.09094743228],"iteration":665,"passed_time":0.2139144775,"remaining_time":0.1072784317}, +{"learn":[0.09051674792],"iteration":666,"passed_time":0.2141997189,"remaining_time":0.10693929}, +{"learn":[0.09042160461],"iteration":667,"passed_time":0.2144841912,"remaining_time":0.1065999273}, +{"learn":[0.08987435025],"iteration":668,"passed_time":0.2147727455,"remaining_time":0.1062627485}, +{"learn":[0.0893308143],"iteration":669,"passed_time":0.2150574269,"remaining_time":0.1059238073}, +{"learn":[0.08882689874],"iteration":670,"passed_time":0.215367149,"remaining_time":0.1055973056}, +{"learn":[0.08829008779],"iteration":671,"passed_time":0.2156524545,"remaining_time":0.1052589361}, +{"learn":[0.08775692153],"iteration":672,"passed_time":0.2159428245,"remaining_time":0.1049231852}, +{"learn":[0.08726225358],"iteration":673,"passed_time":0.2162322679,"remaining_time":0.1045871207}, +{"learn":[0.08685100707],"iteration":674,"passed_time":0.2165209249,"remaining_time":0.1042508157}, +{"learn":[0.08644463242],"iteration":675,"passed_time":0.2168026184,"remaining_time":0.1039113142}, +{"learn":[0.08604307304],"iteration":676,"passed_time":0.217093738,"remaining_time":0.1035764806}, +{"learn":[0.08595028758],"iteration":677,"passed_time":0.2173767397,"remaining_time":0.1032379206}, +{"learn":[0.08543100287],"iteration":678,"passed_time":0.2176676305,"remaining_time":0.1029032539}, +{"learn":[0.08491524316],"iteration":679,"passed_time":0.2179600407,"remaining_time":0.1025694309}, +{"learn":[0.08440298295],"iteration":680,"passed_time":0.2182516425,"remaining_time":0.1022353509}, +{"learn":[0.08392789096],"iteration":681,"passed_time":0.2185459545,"remaining_time":0.1019026591}, +{"learn":[0.08354016167],"iteration":682,"passed_time":0.2188336405,"remaining_time":0.1015670044}, +{"learn":[0.08335926913],"iteration":683,"passed_time":0.2191215014,"remaining_time":0.1012315708}, +{"learn":[0.08297704988],"iteration":684,"passed_time":0.2194037016,"remaining_time":0.100893673}, +{"learn":[0.08288815959],"iteration":685,"passed_time":0.2197985325,"remaining_time":0.1006074916}, +{"learn":[0.08238806836],"iteration":686,"passed_time":0.2200907774,"remaining_time":0.1002742552}, +{"learn":[0.08189136905],"iteration":687,"passed_time":0.2203809459,"remaining_time":0.0999401964}, +{"learn":[0.08139803715],"iteration":688,"passed_time":0.2206754518,"remaining_time":0.09960822279}, +{"learn":[0.08094051213],"iteration":689,"passed_time":0.2209696256,"remaining_time":0.0992762086}, +{"learn":[0.0804532706],"iteration":690,"passed_time":0.2212656088,"remaining_time":0.09894511307}, +{"learn":[0.07996933008],"iteration":691,"passed_time":0.2215498248,"remaining_time":0.09860888156}, +{"learn":[0.07951267972],"iteration":692,"passed_time":0.2218353845,"remaining_time":0.09827339543}, +{"learn":[0.07914998126],"iteration":693,"passed_time":0.2221178854,"remaining_time":0.09793670451}, +{"learn":[0.07895818316],"iteration":694,"passed_time":0.2224029642,"remaining_time":0.09760130084}, +{"learn":[0.0787693361],"iteration":695,"passed_time":0.2226852137,"remaining_time":0.09726480597}, +{"learn":[0.07868626208],"iteration":696,"passed_time":0.2229666609,"remaining_time":0.09692811801}, +{"learn":[0.07824456165],"iteration":697,"passed_time":0.2232546538,"remaining_time":0.09659442041}, +{"learn":[0.07777373311],"iteration":698,"passed_time":0.2235415038,"remaining_time":0.09626036144}, +{"learn":[0.0773375051],"iteration":699,"passed_time":0.2238224919,"remaining_time":0.09592392509}, +{"learn":[0.07687248205],"iteration":700,"passed_time":0.224109367,"remaining_time":0.09559015798}, +{"learn":[0.07644165633],"iteration":701,"passed_time":0.2243931734,"remaining_time":0.09525522177}, +{"learn":[0.07609556253],"iteration":702,"passed_time":0.2246785657,"remaining_time":0.09492110101}, +{"learn":[0.07593685957],"iteration":703,"passed_time":0.2249678555,"remaining_time":0.09458875742}, +{"learn":[0.0755956494],"iteration":704,"passed_time":0.2252494184,"remaining_time":0.09425330275}, +{"learn":[0.07551643361],"iteration":705,"passed_time":0.2255297241,"remaining_time":0.09391747719}, +{"learn":[0.07506234063],"iteration":706,"passed_time":0.2258628679,"remaining_time":0.09360370622}, +{"learn":[0.07461132252],"iteration":707,"passed_time":0.2271297464,"remaining_time":0.09367498016}, +{"learn":[0.0741633572],"iteration":708,"passed_time":0.2274651853,"remaining_time":0.09336018183}, +{"learn":[0.07371842273],"iteration":709,"passed_time":0.2277544472,"remaining_time":0.09302646434}, +{"learn":[0.07330588473],"iteration":710,"passed_time":0.2280409486,"remaining_time":0.09269174985}, +{"learn":[0.0728664284],"iteration":711,"passed_time":0.2283307351,"remaining_time":0.09235849958}, +{"learn":[0.07254060085],"iteration":712,"passed_time":0.2286147919,"remaining_time":0.0920230649}, +{"learn":[0.07210592521],"iteration":713,"passed_time":0.2289031554,"remaining_time":0.09168949924}, +{"learn":[0.0717028512],"iteration":714,"passed_time":0.2291860322,"remaining_time":0.09135387296}, +{"learn":[0.07154954806],"iteration":715,"passed_time":0.2294687611,"remaining_time":0.09101833541}, +{"learn":[0.0711211285],"iteration":716,"passed_time":0.2297528097,"remaining_time":0.09068346602}, +{"learn":[0.07104717686],"iteration":717,"passed_time":0.2300332197,"remaining_time":0.09034730914}, +{"learn":[0.07065041442],"iteration":718,"passed_time":0.2303189155,"remaining_time":0.09001337308}, +{"learn":[0.0702276674],"iteration":719,"passed_time":0.2306045788,"remaining_time":0.08967955843}, +{"learn":[0.06980777725],"iteration":720,"passed_time":0.2308906872,"remaining_time":0.08934604956}, +{"learn":[0.06941825834],"iteration":721,"passed_time":0.231173195,"remaining_time":0.08901128562}, +{"learn":[0.06900352935],"iteration":722,"passed_time":0.2314608779,"remaining_time":0.08867864894}, +{"learn":[0.06861882058],"iteration":723,"passed_time":0.2317478216,"remaining_time":0.08834585465}, +{"learn":[0.06822865634],"iteration":724,"passed_time":0.2320384221,"remaining_time":0.08801457388}, +{"learn":[0.06792531303],"iteration":725,"passed_time":0.2326925882,"remaining_time":0.08782061869}, +{"learn":[0.0676255728],"iteration":726,"passed_time":0.2329819169,"remaining_time":0.08748839521}, +{"learn":[0.06732415645],"iteration":727,"passed_time":0.2332644344,"remaining_time":0.08715374471}, +{"learn":[0.06725447485],"iteration":728,"passed_time":0.233604367,"remaining_time":0.08684058088}, +{"learn":[0.06711350077],"iteration":729,"passed_time":0.2338985098,"remaining_time":0.08651040775}, +{"learn":[0.06681774269],"iteration":730,"passed_time":0.234187274,"remaining_time":0.0861783539}, +{"learn":[0.06674980858],"iteration":731,"passed_time":0.2344737296,"remaining_time":0.08584557313}, +{"learn":[0.06645693879],"iteration":732,"passed_time":0.2347663048,"remaining_time":0.08551514785}, +{"learn":[0.06632000025],"iteration":733,"passed_time":0.2350511614,"remaining_time":0.08518202853}, +{"learn":[0.06625340478],"iteration":734,"passed_time":0.2353369726,"remaining_time":0.08484938466}, +{"learn":[0.06596498092],"iteration":735,"passed_time":0.2356252641,"remaining_time":0.08451775778}, +{"learn":[0.06568060637],"iteration":736,"passed_time":0.2359508719,"remaining_time":0.08419956487}, +{"learn":[0.06561569412],"iteration":737,"passed_time":0.236236343,"remaining_time":0.08386710281}, +{"learn":[0.0653294443],"iteration":738,"passed_time":0.2365244534,"remaining_time":0.08353570005}, +{"learn":[0.06519777447],"iteration":739,"passed_time":0.236812797,"remaining_time":0.08320449623}, +{"learn":[0.06513414152],"iteration":740,"passed_time":0.2370987628,"remaining_time":0.082872577}, +{"learn":[0.0650049922],"iteration":741,"passed_time":0.2373869737,"remaining_time":0.08254156229}, +{"learn":[0.06472294329],"iteration":742,"passed_time":0.2376722558,"remaining_time":0.08220964971}, +{"learn":[0.06466056544],"iteration":743,"passed_time":0.2379601054,"remaining_time":0.08187874594}, +{"learn":[0.06453423771],"iteration":744,"passed_time":0.2382461566,"remaining_time":0.08154734219}, +{"learn":[0.06425596394],"iteration":745,"passed_time":0.2385324775,"remaining_time":0.08121615186}, +{"learn":[0.06419481623],"iteration":746,"passed_time":0.2388169367,"remaining_time":0.08088445111}, +{"learn":[0.0638103838],"iteration":747,"passed_time":0.2391063725,"remaining_time":0.0805545533}, +{"learn":[0.06342855725],"iteration":748,"passed_time":0.239394478,"remaining_time":0.08022431774}, +{"learn":[0.06304931793],"iteration":749,"passed_time":0.2396824293,"remaining_time":0.07989414309}, +{"learn":[0.0627763102],"iteration":750,"passed_time":0.2399664709,"remaining_time":0.07956278464}, +{"learn":[0.06265552767],"iteration":751,"passed_time":0.2402477938,"remaining_time":0.07923065541}, +{"learn":[0.06259665596],"iteration":752,"passed_time":0.2405335075,"remaining_time":0.07890010139}, +{"learn":[0.06222264085],"iteration":753,"passed_time":0.2408238837,"remaining_time":0.07857118751}, +{"learn":[0.06185116013],"iteration":754,"passed_time":0.2411097272,"remaining_time":0.07824090484}, +{"learn":[0.06148219573],"iteration":755,"passed_time":0.2414172235,"remaining_time":0.07791772821}, +{"learn":[0.06111572971],"iteration":756,"passed_time":0.2417053108,"remaining_time":0.07758836264}, +{"learn":[0.06075174427],"iteration":757,"passed_time":0.2419950098,"remaining_time":0.07725962053}, +{"learn":[0.06039022178],"iteration":758,"passed_time":0.242283343,"remaining_time":0.07693054765}, +{"learn":[0.06005517297],"iteration":759,"passed_time":0.2425726786,"remaining_time":0.07660189851}, +{"learn":[0.05971537024],"iteration":760,"passed_time":0.242864342,"remaining_time":0.07627408376}, +{"learn":[0.05946000802],"iteration":761,"passed_time":0.2431534558,"remaining_time":0.07594556756}, +{"learn":[0.05920833305],"iteration":762,"passed_time":0.2434408693,"remaining_time":0.07561662652}, +{"learn":[0.05895606323],"iteration":763,"passed_time":0.2437272006,"remaining_time":0.07528745987}, +{"learn":[0.05870928117],"iteration":764,"passed_time":0.2440118681,"remaining_time":0.07495789413}, +{"learn":[0.05865462721],"iteration":765,"passed_time":0.2442961674,"remaining_time":0.07462833314}, +{"learn":[0.05840697053],"iteration":766,"passed_time":0.244584159,"remaining_time":0.07430001179}, +{"learn":[0.05829718141],"iteration":767,"passed_time":0.24486944,"remaining_time":0.07397097666}, +{"learn":[0.05824360228],"iteration":768,"passed_time":0.2451488718,"remaining_time":0.07364029829}, +{"learn":[0.05813591384],"iteration":769,"passed_time":0.2454329779,"remaining_time":0.07331114924}, +{"learn":[0.05789184566],"iteration":770,"passed_time":0.2457216266,"remaining_time":0.07298346628}, +{"learn":[0.0578393211],"iteration":771,"passed_time":0.2460048599,"remaining_time":0.07265428504}, +{"learn":[0.05773397587],"iteration":772,"passed_time":0.2462908973,"remaining_time":0.07232604617}, +{"learn":[0.05749314874],"iteration":773,"passed_time":0.2465818009,"remaining_time":0.0719993372}, +{"learn":[0.05744165782],"iteration":774,"passed_time":0.247559216,"remaining_time":0.07187203044}, +{"learn":[0.05733860205],"iteration":775,"passed_time":0.2485501365,"remaining_time":0.07174643115}, +{"learn":[0.05699709394],"iteration":776,"passed_time":0.2495475083,"remaining_time":0.07162045605}, +{"learn":[0.05665790105],"iteration":777,"passed_time":0.2505285981,"remaining_time":0.07148759482}, +{"learn":[0.05644965949],"iteration":778,"passed_time":0.2514949792,"remaining_time":0.07134838307}, +{"learn":[0.05639987397],"iteration":779,"passed_time":0.2526816234,"remaining_time":0.07126917583}, +{"learn":[0.05616602526],"iteration":780,"passed_time":0.2538502918,"remaining_time":0.07118209207}, +{"learn":[0.05583179163],"iteration":781,"passed_time":0.2549708199,"remaining_time":0.0710788219}, +{"learn":[0.05549982377],"iteration":782,"passed_time":0.2560723832,"remaining_time":0.07096769752}, +{"learn":[0.05517010558],"iteration":783,"passed_time":0.2571980843,"remaining_time":0.07086069669}, +{"learn":[0.0548656573],"iteration":784,"passed_time":0.2582126944,"remaining_time":0.07072067425}, +{"learn":[0.0546658444],"iteration":785,"passed_time":0.2585260461,"remaining_time":0.07038749855}, +{"learn":[0.05446864591],"iteration":786,"passed_time":0.258906271,"remaining_time":0.07007247234}, +{"learn":[0.05442095851],"iteration":787,"passed_time":0.2593831112,"remaining_time":0.06978327358}, +{"learn":[0.05419698572],"iteration":788,"passed_time":0.2602273165,"remaining_time":0.06959184256}, +{"learn":[0.05389240284],"iteration":789,"passed_time":0.2605265177,"remaining_time":0.06925388444}, +{"learn":[0.05357226081],"iteration":790,"passed_time":0.260819015,"remaining_time":0.06891425302}, +{"learn":[0.05325429193],"iteration":791,"passed_time":0.2611088194,"remaining_time":0.06857403338}, +{"learn":[0.05293848079],"iteration":792,"passed_time":0.2614001597,"remaining_time":0.06823434182}, +{"learn":[0.05264733943],"iteration":793,"passed_time":0.2616838373,"remaining_time":0.06789278399}, +{"learn":[0.05235807176],"iteration":794,"passed_time":0.2625821303,"remaining_time":0.06770985751}, +{"learn":[0.05204786872],"iteration":795,"passed_time":0.2639879301,"remaining_time":0.06765519816}, +{"learn":[0.05176217842],"iteration":796,"passed_time":0.2650744797,"remaining_time":0.06751583359}, +{"learn":[0.05147832628],"iteration":797,"passed_time":0.2661213786,"remaining_time":0.06736405825}, +{"learn":[0.0514334533],"iteration":798,"passed_time":0.2671329344,"remaining_time":0.06720115122}, +{"learn":[0.05115166391],"iteration":799,"passed_time":0.2681725041,"remaining_time":0.06704312603}, +{"learn":[0.05084889527],"iteration":800,"passed_time":0.2692028072,"remaining_time":0.06688059755}, +{"learn":[0.05057058968],"iteration":801,"passed_time":0.2703959068,"remaining_time":0.0667560967}, +{"learn":[0.05029407493],"iteration":802,"passed_time":0.2714845011,"remaining_time":0.06660329604}, +{"learn":[0.04999667096],"iteration":803,"passed_time":0.2726047326,"remaining_time":0.06645588008}, +{"learn":[0.0497012875],"iteration":804,"passed_time":0.2734626871,"remaining_time":0.06624251427}, +{"learn":[0.04943666263],"iteration":805,"passed_time":0.2737961226,"remaining_time":0.06590129999}, +{"learn":[0.04914472766],"iteration":806,"passed_time":0.2740993704,"remaining_time":0.06555288537}, +{"learn":[0.04885477697],"iteration":807,"passed_time":0.2752153024,"remaining_time":0.06539769562}, +{"learn":[0.04856679655],"iteration":808,"passed_time":0.275511935,"remaining_time":0.06504669911}, +{"learn":[0.04828077252],"iteration":809,"passed_time":0.2758050186,"remaining_time":0.06469500436}, +{"learn":[0.04799669112],"iteration":810,"passed_time":0.2760929271,"remaining_time":0.06434224811}, +{"learn":[0.04771453869],"iteration":811,"passed_time":0.2763789325,"remaining_time":0.06398921097}, +{"learn":[0.04743430168],"iteration":812,"passed_time":0.2767834684,"remaining_time":0.06366360221}, +{"learn":[0.04715596669],"iteration":813,"passed_time":0.2770762851,"remaining_time":0.06331227153}, +{"learn":[0.04687952037],"iteration":814,"passed_time":0.2782826745,"remaining_time":0.06316845985}, +{"learn":[0.04660494953],"iteration":815,"passed_time":0.2796506458,"remaining_time":0.06305847895}, +{"learn":[0.04633224107],"iteration":816,"passed_time":0.2806747039,"remaining_time":0.06286838534}, +{"learn":[0.04606138199],"iteration":817,"passed_time":0.2817067045,"remaining_time":0.06267801984}, +{"learn":[0.0457923594],"iteration":818,"passed_time":0.2827595271,"remaining_time":0.06249020074}, +{"learn":[0.04552516054],"iteration":819,"passed_time":0.2839764203,"remaining_time":0.06233628739}, +{"learn":[0.04525977271],"iteration":820,"passed_time":0.285122425,"remaining_time":0.06216432895}, +{"learn":[0.04499618335],"iteration":821,"passed_time":0.2863623144,"remaining_time":0.06201033085}, +{"learn":[0.04474784496],"iteration":822,"passed_time":0.2876033053,"remaining_time":0.06185393079}, +{"learn":[0.044501102],"iteration":823,"passed_time":0.2881328554,"remaining_time":0.06154294}, +{"learn":[0.04423388551],"iteration":824,"passed_time":0.2884367743,"remaining_time":0.06118355817}, +{"learn":[0.04396851471],"iteration":825,"passed_time":0.2888135753,"remaining_time":0.06083966357}, +{"learn":[0.04370497491],"iteration":826,"passed_time":0.2891113256,"remaining_time":0.06047915276}, +{"learn":[0.04344325158],"iteration":827,"passed_time":0.2895054621,"remaining_time":0.0601388158}, +{"learn":[0.04318333036],"iteration":828,"passed_time":0.2898627384,"remaining_time":0.0597907458}, +{"learn":[0.04292519699],"iteration":829,"passed_time":0.2901618782,"remaining_time":0.05943074615}, +{"learn":[0.0426688374],"iteration":830,"passed_time":0.2904512958,"remaining_time":0.05906891576}, +{"learn":[0.04241423763],"iteration":831,"passed_time":0.290736447,"remaining_time":0.05870639795}, +{"learn":[0.04216138388],"iteration":832,"passed_time":0.2910510622,"remaining_time":0.05834997284}, +{"learn":[0.042125085],"iteration":833,"passed_time":0.2913420935,"remaining_time":0.05798895386}, +{"learn":[0.04187420739],"iteration":834,"passed_time":0.2916300637,"remaining_time":0.05762749761}, +{"learn":[0.04162504597],"iteration":835,"passed_time":0.2919178155,"remaining_time":0.05726617433}, +{"learn":[0.04137758741],"iteration":836,"passed_time":0.2923489995,"remaining_time":0.05693295928}, +{"learn":[0.04113181845],"iteration":837,"passed_time":0.2934560194,"remaining_time":0.05673016126}, +{"learn":[0.04088772601],"iteration":838,"passed_time":0.2946010564,"remaining_time":0.05653250308}, +{"learn":[0.04064529713],"iteration":839,"passed_time":0.295632848,"remaining_time":0.05631101866}, +{"learn":[0.04040451897],"iteration":840,"passed_time":0.296681794,"remaining_time":0.05609085048}, +{"learn":[0.04037029021],"iteration":841,"passed_time":0.2977175905,"remaining_time":0.0558662462}, +{"learn":[0.04013137497],"iteration":842,"passed_time":0.2989666145,"remaining_time":0.0556794288}, +{"learn":[0.03989408276],"iteration":843,"passed_time":0.3002646042,"remaining_time":0.05549914486}, +{"learn":[0.03965840114],"iteration":844,"passed_time":0.3013416331,"remaining_time":0.05527568417}, +{"learn":[0.03942431781],"iteration":845,"passed_time":0.301654425,"remaining_time":0.05491108919}, +{"learn":[0.03919182059],"iteration":846,"passed_time":0.3019553712,"remaining_time":0.05454447673}, +{"learn":[0.03896089741],"iteration":847,"passed_time":0.3022475909,"remaining_time":0.05417645498}, +{"learn":[0.03873153633],"iteration":848,"passed_time":0.3026280787,"remaining_time":0.05382431082}, +{"learn":[0.03869922408],"iteration":849,"passed_time":0.3029708948,"remaining_time":0.05346545202}, +{"learn":[0.03847162085],"iteration":850,"passed_time":0.3040913587,"remaining_time":0.05324278784}, +{"learn":[0.03824555396],"iteration":851,"passed_time":0.3043953654,"remaining_time":0.05287619023}, +{"learn":[0.03802101183],"iteration":852,"passed_time":0.3046888765,"remaining_time":0.05250793065}, +{"learn":[0.03779798301],"iteration":853,"passed_time":0.3049760296,"remaining_time":0.05213875916}, +{"learn":[0.03757645615],"iteration":854,"passed_time":0.3052630625,"remaining_time":0.05176975914}, +{"learn":[0.03735642],"iteration":855,"passed_time":0.3055873648,"remaining_time":0.05140722025}, +{"learn":[0.03732568994],"iteration":856,"passed_time":0.3058754714,"remaining_time":0.05103873093}, +{"learn":[0.03710732693],"iteration":857,"passed_time":0.3061607259,"remaining_time":0.05066995696}, +{"learn":[0.03689043042],"iteration":858,"passed_time":0.3064448316,"remaining_time":0.05030118889}, +{"learn":[0.03671682058],"iteration":859,"passed_time":0.3067288171,"remaining_time":0.04993259814}, +{"learn":[0.03654470019],"iteration":860,"passed_time":0.3070152331,"remaining_time":0.04956459629}, +{"learn":[0.03637405797],"iteration":861,"passed_time":0.3076473142,"remaining_time":0.04925212222}, +{"learn":[0.03620967221],"iteration":862,"passed_time":0.3085930115,"remaining_time":0.0489886936}, +{"learn":[0.03604135699],"iteration":863,"passed_time":0.3097275554,"remaining_time":0.0487534115}, +{"learn":[0.03587919555],"iteration":864,"passed_time":0.3107602542,"remaining_time":0.04850015528}, +{"learn":[0.03571317522],"iteration":865,"passed_time":0.3117956257,"remaining_time":0.04824551252}, +{"learn":[0.03555320681],"iteration":866,"passed_time":0.3129725621,"remaining_time":0.04801078518}, +{"learn":[0.03538944972],"iteration":867,"passed_time":0.3133673606,"remaining_time":0.04765494423}, +{"learn":[0.03523164348],"iteration":868,"passed_time":0.3136719952,"remaining_time":0.04728542159}, +{"learn":[0.03507011841],"iteration":869,"passed_time":0.3139790368,"remaining_time":0.0469164078}, +{"learn":[0.03491444393],"iteration":870,"passed_time":0.3142803515,"remaining_time":0.04654668811}, +{"learn":[0.03471050929],"iteration":871,"passed_time":0.3145819483,"remaining_time":0.04617716673}, +{"learn":[0.03455704345],"iteration":872,"passed_time":0.3148820795,"remaining_time":0.04580758774}, +{"learn":[0.03435538691],"iteration":873,"passed_time":0.3151934327,"remaining_time":0.04543978549}, +{"learn":[0.03415509481],"iteration":874,"passed_time":0.3164120706,"remaining_time":0.04520172437}, +{"learn":[0.03399931281],"iteration":875,"passed_time":0.3173663397,"remaining_time":0.04492400242}, +{"learn":[0.03384042341],"iteration":876,"passed_time":0.3184925819,"remaining_time":0.04466885698}, +{"learn":[0.03369157702],"iteration":877,"passed_time":0.318806588,"remaining_time":0.04429886531}, +{"learn":[0.03354398106],"iteration":878,"passed_time":0.3191054805,"remaining_time":0.04392692053}, +{"learn":[0.03351608963],"iteration":879,"passed_time":0.3193950614,"remaining_time":0.04355387201}, +{"learn":[0.03332092056],"iteration":880,"passed_time":0.3198055505,"remaining_time":0.04319734451}, +{"learn":[0.03312707322],"iteration":881,"passed_time":0.3201548541,"remaining_time":0.04283250882}, +{"learn":[0.03297728025],"iteration":882,"passed_time":0.3205890077,"remaining_time":0.04247895119}, +{"learn":[0.03283336115],"iteration":883,"passed_time":0.3208909965,"remaining_time":0.04210786832}, +{"learn":[0.03264253721],"iteration":884,"passed_time":0.321178182,"remaining_time":0.041735018}, +{"learn":[0.03249147948],"iteration":885,"passed_time":0.3214670698,"remaining_time":0.04136258009}, +{"learn":[0.03233465135],"iteration":886,"passed_time":0.3217541117,"remaining_time":0.0409900954}, +{"learn":[0.03219429777],"iteration":887,"passed_time":0.3221911573,"remaining_time":0.04063672254}, +{"learn":[0.03204620513],"iteration":888,"passed_time":0.3229536571,"remaining_time":0.04032379745}, +{"learn":[0.031907749],"iteration":889,"passed_time":0.3238861156,"remaining_time":0.04003086822}, +{"learn":[0.03175481154],"iteration":890,"passed_time":0.3249295321,"remaining_time":0.03975007744}, +{"learn":[0.03161828328],"iteration":891,"passed_time":0.3259575429,"remaining_time":0.03946571147}, +{"learn":[0.03159204083],"iteration":892,"passed_time":0.3269593368,"remaining_time":0.03917653868}, +{"learn":[0.0314221472],"iteration":893,"passed_time":0.3280471306,"remaining_time":0.0388959685}, +{"learn":[0.03133956127],"iteration":894,"passed_time":0.3291929878,"remaining_time":0.03862040639}, +{"learn":[0.03131391696],"iteration":895,"passed_time":0.3302721113,"remaining_time":0.03833515577}, +{"learn":[0.03123248588],"iteration":896,"passed_time":0.3313927843,"remaining_time":0.03805290612}, +{"learn":[0.03120726732],"iteration":897,"passed_time":0.3317112092,"remaining_time":0.03767766519}, +{"learn":[0.03102949435],"iteration":898,"passed_time":0.3320108354,"remaining_time":0.03730043868}, +{"learn":[0.03094965783],"iteration":899,"passed_time":0.3323087483,"remaining_time":0.03692319425}, +{"learn":[0.03092503204],"iteration":900,"passed_time":0.3327284144,"remaining_time":0.03655950391}, +{"learn":[0.03090069508],"iteration":901,"passed_time":0.3330836023,"remaining_time":0.03618868406}, +{"learn":[0.03082209299],"iteration":902,"passed_time":0.33378416,"remaining_time":0.03585499836}, +{"learn":[0.03079815878],"iteration":903,"passed_time":0.3340838245,"remaining_time":0.03547792826}, +{"learn":[0.03061972289],"iteration":904,"passed_time":0.3343739306,"remaining_time":0.03510002586}, +{"learn":[0.03044065121],"iteration":905,"passed_time":0.3346622979,"remaining_time":0.03472213687}, +{"learn":[0.0302630724],"iteration":906,"passed_time":0.3349529776,"remaining_time":0.03434468238}, +{"learn":[0.03018460934],"iteration":907,"passed_time":0.3352467832,"remaining_time":0.03396773574}, +{"learn":[0.0300128721],"iteration":908,"passed_time":0.335533875,"remaining_time":0.03359029992}, +{"learn":[0.02996331276],"iteration":909,"passed_time":0.3358192463,"remaining_time":0.03321289249}, +{"learn":[0.02994054303],"iteration":910,"passed_time":0.3361007004,"remaining_time":0.03283530443}, +{"learn":[0.02976720524],"iteration":911,"passed_time":0.3363856945,"remaining_time":0.03245826876}, +{"learn":[0.02959504097],"iteration":912,"passed_time":0.3366704767,"remaining_time":0.03208141454}, +{"learn":[0.02942282365],"iteration":913,"passed_time":0.3369550464,"remaining_time":0.03170474179}, +{"learn":[0.02925282636],"iteration":914,"passed_time":0.3380288053,"remaining_time":0.03140158301}, +{"learn":[0.02918006309],"iteration":915,"passed_time":0.3393861268,"remaining_time":0.03112274525}, +{"learn":[0.02913317828],"iteration":916,"passed_time":0.3403994076,"remaining_time":0.0308104153}, +{"learn":[0.02911150808],"iteration":917,"passed_time":0.3414480823,"remaining_time":0.03049971977}, +{"learn":[0.02894343458],"iteration":918,"passed_time":0.3424885885,"remaining_time":0.03018669823}, +{"learn":[0.02877892144],"iteration":919,"passed_time":0.3435737775,"remaining_time":0.02987598065}, +{"learn":[0.02861290838],"iteration":920,"passed_time":0.3447883064,"remaining_time":0.02957467557}, +{"learn":[0.02853981552],"iteration":921,"passed_time":0.3458571733,"remaining_time":0.02925906672}, +{"learn":[0.02846810508],"iteration":922,"passed_time":0.3469358652,"remaining_time":0.02894264531}, +{"learn":[0.0284316981],"iteration":923,"passed_time":0.3472478236,"remaining_time":0.0285615093}, +{"learn":[0.02841114408],"iteration":924,"passed_time":0.3475383255,"remaining_time":0.02817878315}, +{"learn":[0.02839083207],"iteration":925,"passed_time":0.3479055424,"remaining_time":0.02780238676}, +{"learn":[0.02822959594],"iteration":926,"passed_time":0.3482077448,"remaining_time":0.02742089037}, +{"learn":[0.02818648028],"iteration":927,"passed_time":0.348500721,"remaining_time":0.02703884904}, +{"learn":[0.02816671677],"iteration":928,"passed_time":0.3488434065,"remaining_time":0.02666079856}, +{"learn":[0.02800433593],"iteration":929,"passed_time":0.3492623121,"remaining_time":0.02628856112}, +{"learn":[0.02784304769],"iteration":930,"passed_time":0.3495747365,"remaining_time":0.02590833171}, +{"learn":[0.02768284411],"iteration":931,"passed_time":0.349867051,"remaining_time":0.02552678054}, +{"learn":[0.02761445069],"iteration":932,"passed_time":0.3501578987,"remaining_time":0.02514531534}, +{"learn":[0.02758063375],"iteration":933,"passed_time":0.3504394944,"remaining_time":0.0247633904}, +{"learn":[0.02755168591],"iteration":934,"passed_time":0.3507243917,"remaining_time":0.02438190958}, +{"learn":[0.02753301523],"iteration":935,"passed_time":0.3510062443,"remaining_time":0.02400042696}, +{"learn":[0.02737679166],"iteration":936,"passed_time":0.3512943644,"remaining_time":0.02361957839}, +{"learn":[0.02721790031],"iteration":937,"passed_time":0.3515823876,"remaining_time":0.02323892114}, +{"learn":[0.02706034166],"iteration":938,"passed_time":0.3518682883,"remaining_time":0.02285832331}, +{"learn":[0.02690478942],"iteration":939,"passed_time":0.3521691996,"remaining_time":0.02247888508}, +{"learn":[0.0268389905],"iteration":940,"passed_time":0.3534094404,"remaining_time":0.02215850901}, +{"learn":[0.02677583338],"iteration":941,"passed_time":0.3545310025,"remaining_time":0.02182887276}, +{"learn":[0.02674416238],"iteration":942,"passed_time":0.3555556172,"remaining_time":0.02149169691}, +{"learn":[0.02671714026],"iteration":943,"passed_time":0.3565996934,"remaining_time":0.0211542191}, +{"learn":[0.0266985326],"iteration":944,"passed_time":0.3575985288,"remaining_time":0.02081261279}, +{"learn":[0.02654717238],"iteration":945,"passed_time":0.3587188881,"remaining_time":0.02047655386}, +{"learn":[0.02639683714],"iteration":946,"passed_time":0.3599913843,"remaining_time":0.02014735308}, +{"learn":[0.0262452108],"iteration":947,"passed_time":0.3610566083,"remaining_time":0.01980479286}, +{"learn":[0.02609359055],"iteration":948,"passed_time":0.3620094383,"remaining_time":0.0194546695}, +{"learn":[0.02596931466],"iteration":949,"passed_time":0.3623154507,"remaining_time":0.01906923425}, +{"learn":[0.02590718259],"iteration":950,"passed_time":0.3626152591,"remaining_time":0.01868364637}, +{"learn":[0.02588260671],"iteration":951,"passed_time":0.3629068419,"remaining_time":0.01829782396}, +{"learn":[0.02586494568],"iteration":952,"passed_time":0.3632740688,"remaining_time":0.01791592994}, +{"learn":[0.02585070182],"iteration":953,"passed_time":0.3635806968,"remaining_time":0.01753114471}, +{"learn":[0.02582690676],"iteration":954,"passed_time":0.3639281275,"remaining_time":0.0171484458}, +{"learn":[0.02580980124],"iteration":955,"passed_time":0.3643317744,"remaining_time":0.01676840803}, +{"learn":[0.02566171433],"iteration":956,"passed_time":0.364625744,"remaining_time":0.01638339288}, +{"learn":[0.02551642062],"iteration":957,"passed_time":0.3649168194,"remaining_time":0.01599844093}, +{"learn":[0.02537013423],"iteration":958,"passed_time":0.3652064313,"remaining_time":0.01561362219}, +{"learn":[0.0252266294],"iteration":959,"passed_time":0.3654945382,"remaining_time":0.01522893909}, +{"learn":[0.02520386459],"iteration":960,"passed_time":0.3657789966,"remaining_time":0.01484430892}, +{"learn":[0.025190472],"iteration":961,"passed_time":0.3660626966,"remaining_time":0.01445985704}, +{"learn":[0.02504612145],"iteration":962,"passed_time":0.3663485818,"remaining_time":0.01407569837}, +{"learn":[0.02490273488],"iteration":963,"passed_time":0.3666354966,"remaining_time":0.01369178203}, +{"learn":[0.02476196417],"iteration":964,"passed_time":0.3669259213,"remaining_time":0.01330819404}, +{"learn":[0.02462031768],"iteration":965,"passed_time":0.3680924679,"remaining_time":0.01295563552}, +{"learn":[0.02450412155],"iteration":966,"passed_time":0.3693755076,"remaining_time":0.01260536892}, +{"learn":[0.02448595805],"iteration":967,"passed_time":0.3703993149,"remaining_time":0.01224460545}, +{"learn":[0.02435046126],"iteration":968,"passed_time":0.3714337936,"remaining_time":0.01188281486}, +{"learn":[0.02421682025],"iteration":969,"passed_time":0.3724628811,"remaining_time":0.01151947055}, +{"learn":[0.02408007633],"iteration":970,"passed_time":0.3727969025,"remaining_time":0.01113399606}, +{"learn":[0.02394250335],"iteration":971,"passed_time":0.373107303,"remaining_time":0.010747947}, +{"learn":[0.02381219809],"iteration":972,"passed_time":0.3734125338,"remaining_time":0.01036190998}, +{"learn":[0.02367790182],"iteration":973,"passed_time":0.3737100661,"remaining_time":0.009975833385}, +{"learn":[0.02365218133],"iteration":974,"passed_time":0.3740104394,"remaining_time":0.009590011266}, +{"learn":[0.02363720271],"iteration":975,"passed_time":0.3751073423,"remaining_time":0.009223951039}, +{"learn":[0.02350220716],"iteration":976,"passed_time":0.3762593886,"remaining_time":0.008857692875}, +{"learn":[0.02336979077],"iteration":977,"passed_time":0.3773232892,"remaining_time":0.008487844952}, +{"learn":[0.02324373357],"iteration":978,"passed_time":0.3776429407,"remaining_time":0.008100614663}, +{"learn":[0.02311107209],"iteration":979,"passed_time":0.3779445723,"remaining_time":0.007713154537}, +{"learn":[0.02298102014],"iteration":980,"passed_time":0.3782322621,"remaining_time":0.007325599368}, +{"learn":[0.02285811508],"iteration":981,"passed_time":0.3785233038,"remaining_time":0.006938309031}, +{"learn":[0.0227277404],"iteration":982,"passed_time":0.3788208633,"remaining_time":0.006551327239}, +{"learn":[0.0225982347],"iteration":983,"passed_time":0.3791093384,"remaining_time":0.006164379486}, +{"learn":[0.02247836467],"iteration":984,"passed_time":0.3794296168,"remaining_time":0.005778115992}, +{"learn":[0.02235204037],"iteration":985,"passed_time":0.3798962346,"remaining_time":0.005394064183}, +{"learn":[0.02223451937],"iteration":986,"passed_time":0.3801919374,"remaining_time":0.005007593907}, +{"learn":[0.02210788955],"iteration":987,"passed_time":0.3804835888,"remaining_time":0.004621258164}, +{"learn":[0.02198380409],"iteration":988,"passed_time":0.380782037,"remaining_time":0.004235189491}, +{"learn":[0.02186922502],"iteration":989,"passed_time":0.3810821537,"remaining_time":0.003849314684}, +{"learn":[0.02174475916],"iteration":990,"passed_time":0.3813948874,"remaining_time":0.003463727535}, +{"learn":[0.02162112279],"iteration":991,"passed_time":0.3817522712,"remaining_time":0.003078647349}, +{"learn":[0.02150937519],"iteration":992,"passed_time":0.382776214,"remaining_time":0.00269832175}, +{"learn":[0.02138881239],"iteration":993,"passed_time":0.3840307834,"remaining_time":0.00231809326}, +{"learn":[0.02127925943],"iteration":994,"passed_time":0.3850649826,"remaining_time":0.001934999913}, +{"learn":[0.02115833375],"iteration":995,"passed_time":0.386106762,"remaining_time":0.001550629566}, +{"learn":[0.02103989169],"iteration":996,"passed_time":0.3871662932,"remaining_time":0.001164993861}, +{"learn":[0.02093308387],"iteration":997,"passed_time":0.3882702674,"remaining_time":0.0007780967282}, +{"learn":[0.02081420684],"iteration":998,"passed_time":0.3893867129,"remaining_time":0.0003897764894}, +{"learn":[0.02069612207],"iteration":999,"passed_time":0.3905108419,"remaining_time":0} ]} \ No newline at end of file diff --git a/src/catboost_info/learn/events.out.tfevents b/src/catboost_info/learn/events.out.tfevents index fa047734536c0c9a7a84a18e990c9b151c9dc089..852cb991d8073f023f91df696a64ef3a71940b1d 100644 GIT binary patch literal 48870 zcmZ|YcUVvFA3t!UY?7=fGnr*eW_)ZRtB}1(_MUAtP^nauq)3bQpdt+_Ds634$Vy3+ z-*x@Iuk*W}zw3J4pT9nTJRk4peZT9RbD#ShsI>UsfBA0}##& zYJY^!w}HHs!63?qAC9`k=i5R)U11>Q(+W>U^Z9m=@4mjjG=8&2Uq0U+@-sX1qkOZ| zPk%n&0rHNe%9NM$sSM`x9U<=<(UeDg z-pJ>>K>o^tUX*`#aFGk2mxuh9wmm67ZZ2{=l`J?fJX{|t6KwiPJ9p&fC`9<>izK|b1vn}PnMafj~d1c5?S=@&5Uo+#*^LZ7>=NiaSUb#ab z!TGHp64x6hP6 zvaZIMACCs)BX?I*{=}sL@A>>_$a~jTQr>S=jR~J01Nqp5_mnqSb9p(R9}D?bMHQ59 zR!jWC=f^>Q-n4ScPd})c&gaKNUR$S>^2>MD9p&>AAb-ibnDXjc*GBXCiI7)weM@}_4em3ND_a#xjMD`22s6AJig|@_B~&&U}6j@WHYT_v0(PHIr{`2QUKHNT*@^fz4SMm7;kgq=Sgz~>G>j=*03nBlvF^2MQ zlXMUApT7w5OK(I|zW#R7JwCq}@+)RUQC_B--X%V-19{cp2+HgJd{M^dmq6aSbvWg3 zT;3}9{H2he6%|VP>0f09>(6D7@47pL@>e^(6|6UOAzxYYi1HuX|MB6+zZ~+#VGk*9 zay;@GpI-s_oZUf`Zy8-F_rt03?C%AfK>B9{ry=c^(A`MMwF zcPHrv^PjH=`3nILDF14)=1M-V5BYD_zLc+&GcMcn`3;aa9)3s4 z=eoS&^BW<5W`HN}*}?@0Nj z)pMutpT8IKZKhqPyuWh4z#`qOm4{&l^GhnUx*o z-&ju;+%N2he2>CwluxmpBDkMA0QrV@S1E5@>1EE3=OE;7_mJ`q{g(IR^M@dBsCI=u ze~97yb$tFX0Zzt{k%U{3^{oP$9kZm(*EDwwksLnE_ zhEbcZ4B&wYg7C>E1ZpB{-}1l|LC*um1U@g+7|jDS1b_BkAkg}5tK&Q{N3iALc>=Tg zU%0~q3k1WSos~e(gV{W=L@-w841v3fz54LrB7#t>(*(|+R2jvCO9&?ZJV`)TceXJP zE+ZHac$~oDg+F6?V1>Zx;ZXwmDPiY$V2z+s@d$yo8ty%KV1ppS?ht{JiZ8W1utm@^ z<^X{f+4t;ua0S6h!~FzWIaj#x;3|UliTemB{ForigKG$s78?>cv`=9S59|<>_1#Ng zhjCsn9@ryTacnn%IR?Xa@W26q+L&DgCTgDW=D~FYX6<$o$W09ud`pf9;^KD@_@3ia z!Z$b}m~6bAK$7*9Bpx^;C>yqoz$Q7BtvtAaAgp!^fk+pRdpvMKuq}YscN6)By9i#*SwX=2%ME89cq8~-pi7|a>(pU9@Ihc_vW!5h;eC$q z;2whDE=vh)pWjt*#N9_w9jilNVRy4Xe1k87h%bu?_&uKSg$EB13>qZ?>wy*%c;JU% zx#l8j*s2sRSe*DH=uxnMKyS6yf?w|d1W|VL2_&eiHt|CWM6hPgJOUrI_6dG)K?q7$ z%q8$CZoD$z@DPDjyEz1+nwQG+;1Pm0-Txyn_^S3}9t0!UpEQd=j9PbV9)uux9jHxU z|Gh@RbvhKms7*5oICL-*te3(NEF3q3fQI2aQ+`O{2 z5WXQ2!L@Hws6lmY@sR&W!Ak@xTEhuEpZ9eM4^j~r4j)FKIW2uH57H30ZW&6TMJv(G zYdV5w+tdi?#>8px4X+TaNFG8!r%7Qi4_+hCda6pmq2{<24>Ax$Yf7M@uqu)VnFx|U z4yJ|;`cr1}APa&1ZV6O{pZ)~Sv{t;rgM0)(pY=-m0byRUVi*L4{8vszbAp)jxA2`;0pq)aCvIbedWK92VW6%dfG*rLl4CU9(+S^ z)I2s=YUsWs@d7_2Qv^LjBrxo@k>F0z48i%Yt*D`FXVq!G z!5l$ib4vmrvP%Uk0Sg2-he*JpTH`g}V2R-C*A~>EeAHENh+ag{cu4|R4o_UgH(WxH zo%C<||K7Z{*c~Cb0$oO6_r00Gh_A}ke1jE&g{PYc7+p)t<$*N<-^{-RD%zF^e!XoF z#I5*4VE=gSt$c$mf}vE%{#$ZDaAsZ|flop1MLf8UAnbW9 zfdlWNZ}Gqp!R;A82y}m7cZ>&42p+!tM&QNPiLN|wMqtrT0)2!1n|W{pL6GAYYPdDG z*^&n?2(G=aArKo|Gm;0c2=?v!OrYuQ-%C7jLtxPE6M>try>IZ~CIVykj|Ae*Zxrlc z-9j)%O9CpMM;G%A?g$JrtEr*+?wvtA@IWwSa}|ME=4pbZ^lbzKzI`BIsQ=+8-{6U$ z)o2NnD|g$+gF6VuB)+2tx8#IS9(WWCH39d+T`c7{R~vBm!#BUhDGU34&nvL;}5ay9w4Bu?YNkJ}025mnm2o z$00a5Hi5wYd7A0`km3>CYyXUZ-S0TT0rV7sTVXtbKjyy%@D0xpXhg&j&#+W5mA+oYo)5 zgA4>wu@4D!xICac4>A$h-wu+7lrvs%dz^(J@_HbFXZkM%_YZFn47Ld%Fn01)!46h7 zf@E`l0={zJKJs(OL7;QckHG7ywflLHi{Rd|2Lu*3dM@KZ9)hVmeF;?M1?2M}A3@sM z`vjgD-_GDc0fJ8(?h&~7?6u&`SBStt&xgSL%7LYP!&?LcS9lZXS}{QI;HU_JweDSM z4s#L&b0|iTvfPWnVExh4_#u@b$XtDgK&LmO1Shgm1h>|E5{L**6&#{v2nO%GO<=-~ z*MjSGIf4y`JqVO<94okgs6a5w#GSzI7G2KslYWOF#r_t7EpbudJa~`blg~{8+y3YY zc0)fPxc$V9fL+^U9loIwfpv;2fnV!xuH!)!0`vDS1nv*^7HsBJBbeMu0R@7L-4$n1fC`R-OPjU2(D__Q$wK9`9L20Kp>}Q zCk<)x#`Qd?MWAhYjewEGEx`ioCxUO`R|)LM?jm?6u?~S;^A!U5N5bOyA=M)=o+|;l z+dBlC{l5_CU9+VIEw{{F9~a%GX=3e=3iaN8wn7{2bN;3V)5 zK`-x%1jZ?h+QAR$0{(?V6aHBe_@(UFmj}iOlC&k@t^8^f4@?j&v$UXw&-GgUcwmY^ z^SwENF9VzeCo(exV@65flj3zVzQG*9g=1#aP}QcS0}m_^*vFd^_-nXTu(@f8pu4IB z3b!|o;2SO?xN_Nq8oD*N73>LILNG7in84tHsz3RL%Ls03OCaU zYepX>&?Bpz;J5WUf^#*82|PbJO>jHlh+uBPAp#?Z_`Krh;DlhJ+d%?dKWYi?MV%4Y zZ8|_erE4p}0dxa_w%UFI&+hdT+{d{fsQtE&fa&wZMf@CG5oA{x61cbYvfzfp4Z-h< zy#zjcCkQUPHxZNu?;+6Y_$0x~_!fe$mb(eOy}S7vKL>XN7uM|}@O{1LMCO6OQFbSR z-b?il^9{EV$dqg+V5Qn!ut@YoFgJP|0lktS!BYAT0-b$Z3A}e#6@0B;2xN4&5GbmA zzmlKBT?D=wn+a@5F`Uc;Zv<_-Zz7;kH!*?-J_x@2*+3w*VC6|3+(Xbcay@~+iue6_ za36uUmjQvkcg6^QTYV86jao;blS7SQ4i69v@Lfw_MB6ih4JkhaO|EMQeD;zTY$Et0 zDBh}1U`j!p;OTJyg7a(i2((!_b~OJj1tNH;yP81Im&p!12tr_dXcYku`C`El_Yi@L z(Mkea=XaXHH#|bH&2R;QG4*wVH)w+q^YX-&Y8((~$@q+Ab#G zq*ow#@*0Iew)-LiAO0!|E{f3z(grOg;M`}r;8mU&1U32#2t2Pm;KYARj}gq-JDD`U!$H)8`S`G--ukNU;d)YvvM|)OE4obRUO6ey9WtJ)SJ!=MayeZpIvH=vXj9 z@D%?kf~emA5tv=1CRp7+LojCiYyvOi90WHU2?$g_%p#CB|4Tc54$l#slaWBP(K|sy zB7(w-nbc5lFHx}XorJ)rwFJsH`wNzE$p|tcW=P-Cc9&2598wVMDVk28M`V-WInWCP zQ(H>FWr*f@BqFc9f5AH z7J)ri8w97BR|wi)k$`!R2_<~PYXtKjPo@UhO&taI(-{cVt2GJOyqG3#&1bXfC5?q0@5ybVDKy)kPe7+$Efy3en)G*=N zdBJaME`keY;|b`uy&?F)iSe;LN|#f+bujg7kt>1hhlc1;2b{2%fk|pj~q2RDMY12=woaq=u#6KMOAG6$r*g zjUaI6knTgi;T;0C(-Ii^xHOpu?-ATC8BPsbWd{m220tKJ(m0I3z=U=+d_yGyBSi_g zb}Dn{K^20GoT1bpTe?t>2h|8}wwAylgJ3Hjd_>@-szwb5)UE{c;1hzv)k6pz4R>3` zgU<*GPN)*l@|-_|2Q>(WOq0Oo5P88B=nI0ShXzx_W!(wm`G&6u;x7&&5GH%^2oJs? zNc%gGz;xx(o;>)D;L~6Uw0o-}*w^@hp!(wgX-HQL1zRn(2okzWAm>wxH$SAG2;S=U zr-lTh?d3eEL(pn}KLTgxT+!q~J%aH8Dg^$xi#BL~A#h1oCa}!=zF?u-fMCoC39K^u ztHBTHH-ZM=zSNNEwoI^uYeewjOCJI~&NS%q4Sx`{P?Ui3lXq8n@E3tbkrFjjXXS+R zpb5cGMG2TB``q9`GlB!_ds9QZl(xn^_=ljuq8EYVrdtI|=?nM|7%0W}B;eO>rr`Qu zj3CTP0&_kdz042E1c7~C4{8|j@aicZm?F6JuRDQ2gGqwZj2VJ8(tk_CcIixg={A42K{e}ji5f^gez1gh%u$MOvq5$swgfnKX-R`cKzf;NE) z)X-DCUhu1N89`8SR{|YOM+!F8tPptnNkCz;>`Z=0)(9RK%2R{Zx=zn|V1rw|Q^S`fs|EL>P6(8`NZ_I4SXX{X&Iq(i+fl>!xh6?GxPf5#U?L?d*9C#> z{kGJQ)^5u@zQGlNPiY$h@>6fd^1uy2*iZ>XKaUX{aW@eh`XfgTkLD)}zSdg^dYeih zqD)h;z;Z`0{-rE6OqMY;;OF3h;Lb`3sK`DQyzq1z!PnB()Ns6QlHe}O6M?sp1TtmM zw&90#2f?_c7$t%HoqOBzb9jJY zZgcar|NRNPHAD0TD>6R>>V6XF_Flb`Z}3Op|GJ49TyO0cETsbwoc{Hffceb=!CNhX z2$BX#Ai83%5kI6L1WM_R)G)ktu_X^4BA7p10*_Uc1Q(P?2n-8Z=NPxcgCAD$p+dGtFCX=vkvPJBZwf{IZRXg#hdiwAKC zoPU3%2HBPi8h8+oV72QP0@hZ!A9(N-f!`_#G%kC%mIu!es3+D?L#v$~1t0;zN=*s8 zi7TGMH#|qM`R8Y9sM}(v&4WY)+mk;L2>Isln+Hh<`n8pSW?5Q$9wZ|e_M(~^8n$=} zmeMH*x@k+m@vo)eRQUqIzJFEJP_}ZcV0Hfz!TciPX%R}(|oCIq8lm(A<@)5-8lu|>mZmnRg zQGh@-yM(}$6K7BGb0|cRKT-nUCmwX>!CM5c9~D!>pxoht(|r*Fn?n+)d{Qph*CyVpt}_0@90Q<_o)a*=PT;n?R}g13vx5d51h0k6)Ug595T1moo- zkTvH~AO35tK(KvRAq~m>$pOJ;|2qU5LJJ6(q=)?C8{Q+xohN~*dEGDZ-~)m|9VH<5 zLc^B_l?W~!&X>Mcqkknls6ucxF^|CXe09OMRE?n18VT4I$n@tMJ|gJ%JeL}LO6P9m z!6yW(*GpiCLpu{5d`7ToummzT$OslEH3)W{%b_8;Ei)24BK(42)7NYQCOuyd;)nDV zfrX_6IyE2t!-H=K43|luAzE2*1O6Ssf{-^fq$vSI1>gsQXWb=G5EZD%52+Tx#L_Hk zFjaXN#e<&+ZsOw`IQ&q^V0lWyOy9 z{2Uq(BsgWzkj9sC|xL=;5jSkp3ZXUN3>66^ep|?gjh@ zk?)R@KxOEUD!#!OL8)gN4axCjh2Z^G69gx8B=EFFR9C*i6v2w*RBG6@NqHL&%n-b{ zl|ZriRl%cLa|BCzNnnviT0P%jfxyM_B@LKeG!4i+ZWWZ z?8ex={E#jo7`s6N2ItiscyJkk=ZF+)NE$p@up4TH;AUMife#JGPVx=b2;#ma5omid zbpsD<5LiY_KA^Q#L7=zhxislh*FAY~6~Trf2?P%Gs}md# z*ASeodrH8wMyHlJ4mn+ut)IYMjU}hfhH+@g9CyY`(p{rTl+?V2iFl? zpZkPB{y-1G$=DIWj&Y9(Xy|m(;v1Y06fTS*(D}?KL4z}buG^ytXx?TGlpo4q_HCQC{5uEOCBIs5dMnG-y zripyREd*sBLkY|n^r#09+!5^02q6$BFB`@K4+NEw!319C*1qAvZ3H%9j|em!>?k-@ zdLsB<{E$GMrKjNi);kEw+eu)xcF+`lNL~omP70!izlznPcyJd%h@1pU#%&Q?cD)fC zt`DGwxBc4+=HP>%LzO>)3u9#d@)tv`^2ui-*C$O@M`D-5dBls^~0#jb-3*NgAK+rAv9yOFj zIS4j40}J#q}@bm30Sm=fzu*&r$aNn~>G2al1U~6v)L|LRP`{ zL58jbjwI^|?x!OV%pM|vyD$6&C*w#2fzv%`NT)SE3l{592y*7R6KI|_NU+e2M$muj zEduI$9}8}eV-PIgf0Muq86&~w=3@j0ZQP`WUsi%iKS9u(>q_9Cy|z04gNsFwVkUvG ztU(Dph(qu$!-X1jR_k2gK|BJ3dlLAO;N6P{PZ2DLxeP1^*= zLjr=jawh`kW&OMG4bKq-{&pl_^l8u*9wZ{zK0pFKdNp5pkc6OF>pC^8olyLY2gwLV zTy-E&v?j$i#c|vs9;71}{_rX_+|D(;&x2P8EV8Z;*d24{DGy#F*!;_uz`LOq zt~|&Yb6taH`)*6`zB6V%3VX4>eA$&s?0=bLU1hh+1NAutfg5%Lv1l$%3FXcft zf_;4@P}t68NvDYakDb5F}?>(vXI3 zwAJK6F@mB%3Dl|XIn09+1m3+Qut3vI@Z_}=fvu?p4aqnpAc=1%LtwsH0zMzD1sBC~ z1czRlQ$usB(}FibDiG|pkig67IXV20-XZ9?T>|wpjtIWi_Xt)GkU-R`&g1xo4+xIg zn9&@voP5skpc27TLkR?b>NAuFRR}DHOJI>__8uNoBe?BsN<(@*&qc82`-s5qgarPC z4-&kH`3Zq+pb0gEbX6AIv42L8{lS=kg`Mp%ehxJVTJ)Dd=w1uKYUT@q;;R>^A+Pgk z!2|8D2&{A^ux*=sGe4wn2>i!N;ACGz!FuUCf)PdMXh?GuE}!5VejxDDJ4;|{kgMQ1 zP%VP^H>U|iTD=vVy?-J&yYdu)2i0x`X3hx$Ma}Zr{2b~LJYIL4fJH-?V1e}u z!JfZI2`u;Y^5PpB5cF|ALg0JlEWx+*8^LPp!vsd3eP7QvG$J@)c8I`=zkl+0@CU)i z(+3IYDd@-Z;4cEzlLrXI)eP^zgC+zyGbHd!rQdWOG$R-?bw4$@<-CgI!9N6YDMkbi z_i!7?g9~!-4_4=0mB8PwQHOY7jG(5U1ZEtr6s#&u5VYvOkA{@mvrw=yHbqcVWk^7$ z%iY`jkjxMqJ0*daO*Mj749yXIJG++}lv>>=;u|aw{FoYN+75x4k^~Ig-wL*X?Gcz(ZJ>szzJ2xi1_uQ9 zo7NL3ACM||I&dAq{3iwkwtwg>IL$aBa5P#+pzY*0U-%(8As9JeErCBxy98$qX9Ti2 z`UG|xD<0z;ZXkHD1RUUJuj^f{2bg7>@w4(h7o771iu;{2)@i+Mqt9r z1+sj@Z3KM=EhS*ASSz@B^+YhN`2;e@8w<`$_YgGJ%q0*!eyreB zc^^TSr*jB+k1uB2uc&D5%}Y#Ay}+GMDW&k zDuE`8i&1>TBLvT{P9c!&w^48+3r65{LW@8@_ZxzD5=y~%l3d^V=x9m%d*h~X6-uR#y31huqso7K)!2G#7fd=zc$vlWfU=uY;0t#aV_YZLh_BM_#>=O z5iB$tK@ECWh6pD841wJF;RN1R894DnNf#lM$f=gBg0!32^e2u=noS#D`g1rvP)NoMd z_e>sSA=v2Cm%#B~&4LBi8w8)D`w%$P<)B~*myMuHrV@cAZaRX!`y2$%t9uhzyCkF^ zKZjfd9c3hN`h;&g9^@g&D(^)NvhRHt@E{*SK~qlx)7Q8O_5=zL7%EAiJ zP1|}k)5f*GohQ{ z*SiWqkX0uFAFY}NXN_tEQzJSO$ja_2*kAgHVB&`k1SZ7i$nf9NCj>>aBp_=XELb{x zMxgE1o*II#=L@cJH3-yONMKLPfjazmK%<)keC7=ie66(z=AMzGhJA&mhJ3?M1nMEO z1kN6P5X*x)1S#DmFnY$=yF92zpm(q}HK-_8CGy}Gf)T|s1db<#Y~Voyg7R4shE zn1r;Th50z-o1qj_+l4LpCCQ}}P{|Nat%P6giu zO9x{FTf8OUyJc1m-(Z5^+L&f)X#HlP9}i3s47%JzV6%Z}zts%Exz!RdX_F^7fXopb z86<(}=PQi(Az2`}dG0R_Nu#=EJ`XGr7%rATVMK4ikS-#al+#EJ;T`{-;u|g@@Z0d4 zK*gEgf;+{_2xfo$ML>C?mH=2G2%jT?v)!}>HyqXoY>Vos;oRO<=VSJ5j7))my!kaP>yUE~|CBG5VbgFx2tX>mNbhG1aZ?*vX{?GdcV z>=1a|`AQ&Sprzm%XOEyw2MHXgcNMH=91w)u`$7!|LgomTaMuycIxPXkq`*ji(vAp{ zm1?L#-*}qf!tR71G5!;Q4A(s=e1kKBTiZVp2vVu-!GjwJR;5-GkV)?RfCnxJeoTid}SbMQhCJV^o*Rc~kV;4XsXZ)Ma_tZUSX2i^#}g-GCEZoS|YLmvd6 ztR-NfA1-)9>K=kcb4qDQ_skXwc0=zY=+;n7pnTBkGJX!e2)zA^2y}L?6r7A7AlSe2 zErH(Oo(WE5eh3a06%t4tTP9da`y*)9mq6X%&#C+z0ub2ukU)k*`*l1BL{M2&Ktr0P z+fgv-AOz)M5?K4>>vX>1A%deP^QmFw!6LyC_XvUd^gIH}|MlL@Hv}UX+ai}hFV$$l znJ)x^*3)bPA;T;MXYWu1E|1?3FwVQXoF7sc0-Y%m*kw9guwDvB@T`pl&YArbEFB^c zM3!gKkQ93AD)2*!L{N|*f%f|j2(~Gr5Y*a9Alh?^Ki?3IKykkW((+b4<3S7pGtEqz zLsP_Z!G7yw1h3m<5U|@g%!O}wf}l`Uf>Gul3T~-1Dm;4t5-khuG z&o?|rU>%e~z;{mZY#t;cD2_=c;In&}F%OauBsoeTIooe350VkwI+a8Xry@h!@gN1k z+AWC$mb^Bx=D`aD*JnQ`@b9YQ4<5WkpfD(bz~Sp5f^%ysg0!yB2pEPR@!%WM5DaUG zClD}mhv4aPIs(n75_r4rkzf0*9d|w<7h}mx{p+Nkb$7(p;!Wg z9mgf}AQOSt?k5B~d4&DtK^6j|6^{wLoIOQw5A+7X!&xx|RDA6{`G#x+-)BY>nD<#; z@U`Y3u+)emFhX`i7T=JI;A_7~0+F{IHt`@2f%V`B0-+mPs`4Nofk&Tk0yk3j3ATU> z5R6a_Be3s`vtW@}h`_Z^D1mhYJZ|tqdW&Fl&kzC=iZ9mkpa?-vwO|6n@>4(Ypcp~d zfsY6*+vFyAZ>9u6vdTjOeP@OZ;TuX37>y4i5HxLM3=hf>I86#9Flyv-!7*KqAXhhl zfY<($f~}Sc1k+dg6X?>#MsUQvLr}2Jk3jn_?tc6n-XnN>`T>FAr`}cb-~$3%6JG+( UN>zd*t`fn=%l8Sme#t8RKi}-s;{X5v literal 48870 zcmZ|YcU;fy+dpu7OQ^0QJ3AMWy~^HOW`yiL8bm5eLqic7R8~oeQbdK6go-3uQj|y% zg(AQE@%x^~_wl+v_im2V7I@bBmf3I`e=rsMG|D9j)S1 z9XgxO*N6O;kme$vn;9{V&o_X4)VoF^pZfidq&*EG-)Mb3kv9wPRmC5_5#&ei{5}3Z z=V#XRwIO`IG2|0ft3+O3C+-ZNZvy!%@5)5JCS#>OpKl8JxX2G8-{MD`P(I%b@~1Zx zi2O3u6Ce0|bI3o=%n^C7^tQ7V@)O-x2xR$Zj5dUIp@HDz`+wq*LE=KCcS-tMej7erDW&FMM7N@)0WG zBEO_vP&A+a2l8{B!>Il1_89Vcb;yrX2^INOZ>LS<^BRypm=i4WPuGU*#S@3_cU71>$v`CgEJc+W%R$0=|5#OHfM{^Ct{k>8h?8Oi7SK;Ap{ zn8<6L`=rO``$GPo6gQE7+Kff$u1)uK+`A;`oMBcV|m_MKY7xD{B zokc!oQ9=hk-yiZPtB#7iuUFU*K0g5Rj*TcEZLo9#pC1VM-=mzw@h$gOnDKcX$cLFa ziu|UE-!}e10V4bv!8V9Q|GLJ{bl18g^DfBeyqALnpbw5LPj_jP=J4CEiSrhM-w zjU@Biv5~9+}VQr$WAy(LvFkEB>Ri`1~};7reC;`Sd{b zMtpuck)6{I2E7TloA^$UE6ke%7u4$^E$u z@&y?t;`re>voLPo=z<(oMD^cnLijoe!{ukqCJxy44BHdXBFgcZ>4Pq?eEnRB(IP!U8$X_+2{H+(3DSUn{V2< z<@N4-&*k%5AU|XrkI|8g=SfY0xQe8x7)dpLAV;`6&8Z`p|QHLfa>_uFpBx4XMVw5Lx+ zNmu^(dm!I(9pzVc)m+BsO(1VkpYlHY+ez*RQ^>!w+br7CxOvV^{`h8)pQA*1r}mf5 z@p*H|7Zz_4$9J=ytitE_Lf+^G<(m}hx90QvAg^sl`9Wsgp7VJN$geV{{L{Q?lKsj3 zkZ;qB@&l*5FW`@V0P+nJH;VptJMuc4&s#!X)sFIEnRB%G{6WYsFrxg5wAGus)cMbU zbuCJ(n*PuK{{P*7Wh>m!cl^CUG{|?~V_hCtBe?yPK;q{XH9W9EFxi~IU*oGYcyI_o z)DQv{rY;|Oa2SD|DuMUfzgF_V7Jms2m&4%i$0h% zip=4`F$8_A2psVpe253`2$pmrkkox$Bo90geEqXVG)Z~OwVgaTj-dK6fz=yU`0(Ha zg5^gDc#O*H$^%aX-a`pYm{-364^ASu(3rp+V=GA?P9exXuv&Eb^O>5@e1+2pX3i(z z|Hph154;fUQYLUC<=<=`cq52=x=J*u|1gc0Jn%t~A5NgofQPGi;ESM@*?&Q&=aSQU z27!+Ofp~*@&-n^x{}*Ua;KJA0Dm?H*usO;|bUNl?r2`NA5j@;Qz-Hg>D?A85(0w?8 zz-z5%^WYqUz`6vqZ`d8=!FdE0J}X5ZX4$m<%7Y6Cinb7_*KGMU9$Z9F)r){*Yqx)R za0x;E+7+Tnd;5P}%7Z`zbE612J=T-F`GOEwni7~Y_^Jk9;WC2M=>+FaovC z1f18D9N@tf1a9>S6z`wu&w~&ImWhV+#Hme}^dS^MiXDOBbG4lL3Re->OeNr>9`Tn4 zVF;#oA)xZw!jT8p5JW{U7kzO3?XZXk*Ae`(Au#1l>=zz{Blx+5z>;WpFCIi7u>QPE zG|5OcK=O#*K(P7-fdNIAr}7md5xATtaPU~g7#>6+c(H?kd8?A^Jh+L#Y8rupVb44A z;1+^@%?Vhpy>*la(FjH*EEQ+zrPIodJh+Wu=qUpI8}8QQ!5su@;|N6Tv>(fZ7zEwa z2#j8uGmQta2*wvK5q;R*I~5B!#DfF`y=@7kZRv252Z;zq z>JiZDUN40Q4-t5DB5=LsuSy;yAqY=hBszV__ug6_JVJ2b6oHK&mNw@>GJQOp^ys5lqS;5IoLQ@)AfvaOE6=biAPR6 zc!faEm4JJf9+KPpHG=6I2&m~*pW`cJAxPFEu-0qDOdez-a91Z_wm(%e0_7kWlsR8? zdZOyJf)CAM+JT z5Ih@AApY_Y#h0y%qO0M1`*i zRz4(fvt*|>U!elQr{e@V{PSTA556H#+DpLq!qiMqzK7r|L4@UB!5`ofi0$mIO z6leFM(^Uw9S`)B~in8Y`{6G-@ewH|`2Rn~z#Dkv*cEk}dSR9wggI@?@PZL-^u9M<+ zk?2D;f($bPzCE>q_zE=${1y?=*jJ*s;1CslBN(PdAR!@A(uY3?imPUdvvepR*PCxr zEdujs0#?hXwdcWK1P>hvH2OL6G!Lxs4+u=3L_ovuz2tRojUc2MfypUT6}MW%S+YT3 z_;!Zq^j!NBtNA7!Lh$znff0+{ba-$WL5rgV@^tSg?qG=~*&;ZlGbC1B)_Z2&M;DEr)hd@gA#VvT?h``H=z@F$+ z+j-!G;QKrR2Sz$d2F0TYf`$VJDAPB3RCQj?wV>-cn z1y=-*QwbQHFX+YtHw2fj5wP}sD!J0f5Y%%caIJ;MGrod50u3_)bN8No!UGQkgXa=x z(BkGB9vnx|Zxn&#^?p7)IDtU34*@05c6L1QL~uxnz?_ANhCDcl;C01RapAHbFL=#^ zQwVxIAz&8rL7xYw5sdXG5VLObMILw|usuTHk=c4fwMA!1n<3)<-i#PI-jP9)9RqCAz2QbMbIydz-N~$l9{m|f>*W#cD||U zz@H_51fy3IxDgR8859E$)E`4Y`$Cgje1&re=BX1n_V@QP9-K#@l0R9TrSAiry7J%x zg0nXWOjwhsxXCOo+(iVc-UQMgIDX?RTtaZgfItt;C5jv6qCy~oO(O}6&?}WZKtTv* zwIk5}U8!VzxQxKNdXhLxTUETY`91_ASXw}!XWs?3Jh+0uCYr$b!fqBk2tm-mnLzKZ zUXm3`D1s)-2-I~+kX-4j2>OgBP^NuqKi{M<1fG8;inBC*O#FBrTtjd(gTRX@_4+)x zjv(?rfdSKtMBt!D zz_V_)qz_RDruQIlr2n3we5Y?BsNa;p6YVigd2kDX@}~*n!nIgoqPTZ2`Vfua;9~;j z?oAc<$OO2Jpq>wb1d~A(e3R}VSY=IMqS~%?JcvQ?dL;o>GtK!th(+*ZIDyE8!zI(u zI0TE83ACI2=MP`uE`n#D$BWY%^vt0%5AGodeMX=t{*7cq>OKOCPy!mE0S);I@d!>j z5-97YDQVIJ1i5Aep6?i}xY;kRbOM4gGYCZ1=vnejN<eo1N9gbKPKH!`52*LVi1j-#+OJ0@92+Si1ICjq)#aDQYVEs7){=cdu zyADqfg>(d|Ckdzr%$B^pUm%FF zCg2(0$(nCc27*n?2}CbDH-QH)5j34hz&#>XGCpJ?@X;aA?w86YzQQX63p*2VHJq@3 z2d@zfsY}3M^is*fFAKrc*Lvc@O+Rf`#8=2ha4?#{kAd&id60wPWB`HiwLKp3AQyp+ z9f81(!;E;4hv4WM0zJ$eR`B2r0*6Ti`gR$a%!7Ocrb7sq4MOTtROh z6d*`19xJZHrs3ZtH(w!wxM%_q1D0j;72Y8@ag0DzlG;=ryhm_oCxK?GPGs_+2*Iqi z1nh5Btl>d1g3%KROm4Eki3cALtm#KUW4O8Gc_=~fw+n&&LkG6wD||#S`S%!c9Zc*4 zlX&n6L3|E@q?&TY52@lsR*Jwpj(~p4&~(1SX9PCR1P-*@*NF#Z2qJb87^`b~kOyB7 z+*(UujfdS29+V?^K9xY2?HS2w{ffY+4}p2k{*o(Qfgrmhfr$NgC2P@d2wYVNl;jVV zYz%%!pjkRvTxs7n`ieiU78kA(LDOUc34UdgRaO;(UZ)6@c_mfzr}YPdG6w>C1KgYN z;3tB|I|&?8+97#+|3Ywf6#?h+>yq_DHG+-{3FyZ=6!T50L6AR{K*7ih?RoGU!9slk zlP>s3wz2;pX!0+CMmn1Y%7;4dN>}AXuMI zz%(mVvW{~^a5SEP{e_gad<7>223HAq+zq|VgQEyu1rRvBtX#6y;*4O3D}lA0E=a~{ z7X&UQ1Zw`#Dd(HyiXeD7fiClANgh!*1d}Eb*neW_cfP_g1W(2gcz^l4;%`pGGwqHb zwHJYr!5Sm@3LXgNsuF15Ve@bv97k~P`v`IKohg4Pna!L)koo4n;Pa2Yd<9PgNp}c5 zZa8fT4^AR5^CvLG#&0>MDuz5Nl?J569?oUT+)75&4a55_HH1cnKvnb2Vn?~jv&x=P^TImTti^lk-(1r zk4$-R9l@gJ1U5g(ZOwyl1fzcp6&LQbiJN3O5P_g!CV`EMeoAid8wkSU32ch_GlOqZ zB!cFL2&gzmM)DvE!BP_fo4)Hwen)l_LHPm#s{8hC<}2JnpsG)x)w!P;Jcvf1rbWQL z?&A|YxQ*a-69RR9Ka=bv-a+8;d5E}hT5exT0c(h=x2A~65N>a#p}fuLuVuDJPXgZqx* zK?Z_p2?Sd9>V2OFFA@AcOJL2Y^>=xYiQt_bfkjhwkMiIZg4(?VHZ@q+jR&t0^jS@y zaF2f@RJ1Sa0;KbNnNi@>*HkhpMLCTSkv zK^}qu=>%>>f1JmIHwb22BM{f@x@0Yyk6^(G0uNmFn(-ChA~<${z>+BuB|IoVFn$XG zzuN=+c~FQzX*7Ysf&YBu!8-(1?Fno+b4jv;^&Y|YFFN8nJQ|&8!dEClpqEV`+0&>I z4~h|_JtQ!BcgQLpd_b@_n81W?og{0~5(L8?39PibBzcj2M6huO0Y~2y$z=T#g51Rf zbQd(%g? zZiir5F@dSQ4oF6zBM3BK6VNqWB>CZ)J%V|62z+nqAz86IAc%A$@U>nq$=ur!K^t=d zD<9V_;?I&3fs zD}*DMpiUs}cgu4;h(NINZ(niqIc5!zJkvK2jQT*}rOisoIxZ4H{bT~F?|w-(H=_`Q z-XjncW+ByZ0>dQ)jIt(3 zMxZ+gVnz|rc<%RxuMmS^Mh^lJD~3p3_pt~ZGzcuXvrzIfjzh4hHGv%+^d#f-T?9tW z2%Kx3H=6ImJp^jCeZ7NeJejA@F2PsAQYs5dtH7 z0uFnYgz^=V5p1_15H+WX0S_J{7;Q-4Zijsfc<=KoAr`AisAv#nrB8 z(n|z`P7|>4Z=*PM5Fiu53o8Nx7e*?+?ge;-AaM@?x0FMQ_mTjw5nNwEKzniFSiaL) z2u92z@bk)=N-v2c#wl&<6r_aFX!9xAQ!=V4FVyC2^)BjhrqKrfuWXu zipv3Umfj$k__LR|y|1WyUF0j|BhdXyAfu;};+B`F@D_nl4uPoB6g9p=0fNB~3G7yW z^n(Y52zo~l2={K6%!79b@_Y$Q>)~n6gZBvbITNVscXT8ViV#e)Cg6Cy^b8M*5oB%r zFHm2vI1Lr2^#g(z^9cNz9rA~-P=df@Ac1%*8^!TKRQQNssV0HZO@Ep36+R)bXh`6} zKdbNXpcKL1s-EKJ>t!`dao#GL^clgMWCF*$yDQEF1SmsL9Z4WT^T#&6Nna4myFg&2 z&b28#C`VAwi9q4mx{7~ox@gi@1gSd+>}vL;Ghd+s!O2wwuHD?bo(JC$SQrpE`?`}o z556PVJ&k~4(*ODFFZxi4V4Mztl?FYw@D-{MTu~*UKE_ya-&<7pfgqw4f%{809^xzf zL@=bLhq#w&ZMP=y;1_}sc?7Dp>_+gQ8o`an1lo5QtGJF6eW*e3DU!gM7sHzI6@DWK ziy&ZGu)hNj{vbGfo`99LY6TB!5%fJq;O>fvy?F2!LFEAg_v+Th^1urJLF9EC2>fc< z?*k945fscKkQAQezyliuIztHLoBoo#?hhe2*O@@ZfuQevg~JH+R0yP+nkepIi7Rc3 zpm$RO-SUq3@)hh5EUxMazSC|9T!s=zwrcs72geXB)goZLGA)J& z?*9w4C9tP3WG4?i5a|5X5;xzSz~p{BIF8_J1%Y;b{wi)Fh_iG8fzoRNGc7iB;wyL} zxR6L7cSwk&!bt?x*9o}TFUjC5oI;QoK%j5G$)9*|8bM=w0-JByN~UmL2nLuDu=we} zkgwp4;NwyPy;aN=cSFT#^+C{i7J-o=nuGZYz6dOa5vaSjui|GNQQ-^%rw#-<+x@J| zS2&AcU~2-;u1=9mPW%uwYd~O&(wYl=1%CuSzq*OLHBKj4@hiUQLjVG`j|8+n_!#mP z&LN0NA@JC=#U37#$7nOkYA^Zce~u zcH~#SLLh?vD+$yrd!V>iDNbt;f)3LO+`IXIJ{$>f8Nuce1a6)4Rotr-AQ(Z~U;_L4 z4Y|wr;R=FxS_H10S9;8Y5Cm_O2$2?T7T5)^;GB>E7J;B^>*;D!x<@f9Kv zoIOLJ`=pMNO@tc=`Z^IXvwOCQuMmmA;0OU%g9qt6h(h4Cg@8$5qcJ?ViD2al0(Bpa z8^?oN2(o7pShzU4F%O~<%$PvnamvxQJh+XZ???i567Ij?!5swMdk~mEqs>en#2}cV zO29F(%?2LCBG}NDK=b!OlBq)+f`&i3hzF>CkFjg{3U?6<&nK`W`9?Jl?jgv`B9K+G zSF)3MAAxZy0llWXC-D{H5!6Nzcrv*>f(H)}WLzX*c|GAB4-ycRx)FG$t1UT8i3pmw z61Z~ki)5UBh#wD0xj z!D9qX7ZDh@ru8fyJV6jXgFtTkYQ;~r;?4IIfyzh%<@vUGe1#MQMgs|KU1u%XBTGe4 z(wjg`+9AbnyP`>H2>NLdu<7T!ns3rG1ZnjN3~16jn+MMkRDA6$9?|@x>Fzv8M_`>! z;K_-wRy=rt;P^cP(;~V^=6o3lN`eVwmkiG0E4)Myc8qEnNkb^+A z2Z8rf^%cLoinEl9;6Wz>4}bR`%~!}npxcH(C#MT0Ja~h^yQY)4`37}+E_vee5p?`S zV3?n80$<@Rg6wAmCR%-wOx6n!_{9>quYFDNv%fe?g$T5-5}0KZDw$QjL-67_0c-t( zl0CBb2l(n<)l zv-m8T8J8h&$tF-QtWhOj;R}Mw1OnB*rPp~-jzBe>z~U3>k}n)z5p29bV8_Hh|L_$m z5S%|ophcHHyLj*oL4YNJEowG7HeR*m2vthT&NAZ~&EXC7E1Q1>R#bH(Q0Jg`Av=}2J3LQTn**C7NcHU#!41xhv% z4kNJJLcndhx@0577Qv?#1VUFjXYzfpL$GQR0Uz@#raU-;;O!s+SrhK>=7BweUOfmX zdF15szyU$II)QhF!Q*-0h`?5bz{X!O19;$s;Ayp{cz}FQId0{_Q3RzW1Qrjh@5=*c z1X1Y(lxDBp$O9JyLv9hMPCGD@2d)UzP7=t>-Pwc(ZU~(139OsbZ7dItA=t5xz^&yC zm+-(H!Nb)AwDVr};DHB%6*CFAUV9(RgX0KBj3zKSbdVAcP9RvTO<+s=mDhOSiJ(^} z0%u!m1@Pb`f>dP!W~&?}n>nWt>~BoqtjD81e1+2ptbeo@cWZ0QfpI+WLhz%Iz}%}I zmw4cfK;tC=--dIC@W2N_cp`y0Rh8vD@I~v55bC41cJhpZFu01V2d+>G5brO@E`y|=w1R53zXt{a1Md%S^}=W3?u`} zc?6Dz1nj@hmHg1=0s_xD1j_2BNrv5v2t39T$XUKYvf#Lcz;Ymg&(lYx@SP4sVBepB zr}o*Wo>J#Yx&Z!+= zArisrUIbcowEf6~C&65E8+Y~LD4+55(swE>( z5`xI?1fui14&^I6LU5%Cfu_@Z2J#>o!LbGe^5SktCRmRV460BU50Kj%=Muic69oF7 z2n?GOFWHrTiXiy~0fSu)Bww0R5SS+ssGe78$Tuk!!L>L7r^^ird60%6@j3zDM3;L! zc!nU^pMYk|CVo74j-amxffkRn{CSX$z}<#`d&$!dJa~a%qBVh(u5%=RIw1o=<{knC z7XRm;T@qWsFA>aKMPQbG1IcHdOa$sv2~@aS>hgVfg<$Yx0yDl2kc5g4nJELb{J=$b)PIFFO$MOB^cMF3Le*-HJe9YNiC_BFJq?py$TT8GMuS5TsWB zBOcK|BL+#p8w5*=378h?NEYDv2zNNY}*weSR6~>LmLap z=4K&+^qT~17d`yRH|ZUM@s|mVR6F3wgZBtB0}1H)-jd7&iV&>xArPqh?^?b>F#=<6 z0<9|BOFm6~K+xBTz;dnIk{4MCf+q(E)Ng)$7~iCi2u^J#a3)}cWMKb_{;*y z>%J7hn?VHnEZcH~Z_;N3&w3Kr+#+x!56TccY)c>^Ej^qEUl8Q}Q4HqvuV)3f{ilAi?fu+0hB)=1=KyaggK*jhBZ@x+25a?wR=yz28Fb}>X2){*O zq;`bl!c`)89YG*wR+8kGIaLTIpC_<4psotvq#p=21rV4u@tqY9ej+$?lEAr&X484_ z3xS0xf##EoBzu+B2pl#NX!L%gWF}C9VES4Dy;n|=47{TGs5gT^ zyxIuKYPS}Fqb`BV+nU_xEBr+;y)Oa(*}t55VAUADKWx+_@Vud}8f(OnBLZ%RC=6I`s2QCPP4I`jg`c$$8az!w) z8-b_&uIcj?+z>=76DW_`(U}Lw5R7R^z)np~avj_e-29;;o`=s3b=~<29tfJhAmD5i zA(`kNM{wi;0bQ++wtR&X2>ikcEUL^&{m&B(r;O1P-$Z41IZ3vQqRxkT#NlSMY&m ze3N_;MClMHFV(rugEI)MdJ@<+YPanB1A>Sy1e#xJaEY(rhu~6c0(BN@Nrqj21ZOJR zirafs-)VV#g#ZNO@(GyKmQCWpIRquo39NdtaX$~vBe6upGN#gBmN#oPmYg+K&`#|f+tYdDJsK?oY#639yX*MtX`5t!^J z5ci@=a$18C%-coac5-krU*QUZ$IA)KT=rD58ybS3eBOV7b&O>1J`_Q(X#_U4t&+U? zt|EvWOCad`Z8g3RVF=s?66jlNe31v&5M*~Jke>cr^7Z&Sf}@%Qny0ne%~uFVpw*N> zOn#+gb29>gZ&e%dh_KyTa1 zzkG$82vTnnc>Ob7^0n+1g7E7EW<5xk4D8Venw=ofY}H-KuzMT9aVrAh&5uiN?>h)e zw-9i1n4!UUItIa{1q6I1te1>&u?Vau6L7jZO|qVjL$Gcjf%E$vxA9H7iy&2lKzoy7 z$;|j30^>FWp4?NDT!;Gz;{Uc5cWZ+UFU%C0boW1h$xb{1{YnDyb-fjTh$+AW1WLsO z8eTS1+#?ep0YOwIfg~40#V;HJBqDH0Be4IUh8}z$9wO*^n?R48^NL>wM1>>-7Xt}Y zXm>fuS9pZrm?r_PQTONaAQ?duCj!s)cfIAoV+03m2m~D8rubP$^x+AD{M`g@U);5v zukaK>@j3z>8*C`$K?;I1h6J>lose`o6+!o@1ojTCImcH>L!dL9!23lWikq9F)6Wp( z>JsoaD3x^jIf4(}3G{WjqqzGcDx@Qr)Pca$mcEI6A6_6h)SQ6jf{xZa$UxAk4uPd< z<~@1v62Y-=%Ho-RZ*IRs7~9j&;25S@O7VA~S{t`_cp_zJHP9Ec_0XZ=ob z6G2qSLhv`3z_{zp6n}UoKsJJA-UQAr9NwF6QVxQvE(EUY87Pj^qCzf$^sNNCw=l}( zE94<~yNZDF?PU#k@CJe70s`k%UEc5@A3^j?0vf#@DgMY^^x-XnpJNE@Znf(rU!efO z!2Se&?ftAcBNG)05yWc{IO{tnmap&*fm2fgAzk+G;K6$Y9lo^^w|B!U-O5Pg92wr9o*tv7!&i@DJnw9AQ diff --git a/src/catboost_info/learn_error.tsv b/src/catboost_info/learn_error.tsv index 630912a..7084c5e 100644 --- a/src/catboost_info/learn_error.tsv +++ b/src/catboost_info/learn_error.tsv @@ -1,1001 +1,1001 @@ iter RMSE -0 620.5760578 -1 598.7211525 -2 578.2542645 -3 558.7096874 -4 539.5736844 -5 521.609713 -6 504.8846172 -7 492.1700973 -8 477.7864847 -9 465.4277067 -10 452.8171807 -11 441.6858787 -12 431.7097688 -13 421.7999127 -14 412.5099288 -15 404.4239704 -16 396.741244 -17 389.5154561 -18 383.0563827 -19 376.1352158 -20 370.1635061 -21 364.6459778 -22 358.16175 -23 353.1040473 -24 348.1582543 -25 343.7226294 -26 338.5719893 -27 333.7115713 -28 328.9920956 -29 325.0515775 -30 321.8384646 -31 318.4423634 -32 315.3978003 -33 312.5828544 -34 309.70646 -35 307.1095685 -36 304.0939364 -37 301.7656679 -38 299.4047899 -39 297.254545 -40 295.5138736 -41 293.4425759 -42 291.4891169 -43 289.6100769 -44 287.5775281 -45 285.4212346 -46 283.8463576 -47 281.9264811 -48 280.051098 -49 278.4764502 -50 276.9272552 -51 275.6266174 -52 274.4524048 -53 272.8090315 -54 271.8368357 -55 270.9166964 -56 270.0903729 -57 268.9312575 -58 267.9345147 -59 267.1499581 -60 266.1951508 -61 265.0723269 -62 264.1388956 -63 263.0923067 -64 262.3625219 -65 261.2620305 -66 260.7711009 -67 259.7131163 -68 259.0637417 -69 258.2124852 -70 257.5328243 -71 256.7125437 -72 256.1055048 -73 255.3754692 -74 254.8823518 -75 254.4031309 -76 253.8559975 -77 253.1719715 -78 252.2324528 -79 251.6595185 -80 251.1411799 -81 250.7367294 -82 250.3055688 -83 249.7581863 -84 249.2938842 -85 248.7773177 -86 248.3403401 -87 247.982252 -88 247.4584931 -89 246.8851434 -90 246.5099382 -91 245.8354768 -92 245.2869179 -93 244.7912936 -94 244.4087143 -95 244.0489623 -96 243.6377569 -97 243.4286293 -98 243.1334243 -99 242.7073623 -100 242.3659535 -101 242.0960148 -102 241.436651 -103 240.8090563 -104 240.4908939 -105 240.1725981 -106 239.7763861 -107 239.4181978 -108 239.258638 -109 239.080851 -110 238.6872763 -111 238.3360667 -112 237.7427827 -113 237.4329402 -114 237.0253636 -115 236.7503984 -116 236.3986407 -117 236.0135935 -118 235.5269172 -119 235.0559068 -120 234.905801 -121 234.7084891 -122 234.5241149 -123 234.392105 -124 234.0393362 -125 233.773507 -126 233.5237624 -127 233.376281 -128 232.9864858 -129 232.8036273 -130 232.4698334 -131 232.2137239 -132 232.0840741 -133 231.7513162 -134 231.586349 -135 231.3809344 -136 230.9589638 -137 230.7387266 -138 230.3753151 -139 230.1166207 -140 229.9530904 -141 229.7657174 -142 229.4736469 -143 229.0638619 -144 228.7876325 -145 228.5006388 -146 228.1224495 -147 227.9919517 -148 227.7967905 -149 227.5287409 -150 227.217202 -151 227.0298558 -152 226.4916197 -153 226.3253887 -154 226.0642439 -155 225.8036987 -156 225.7026397 -157 225.4650761 -158 225.3383149 -159 225.1078556 -160 224.7164752 -161 224.4483443 -162 224.2232208 -163 224.0064678 -164 223.6112494 -165 223.4253842 -166 223.1600008 -167 222.9922281 -168 222.7160757 -169 222.4628553 -170 222.296121 -171 222.1253392 -172 222.0139124 -173 221.775356 -174 221.5265825 -175 221.287133 -176 221.1300465 -177 220.7293612 -178 220.5116166 -179 220.3514391 -180 219.9277564 -181 219.7085278 -182 219.5998303 -183 219.4407344 -184 219.29101 -185 219.0436525 -186 218.770451 -187 218.5945932 -188 218.2581429 -189 218.0864669 -190 217.8877466 -191 217.7246398 -192 217.5238023 -193 217.3326247 -194 217.1211953 -195 216.925611 -196 216.8230584 -197 216.5201517 -198 216.2508957 -199 216.1233317 -200 215.811324 -201 215.5956551 -202 215.4542468 -203 215.3201373 -204 214.9949874 -205 214.8331019 -206 214.6393455 -207 214.4479167 -208 214.2650215 -209 214.0568441 -210 213.9143114 -211 213.721702 -212 213.41104 -213 213.1949372 -214 213.0270526 -215 212.7538405 -216 212.5595728 -217 212.4074009 -218 212.2530877 -219 212.0959803 -220 211.8406285 -221 211.5512477 -222 211.365273 -223 211.2034178 -224 211.0413434 -225 210.7881797 -226 210.5369368 -227 210.405083 -228 210.2253045 -229 210.0247202 -230 209.7909861 -231 209.4997118 -232 209.364259 -233 209.2414656 -234 209.0772891 -235 208.8902887 -236 208.6105659 -237 208.4291014 -238 208.2279804 -239 208.0627794 -240 207.9374235 -241 207.7787936 -242 207.5817058 -243 207.4728772 -244 207.3245384 -245 207.2228748 -246 207.0689809 -247 206.8975115 -248 206.7478097 -249 206.6005494 -250 206.468099 -251 206.3422869 -252 206.1414829 -253 205.9644681 -254 205.7283998 -255 205.5421054 -256 205.2745842 -257 205.041696 -258 204.8803275 -259 204.7109159 -260 204.5470522 -261 204.3814112 -262 204.1540795 -263 203.9456007 -264 203.7542633 -265 203.6111948 -266 203.502345 -267 203.3240413 -268 203.2213233 -269 203.0896125 -270 202.9597142 -271 202.8116892 -272 202.6939957 -273 202.5625231 -274 202.4652237 -275 202.3172169 -276 202.23506 -277 202.1644949 -278 202.056679 -279 201.9486307 -280 201.7974622 -281 201.6298657 -282 201.5293781 -283 201.3647573 -284 201.25341 -285 201.0646447 -286 200.918735 -287 200.6881865 -288 200.5228313 -289 200.3837488 -290 200.2422331 -291 200.094994 -292 199.8753125 -293 199.7094567 -294 199.605786 -295 199.3385588 -296 199.2320876 -297 199.1027486 -298 198.9789279 -299 198.8841844 -300 198.7285464 -301 198.55084 -302 198.3555984 -303 198.2389263 -304 197.9905757 -305 197.8348423 -306 197.7605851 -307 197.6215181 -308 197.4505016 -309 197.3730339 -310 197.2520972 -311 197.1495845 -312 197.0352064 -313 196.9182128 -314 196.7949101 -315 196.6093993 -316 196.5053793 -317 196.3744013 -318 196.2257628 -319 196.0638383 -320 195.9289779 -321 195.8190688 -322 195.6815703 -323 195.5413677 -324 195.4682167 -325 195.2978161 -326 195.1942873 -327 195.1162076 -328 194.9746025 -329 194.8179789 -330 194.7127652 -331 194.6382857 -332 194.5424384 -333 194.4349933 -334 194.3543094 -335 194.0993312 -336 194.0135372 -337 193.8402122 -338 193.6777786 -339 193.5930087 -340 193.5067935 -341 193.3609881 -342 193.2696722 -343 193.1976931 -344 193.1263009 -345 193.0047342 -346 192.8487651 -347 192.7284966 -348 192.6351138 -349 192.5254176 -350 192.3888625 -351 192.2755245 -352 192.2127443 -353 192.1302873 -354 191.9055645 -355 191.7294828 -356 191.568677 -357 191.443408 -358 191.3957191 -359 191.2704588 -360 191.1772952 -361 191.1327905 -362 190.9854519 -363 190.8623563 -364 190.7479296 -365 190.5527679 -366 190.4441503 -367 190.3973551 -368 190.2883586 -369 190.1664498 -370 190.120527 -371 190.0802994 -372 189.9223014 -373 189.7892053 -374 189.5943591 -375 189.5387938 -376 189.4445027 -377 189.3813257 -378 189.3324864 -379 189.2885793 -380 189.2552105 -381 189.179812 -382 188.9820377 -383 188.8518642 -384 188.7455103 -385 188.6055841 -386 188.4972974 -387 188.4338897 -388 188.34498 -389 188.2514147 -390 188.152989 -391 187.9772986 -392 187.9431041 -393 187.8765676 -394 187.7638602 -395 187.6849129 -396 187.6361009 -397 187.5594122 -398 187.4591949 -399 187.3619788 -400 187.270605 -401 187.2452938 -402 187.159415 -403 187.0832662 -404 186.9560774 -405 186.8743768 -406 186.7374332 -407 186.6307242 -408 186.5582266 -409 186.4450421 -410 186.3391759 -411 186.2324441 -412 186.1796021 -413 186.1061204 -414 185.9979506 -415 185.867875 -416 185.702765 -417 185.5976795 -418 185.4760376 -419 185.3929718 -420 185.3831971 -421 185.3368821 -422 185.3193232 -423 185.2239131 -424 185.0183108 -425 185.0015195 -426 184.8885168 -427 184.8343846 -428 184.7301678 -429 184.6708038 -430 184.5756505 -431 184.4081002 -432 184.228694 -433 184.1191102 -434 184.0442987 -435 183.96577 -436 183.8399255 -437 183.7643996 -438 183.5118897 -439 183.4584052 -440 183.331782 -441 183.2542201 -442 183.1409617 -443 183.0345605 -444 182.9280187 -445 182.8625432 -446 182.8465892 -447 182.6982961 -448 182.6318438 -449 182.5616179 -450 182.4716346 -451 182.2913506 -452 182.1712237 -453 182.1027065 -454 182.0648602 -455 181.9680114 -456 181.8750332 -457 181.7181897 -458 181.6530143 -459 181.5897422 -460 181.4746955 -461 181.4043126 -462 181.3270018 -463 181.2381878 -464 181.2080899 -465 181.106551 -466 181.103535 -467 181.0244082 -468 180.9615272 -469 180.7706652 -470 180.624935 -471 180.5269104 -472 180.4765264 -473 180.3834482 -474 180.2639858 -475 180.1702528 -476 180.0225695 -477 179.9477072 -478 179.8249567 -479 179.6925675 -480 179.5833148 -481 179.4904883 -482 179.4228934 -483 179.2384883 -484 179.109219 -485 178.9352855 -486 178.8564377 -487 178.7805235 -488 178.6698185 -489 178.5399334 -490 178.4391087 -491 178.3471156 -492 178.2236641 -493 178.1266405 -494 178.0390315 -495 177.9634547 -496 177.8902598 -497 177.7888727 -498 177.7362393 -499 177.6660873 -500 177.5863547 -501 177.4314962 -502 177.3647374 -503 177.2970494 -504 177.0784032 -505 176.9869789 -506 176.89893 -507 176.850455 -508 176.7674189 -509 176.7127759 -510 176.6132741 -511 176.5367589 -512 176.4328288 -513 176.3185399 -514 176.2538829 -515 176.1315483 -516 176.0519877 -517 175.9759822 -518 175.9037283 -519 175.848076 -520 175.7356241 -521 175.5652818 -522 175.4690234 -523 175.3809055 -524 175.2942901 -525 175.2165234 -526 175.1659626 -527 175.1573371 -528 174.96195 -529 174.8663389 -530 174.7844807 -531 174.7510207 -532 174.6480597 -533 174.5377275 -534 174.4662678 -535 174.3605491 -536 174.2828401 -537 174.1661108 -538 174.0673211 -539 173.9856491 -540 173.9147132 -541 173.8294166 -542 173.7298658 -543 173.5880418 -544 173.5281171 -545 173.4516819 -546 173.4342129 -547 173.3127128 -548 173.206062 -549 173.1492986 -550 173.0130969 -551 172.893947 -552 172.7611007 -553 172.736079 -554 172.7137881 -555 172.6579546 -556 172.5064037 -557 172.4754634 -558 172.459081 -559 172.3967515 -560 172.3260768 -561 172.1883826 -562 172.1592547 -563 172.0947926 -564 171.9975385 -565 171.9071591 -566 171.7891156 -567 171.7565608 -568 171.6807685 -569 171.570738 -570 171.4700707 -571 171.3490784 -572 171.2372567 -573 171.1496029 -574 171.099743 -575 171.0677297 -576 171.0405341 -577 170.9925189 -578 170.9129758 -579 170.8878927 -580 170.8116758 -581 170.7451172 -582 170.6569936 -583 170.6255335 -584 170.6184465 -585 170.5327195 -586 170.5095005 -587 170.3642124 -588 170.3068174 -589 170.2329624 -590 170.1333308 -591 170.053162 -592 169.9448808 -593 169.9123989 -594 169.9057385 -595 169.7900202 -596 169.7772512 -597 169.7056982 -598 169.5984399 -599 169.5032421 -600 169.4561474 -601 169.3699062 -602 169.305575 -603 169.2404599 -604 169.2086352 -605 169.1011452 -606 169.0452562 -607 168.9697965 -608 168.9421965 -609 168.8608469 -610 168.7781547 -611 168.7037561 -612 168.6166654 -613 168.5526465 -614 168.504967 -615 168.4134884 -616 168.3235521 -617 168.1931894 -618 168.1107431 -619 168.0214098 -620 167.9648276 -621 167.7924691 -622 167.7147463 -623 167.6457893 -624 167.5430052 -625 167.4406624 -626 167.3812053 -627 167.3378154 -628 167.2908131 -629 167.1963146 -630 167.0846589 -631 167.0613336 -632 166.9812865 -633 166.8680765 -634 166.7957381 -635 166.7145206 -636 166.7058037 -637 166.6426366 -638 166.5670646 -639 166.4920211 -640 166.4078027 -641 166.3081368 -642 166.2116999 -643 166.1274796 -644 166.0790992 -645 166.0357799 -646 165.962273 -647 165.9019152 -648 165.8558937 -649 165.7641631 -650 165.7002471 -651 165.6268019 -652 165.5344013 -653 165.392062 -654 165.3212326 -655 165.2797581 -656 165.2170122 -657 165.1420009 -658 165.0755963 -659 164.9968519 -660 164.9489828 -661 164.8478661 -662 164.7759615 -663 164.6991226 -664 164.6358342 -665 164.5313499 -666 164.4655778 -667 164.3551327 -668 164.3051792 -669 164.2206248 -670 164.1154037 -671 164.0671512 -672 164.0157729 -673 163.9750414 -674 163.9143972 -675 163.8075698 -676 163.7516995 -677 163.6632195 -678 163.5923771 -679 163.4705736 -680 163.3718061 -681 163.2934134 -682 163.2281985 -683 163.2102114 -684 163.1441079 -685 163.0580932 -686 162.9950592 -687 162.9090395 -688 162.8920924 -689 162.8345433 -690 162.7700818 -691 162.6908036 -692 162.6196179 -693 162.5436298 -694 162.5286597 -695 162.4242181 -696 162.3686309 -697 162.3080356 -698 162.2667814 -699 162.231127 -700 162.1489955 -701 162.0831873 -702 162.0758045 -703 161.964918 -704 161.8758627 -705 161.8548391 -706 161.8101211 -707 161.7187124 -708 161.6516914 -709 161.5661086 -710 161.5587169 -711 161.5457211 -712 161.4999244 -713 161.4617143 -714 161.4166367 -715 161.3399772 -716 161.2996099 -717 161.2307714 -718 161.1928741 -719 161.1637091 -720 161.0983423 -721 161.0148873 -722 160.9451019 -723 160.8261927 -724 160.7561659 -725 160.6715214 -726 160.6394061 -727 160.5229188 -728 160.4697367 -729 160.3785935 -730 160.2862503 -731 160.2251663 -732 160.1487605 -733 160.1240794 -734 160.0710998 -735 159.9828284 -736 159.9184254 -737 159.8197422 -738 159.7446298 -739 159.6842708 -740 159.5813619 -741 159.5324978 -742 159.4702881 -743 159.3924217 -744 159.2892326 -745 159.191532 -746 159.118559 -747 159.0547218 -748 158.9860944 -749 158.9133329 -750 158.8576396 -751 158.7732692 -752 158.6995461 -753 158.6461295 -754 158.5689125 -755 158.4946566 -756 158.4819395 -757 158.3932271 -758 158.2680788 -759 158.1816382 -760 158.1209948 -761 158.0317113 -762 157.9773785 -763 157.9679703 -764 157.8993187 -765 157.8641394 -766 157.8561322 -767 157.7767195 -768 157.6659797 -769 157.6058352 -770 157.5409917 -771 157.5109585 -772 157.4239183 -773 157.3707664 -774 157.2749161 -775 157.2026584 -776 157.1490453 -777 157.0974185 -778 157.0801566 -779 156.9796945 -780 156.9137618 -781 156.8270067 -782 156.7234856 -783 156.5901787 -784 156.5333982 -785 156.478268 -786 156.3858542 -787 156.302214 -788 156.239163 -789 156.173421 -790 156.1217055 -791 156.065658 -792 156.0292425 -793 155.9668071 -794 155.890493 -795 155.8363218 -796 155.7761696 -797 155.6872043 -798 155.6413914 -799 155.631401 -800 155.5951873 -801 155.5524366 -802 155.4753066 -803 155.3967061 -804 155.3653802 -805 155.3147926 -806 155.2483292 -807 155.193335 -808 155.1856722 -809 155.1008834 -810 155.0038712 -811 154.9104913 -812 154.8535916 -813 154.8033404 -814 154.725405 -815 154.6424424 -816 154.5807476 -817 154.5071098 -818 154.4382791 -819 154.4265616 -820 154.3337491 -821 154.2576509 -822 154.1577433 -823 154.0901532 -824 154.0559305 -825 154.0185414 -826 153.9412265 -827 153.9211247 -828 153.8574726 -829 153.7654705 -830 153.7400922 -831 153.6740471 -832 153.642455 -833 153.5827398 -834 153.5245288 -835 153.4661062 -836 153.3933415 -837 153.3287539 -838 153.2598922 -839 153.1515636 -840 153.1473142 -841 153.0338801 -842 153.0178343 -843 152.9460883 -844 152.918966 -845 152.8312041 -846 152.78308 -847 152.7487912 -848 152.6983273 -849 152.6319831 -850 152.5748801 -851 152.5100366 -852 152.5049602 -853 152.4564103 -854 152.3800864 -855 152.285522 -856 152.2781469 -857 152.2041695 -858 152.1357107 -859 152.1165446 -860 152.0605614 -861 152.0541583 -862 151.9797206 -863 151.9037024 -864 151.8984377 -865 151.813874 -866 151.7435255 -867 151.7219671 -868 151.6650861 -869 151.6595382 -870 151.6109379 -871 151.6069977 -872 151.5436183 -873 151.4913898 -874 151.4202941 -875 151.3613494 -876 151.2026222 -877 151.1555265 -878 151.0772481 -879 150.9916595 -880 150.9314521 -881 150.8986426 -882 150.8855747 -883 150.8408177 -884 150.7253838 -885 150.706442 -886 150.6417125 -887 150.6344233 -888 150.5922534 -889 150.4628082 -890 150.4122494 -891 150.3956709 -892 150.3275285 -893 150.2969107 -894 150.2052382 -895 150.1691078 -896 150.1109709 -897 150.0576739 -898 149.9702923 -899 149.9026189 -900 149.8272303 -901 149.7448782 -902 149.7070366 -903 149.5793268 -904 149.5729533 -905 149.4734865 -906 149.4129335 -907 149.3598982 -908 149.3562156 -909 149.2838875 -910 149.2195985 -911 149.137772 -912 149.0653388 -913 149.0204833 -914 148.9676564 -915 148.8282892 -916 148.7676855 -917 148.7016584 -918 148.597869 -919 148.5592363 -920 148.4818044 -921 148.4164138 -922 148.3558286 -923 148.3067852 -924 148.2336354 -925 148.1981063 -926 148.1542932 -927 148.1316522 -928 148.0689529 -929 147.9477277 -930 147.876007 -931 147.8238683 -932 147.7837836 -933 147.7406771 -934 147.7156061 -935 147.6271726 -936 147.5795474 -937 147.5196341 -938 147.4861583 -939 147.4465668 -940 147.362469 -941 147.3239782 -942 147.2896656 -943 147.2488776 -944 147.1936001 -945 147.1478732 -946 147.1115156 -947 147.0357018 -948 146.9633357 -949 146.9100555 -950 146.813088 -951 146.741552 -952 146.7219137 -953 146.6980453 -954 146.582191 -955 146.5022511 -956 146.4254712 -957 146.3291937 -958 146.2793178 -959 146.1929628 -960 146.1008178 -961 146.0718436 -962 145.9990703 -963 145.958025 -964 145.9025629 -965 145.8426431 -966 145.8146602 -967 145.7309913 -968 145.6587865 -969 145.5881575 -970 145.5430903 -971 145.5097176 -972 145.4526352 -973 145.4019602 -974 145.3656847 -975 145.2857149 -976 145.2234128 -977 145.2064965 -978 145.1480789 -979 145.114356 -980 145.0449639 -981 145.0004732 -982 144.9514353 -983 144.8622853 -984 144.7985469 -985 144.7440993 -986 144.6718544 -987 144.6056144 -988 144.5573611 -989 144.4290071 -990 144.3823427 -991 144.3302253 -992 144.3036239 -993 144.2459734 -994 144.1843438 -995 144.1006371 -996 144.0372847 -997 143.949663 -998 143.8827635 -999 143.8352937 +0 2.720548453 +1 2.694132526 +2 2.665962781 +3 2.642241506 +4 2.62244599 +5 2.600649233 +6 2.579687656 +7 2.552523406 +8 2.532397801 +9 2.505681253 +10 2.485061637 +11 2.46683253 +12 2.448770931 +13 2.419522373 +14 2.399798866 +15 2.37948966 +16 2.359919906 +17 2.338702652 +18 2.313971843 +19 2.291201055 +20 2.273754042 +21 2.251255765 +22 2.235854947 +23 2.218353411 +24 2.203470066 +25 2.184484138 +26 2.169216631 +27 2.14886893 +28 2.128917727 +29 2.114027822 +30 2.099416389 +31 2.091025094 +32 2.078846023 +33 2.058697654 +34 2.038258133 +35 2.018806474 +36 1.997759806 +37 1.981053234 +38 1.965194358 +39 1.948816586 +40 1.935581118 +41 1.917987593 +42 1.905417901 +43 1.889406833 +44 1.874866473 +45 1.861003861 +46 1.844352059 +47 1.823538848 +48 1.812123053 +49 1.795066675 +50 1.780182169 +51 1.767495056 +52 1.75235765 +53 1.739457307 +54 1.723484894 +55 1.706710813 +56 1.690889319 +57 1.675855646 +58 1.660674238 +59 1.647618507 +60 1.635099101 +61 1.621909677 +62 1.609620956 +63 1.59916655 +64 1.59017611 +65 1.580881161 +66 1.569336886 +67 1.558039503 +68 1.546879195 +69 1.532234119 +70 1.518550263 +71 1.507253369 +72 1.496695354 +73 1.487942866 +74 1.476409462 +75 1.465616052 +76 1.455057498 +77 1.44296708 +78 1.429826279 +79 1.41974668 +80 1.409456426 +81 1.397457911 +82 1.388393198 +83 1.378229855 +84 1.366877086 +85 1.35789815 +86 1.348325218 +87 1.341262764 +88 1.332426051 +89 1.321842196 +90 1.311609427 +91 1.30136676 +92 1.29288076 +93 1.283555061 +94 1.274734646 +95 1.266646838 +96 1.256044394 +97 1.24709217 +98 1.237743899 +99 1.230171332 +100 1.222258795 +101 1.215322426 +102 1.206525381 +103 1.199850954 +104 1.191762579 +105 1.181346426 +106 1.174714331 +107 1.165924876 +108 1.158899684 +109 1.155144167 +110 1.144890143 +111 1.139498457 +112 1.131987531 +113 1.125690542 +114 1.118390562 +115 1.113385794 +116 1.107535431 +117 1.099983842 +118 1.095151867 +119 1.090218555 +120 1.085575948 +121 1.078250547 +122 1.069744163 +123 1.064194254 +124 1.05880538 +125 1.05212947 +126 1.045333516 +127 1.038221244 +128 1.03178127 +129 1.025456048 +130 1.017386344 +131 1.011233174 +132 1.003295287 +133 0.9988004203 +134 0.991259183 +135 0.985552894 +136 0.9826004845 +137 0.9763826175 +138 0.9675159782 +139 0.9597410543 +140 0.9534439273 +141 0.9475512675 +142 0.9403686879 +143 0.9352489275 +144 0.9288031078 +145 0.9230362005 +146 0.9184094146 +147 0.9119617162 +148 0.9070000136 +149 0.9024889187 +150 0.9013939037 +151 0.8965030031 +152 0.8912640457 +153 0.8865312283 +154 0.8815965524 +155 0.8758761069 +156 0.8731888725 +157 0.8700777917 +158 0.8632749945 +159 0.8570227759 +160 0.8509619379 +161 0.8477605183 +162 0.8423093773 +163 0.8369026126 +164 0.8312505838 +165 0.8252839369 +166 0.819747486 +167 0.8144923156 +168 0.8088333023 +169 0.8037095467 +170 0.8005175594 +171 0.7975637386 +172 0.7938281238 +173 0.7884839504 +174 0.78348888 +175 0.7784019057 +176 0.7747173146 +177 0.7696768673 +178 0.7659458239 +179 0.760855627 +180 0.756588947 +181 0.7514675237 +182 0.7468763344 +183 0.741581273 +184 0.7386262233 +185 0.7341394915 +186 0.7293541795 +187 0.7241985116 +188 0.7215936293 +189 0.7178417645 +190 0.7132823145 +191 0.7098593249 +192 0.7071647344 +193 0.7054845821 +194 0.7012562214 +195 0.6971713518 +196 0.694815285 +197 0.6902237708 +198 0.6861141064 +199 0.6815513809 +200 0.6774701245 +201 0.6733501231 +202 0.6688357144 +203 0.6649493154 +204 0.6608035714 +205 0.6577545713 +206 0.6538812252 +207 0.6514941839 +208 0.6474949116 +209 0.6453968912 +210 0.6442074492 +211 0.6422324037 +212 0.6379562306 +213 0.6360399508 +214 0.634886761 +215 0.631252193 +216 0.6275602322 +217 0.6240837299 +218 0.6204946073 +219 0.6165918497 +220 0.6150392692 +221 0.6111750638 +222 0.6073269155 +223 0.6040166846 +224 0.6020209723 +225 0.5986587466 +226 0.5951814994 +227 0.5914308796 +228 0.5878636989 +229 0.5867378452 +230 0.5857540315 +231 0.5829123686 +232 0.5793798766 +233 0.5778402242 +234 0.5749412626 +235 0.5713108255 +236 0.5699338593 +237 0.5689752784 +238 0.5653006296 +239 0.5615547578 +240 0.5605843782 +241 0.5570831909 +242 0.5551767153 +243 0.5517340672 +244 0.5482946073 +245 0.5445822795 +246 0.5412988489 +247 0.537638269 +248 0.5359182855 +249 0.5340162907 +250 0.5330792456 +251 0.5300793197 +252 0.5287726448 +253 0.5253292978 +254 0.5236371148 +255 0.5202606925 +256 0.51861805 +257 0.5170592241 +258 0.5153453445 +259 0.5144666776 +260 0.5114669221 +261 0.5077937675 +262 0.5044954318 +263 0.5036610776 +264 0.5021053288 +265 0.4995714595 +266 0.4979367775 +267 0.4950812453 +268 0.4937947389 +269 0.4908733419 +270 0.489990093 +271 0.4876650351 +272 0.4860612079 +273 0.4852191574 +274 0.4835301223 +275 0.4819293765 +276 0.4790610154 +277 0.4761177809 +278 0.4731417045 +279 0.4703040294 +280 0.4689904967 +281 0.4659933902 +282 0.4646420809 +283 0.461772349 +284 0.4590557907 +285 0.4582481745 +286 0.4574752221 +287 0.4566830422 +288 0.453866822 +289 0.4510507948 +290 0.449585012 +291 0.4468245728 +292 0.4440874051 +293 0.442973228 +294 0.4401695033 +295 0.439441154 +296 0.4368120734 +297 0.4353646799 +298 0.4339773957 +299 0.4313099305 +300 0.4286837731 +301 0.4274361531 +302 0.4248176413 +303 0.4221721801 +304 0.4196192053 +305 0.4170197109 +306 0.4144317164 +307 0.4133654445 +308 0.4108771099 +309 0.4083462032 +310 0.4058195874 +311 0.4033840149 +312 0.4009690783 +313 0.3984851321 +314 0.3960536258 +315 0.3937399775 +316 0.3913785278 +317 0.3902511385 +318 0.3879371581 +319 0.3855565989 +320 0.3831975823 +321 0.3809406857 +322 0.3786286136 +323 0.3764052116 +324 0.3742007091 +325 0.371787124 +326 0.3695457897 +327 0.3673118771 +328 0.3650981961 +329 0.3629793409 +330 0.3608030751 +331 0.3586407996 +332 0.3565012233 +333 0.3543720263 +334 0.352262113 +335 0.3512516937 +336 0.3492337768 +337 0.3471658858 +338 0.3449827275 +339 0.3429391736 +340 0.3409205619 +341 0.3389112803 +342 0.3368019015 +343 0.3348896422 +344 0.3328188678 +345 0.330770881 +346 0.3288491545 +347 0.3268400418 +348 0.3248530006 +349 0.3228877756 +350 0.3209441146 +351 0.3190217684 +352 0.3171204912 +353 0.3152400401 +354 0.3133801751 +355 0.3115406593 +356 0.3097212587 +357 0.3079217423 +358 0.3061418818 +359 0.3042720565 +360 0.3025323575 +361 0.3007982114 +362 0.2990899802 +363 0.2973890667 +364 0.2957066731 +365 0.2940425881 +366 0.2923310783 +367 0.2906984762 +368 0.2890836246 +369 0.2874722602 +370 0.2858201756 +371 0.2842350208 +372 0.2826533434 +373 0.2812349319 +374 0.2798347797 +375 0.2784525935 +376 0.2769232854 +377 0.2753972495 +378 0.273972415 +379 0.2726364939 +380 0.2711429807 +381 0.2698320566 +382 0.2683442697 +383 0.2668921831 +384 0.2656189592 +385 0.2641737179 +386 0.262751108 +387 0.2615144215 +388 0.2601104185 +389 0.258716582 +390 0.2573362185 +391 0.2561422872 +392 0.2549633635 +393 0.2536108344 +394 0.2524538284 +395 0.2511280234 +396 0.2498027232 +397 0.2484902125 +398 0.2471975475 +399 0.2460918633 +400 0.244642729 +401 0.243209397 +402 0.2419414973 +403 0.2406858219 +404 0.2394422483 +405 0.2382106553 +406 0.2371607773 +407 0.2359474664 +408 0.2347433893 +409 0.2335481743 +410 0.2323644655 +411 0.2313569304 +412 0.230361828 +413 0.2292017884 +414 0.2280542974 +415 0.2269115435 +416 0.22560725 +417 0.2244835387 +418 0.2233706376 +419 0.222096638 +420 0.2209968974 +421 0.2199083794 +422 0.2188302271 +423 0.2177579169 +424 0.2165262863 +425 0.2154718276 +426 0.214578462 +427 0.213539613 +428 0.2125091121 +429 0.2113184565 +430 0.2103023374 +431 0.2092959964 +432 0.2084446061 +433 0.2074531577 +434 0.2064681693 +435 0.2052339375 +436 0.204263604 +437 0.2031382559 +438 0.202326925 +439 0.2013776755 +440 0.2004362935 +441 0.1992514732 +442 0.198322366 +443 0.1974022008 +444 0.1966282812 +445 0.1957216981 +446 0.1945737677 +447 0.1942656523 +448 0.1935122053 +449 0.1926267956 +450 0.1915043929 +451 0.1906287872 +452 0.1903310612 +453 0.1894664535 +454 0.1883692008 +455 0.1875177468 +456 0.1872284548 +457 0.1863915061 +458 0.1855515906 +459 0.1852694706 +460 0.184202318 +461 0.1835116852 +462 0.1824619909 +463 0.1821862772 +464 0.1813861123 +465 0.180577004 +466 0.179775751 +467 0.1791143457 +468 0.1780970791 +469 0.1778325967 +470 0.1770499358 +471 0.1762867001 +472 0.1752920356 +473 0.1750350809 +474 0.1742889145 +475 0.1733116329 +476 0.1730602007 +477 0.1723061384 +478 0.1716897013 +479 0.1707302104 +480 0.1697799796 +481 0.1695356131 +482 0.1685918578 +483 0.1677024633 +484 0.1674619789 +485 0.166868696 +486 0.1659938948 +487 0.1651169886 +488 0.164881953 +489 0.164080098 +490 0.1632295294 +491 0.1624406999 +492 0.1615938246 +493 0.1613660756 +494 0.1605923029 +495 0.1597013663 +496 0.1591674861 +497 0.1583439593 +498 0.1581226754 +499 0.1573095914 +500 0.1565622665 +501 0.1556968958 +502 0.1549614062 +503 0.1541084372 +504 0.1537788073 +505 0.1529959395 +506 0.1522785174 +507 0.1514434776 +508 0.1512343668 +509 0.1504705517 +510 0.1497704987 +511 0.1489523715 +512 0.1481975652 +513 0.1479938963 +514 0.1473105419 +515 0.1464826066 +516 0.1457456553 +517 0.1455467633 +518 0.1448187855 +519 0.1440991087 +520 0.1439033723 +521 0.1432458064 +522 0.1424510452 +523 0.1422601657 +524 0.1414632321 +525 0.1406834466 +526 0.1399134368 +527 0.1397228245 +528 0.1389419392 +529 0.1381864355 +530 0.1379998862 +531 0.1372311871 +532 0.1364899027 +533 0.1363073202 +534 0.1355766579 +535 0.1348232278 +536 0.1346445205 +537 0.1339276102 +538 0.1334572584 +539 0.1326929159 +540 0.1319912385 +541 0.1318185642 +542 0.1313594745 +543 0.1306579732 +544 0.1302056808 +545 0.1297643002 +546 0.1293283458 +547 0.128651421 +548 0.1284865042 +549 0.1278011865 +550 0.1271367054 +551 0.126975263 +552 0.1262506419 +553 0.1255985334 +554 0.1251726031 +555 0.1245084283 +556 0.1243518475 +557 0.1239331759 +558 0.1235189099 +559 0.1231151164 +560 0.1224634185 +561 0.1221509578 +562 0.1220005479 +563 0.1216927557 +564 0.1213884866 +565 0.1212418308 +566 0.1209421023 +567 0.1206458075 +568 0.120502796 +569 0.1198904821 +570 0.1192860569 +571 0.1186053896 +572 0.1184663074 +573 0.1181809947 +574 0.1178989484 +575 0.117763306 +576 0.1171752824 +577 0.1165072166 +578 0.1163743402 +579 0.1161006516 +580 0.1158300937 +581 0.1157004883 +582 0.115128317 +583 0.1147615824 +584 0.1141551201 +585 0.1138936482 +586 0.1137684382 +587 0.1135030363 +588 0.113247852 +589 0.1131255946 +590 0.1125733893 +591 0.1123238109 +592 0.1120695237 +593 0.1119510071 +594 0.1113103875 +595 0.11106781 +596 0.1108202527 +597 0.1107003178 +598 0.110463556 +599 0.1102220389 +600 0.1101050784 +601 0.1095232957 +602 0.1092932582 +603 0.1089722558 +604 0.1087394921 +605 0.1086169239 +606 0.1083030052 +607 0.1080826031 +608 0.1077747825 +609 0.1075515682 +610 0.1074337089 +611 0.1071327134 +612 0.1067912465 +613 0.1065823364 +614 0.1064684631 +615 0.1061773936 +616 0.1058474815 +617 0.1056385983 +618 0.1053564437 +619 0.1051584918 +620 0.105049851 +621 0.1047332913 +622 0.1044604814 +623 0.104262396 +624 0.104157296 +625 0.1038594951 +626 0.1035571289 +627 0.1034549959 +628 0.1031944209 +629 0.1029076131 +630 0.1027270235 +631 0.1026283302 +632 0.1023402544 +633 0.1020633618 +634 0.1018160263 +635 0.1017207487 +636 0.1014436567 +637 0.1011769013 +638 0.100938386 +639 0.1007644556 +640 0.1006729994 +641 0.100408312 +642 0.1002454169 +643 0.09999146133 +644 0.09988192235 +645 0.09965573072 +646 0.09940834207 +647 0.09915829194 +648 0.099052778 +649 0.09881247576 +650 0.09822775214 +651 0.09812471649 +652 0.09762716361 +653 0.09752564648 +654 0.0969513233 +655 0.09636180626 +656 0.09577630716 +657 0.09519479662 +658 0.09461724554 +659 0.09404362503 +660 0.09347390648 +661 0.09290806149 +662 0.09238318762 +663 0.091939649 +664 0.09150136136 +665 0.09094743228 +666 0.09051674792 +667 0.09042160461 +668 0.08987435025 +669 0.0893308143 +670 0.08882689874 +671 0.08829008779 +672 0.08775692153 +673 0.08726225358 +674 0.08685100707 +675 0.08644463242 +676 0.08604307304 +677 0.08595028758 +678 0.08543100287 +679 0.08491524316 +680 0.08440298295 +681 0.08392789096 +682 0.08354016167 +683 0.08335926913 +684 0.08297704988 +685 0.08288815959 +686 0.08238806836 +687 0.08189136905 +688 0.08139803715 +689 0.08094051213 +690 0.0804532706 +691 0.07996933008 +692 0.07951267972 +693 0.07914998126 +694 0.07895818316 +695 0.0787693361 +696 0.07868626208 +697 0.07824456165 +698 0.07777373311 +699 0.0773375051 +700 0.07687248205 +701 0.07644165633 +702 0.07609556253 +703 0.07593685957 +704 0.0755956494 +705 0.07551643361 +706 0.07506234063 +707 0.07461132252 +708 0.0741633572 +709 0.07371842273 +710 0.07330588473 +711 0.0728664284 +712 0.07254060085 +713 0.07210592521 +714 0.0717028512 +715 0.07154954806 +716 0.0711211285 +717 0.07104717686 +718 0.07065041442 +719 0.0702276674 +720 0.06980777725 +721 0.06941825834 +722 0.06900352935 +723 0.06861882058 +724 0.06822865634 +725 0.06792531303 +726 0.0676255728 +727 0.06732415645 +728 0.06725447485 +729 0.06711350077 +730 0.06681774269 +731 0.06674980858 +732 0.06645693879 +733 0.06632000025 +734 0.06625340478 +735 0.06596498092 +736 0.06568060637 +737 0.06561569412 +738 0.0653294443 +739 0.06519777447 +740 0.06513414152 +741 0.0650049922 +742 0.06472294329 +743 0.06466056544 +744 0.06453423771 +745 0.06425596394 +746 0.06419481623 +747 0.0638103838 +748 0.06342855725 +749 0.06304931793 +750 0.0627763102 +751 0.06265552767 +752 0.06259665596 +753 0.06222264085 +754 0.06185116013 +755 0.06148219573 +756 0.06111572971 +757 0.06075174427 +758 0.06039022178 +759 0.06005517297 +760 0.05971537024 +761 0.05946000802 +762 0.05920833305 +763 0.05895606323 +764 0.05870928117 +765 0.05865462721 +766 0.05840697053 +767 0.05829718141 +768 0.05824360228 +769 0.05813591384 +770 0.05789184566 +771 0.0578393211 +772 0.05773397587 +773 0.05749314874 +774 0.05744165782 +775 0.05733860205 +776 0.05699709394 +777 0.05665790105 +778 0.05644965949 +779 0.05639987397 +780 0.05616602526 +781 0.05583179163 +782 0.05549982377 +783 0.05517010558 +784 0.0548656573 +785 0.0546658444 +786 0.05446864591 +787 0.05442095851 +788 0.05419698572 +789 0.05389240284 +790 0.05357226081 +791 0.05325429193 +792 0.05293848079 +793 0.05264733943 +794 0.05235807176 +795 0.05204786872 +796 0.05176217842 +797 0.05147832628 +798 0.0514334533 +799 0.05115166391 +800 0.05084889527 +801 0.05057058968 +802 0.05029407493 +803 0.04999667096 +804 0.0497012875 +805 0.04943666263 +806 0.04914472766 +807 0.04885477697 +808 0.04856679655 +809 0.04828077252 +810 0.04799669112 +811 0.04771453869 +812 0.04743430168 +813 0.04715596669 +814 0.04687952037 +815 0.04660494953 +816 0.04633224107 +817 0.04606138199 +818 0.0457923594 +819 0.04552516054 +820 0.04525977271 +821 0.04499618335 +822 0.04474784496 +823 0.044501102 +824 0.04423388551 +825 0.04396851471 +826 0.04370497491 +827 0.04344325158 +828 0.04318333036 +829 0.04292519699 +830 0.0426688374 +831 0.04241423763 +832 0.04216138388 +833 0.042125085 +834 0.04187420739 +835 0.04162504597 +836 0.04137758741 +837 0.04113181845 +838 0.04088772601 +839 0.04064529713 +840 0.04040451897 +841 0.04037029021 +842 0.04013137497 +843 0.03989408276 +844 0.03965840114 +845 0.03942431781 +846 0.03919182059 +847 0.03896089741 +848 0.03873153633 +849 0.03869922408 +850 0.03847162085 +851 0.03824555396 +852 0.03802101183 +853 0.03779798301 +854 0.03757645615 +855 0.03735642 +856 0.03732568994 +857 0.03710732693 +858 0.03689043042 +859 0.03671682058 +860 0.03654470019 +861 0.03637405797 +862 0.03620967221 +863 0.03604135699 +864 0.03587919555 +865 0.03571317522 +866 0.03555320681 +867 0.03538944972 +868 0.03523164348 +869 0.03507011841 +870 0.03491444393 +871 0.03471050929 +872 0.03455704345 +873 0.03435538691 +874 0.03415509481 +875 0.03399931281 +876 0.03384042341 +877 0.03369157702 +878 0.03354398106 +879 0.03351608963 +880 0.03332092056 +881 0.03312707322 +882 0.03297728025 +883 0.03283336115 +884 0.03264253721 +885 0.03249147948 +886 0.03233465135 +887 0.03219429777 +888 0.03204620513 +889 0.031907749 +890 0.03175481154 +891 0.03161828328 +892 0.03159204083 +893 0.0314221472 +894 0.03133956127 +895 0.03131391696 +896 0.03123248588 +897 0.03120726732 +898 0.03102949435 +899 0.03094965783 +900 0.03092503204 +901 0.03090069508 +902 0.03082209299 +903 0.03079815878 +904 0.03061972289 +905 0.03044065121 +906 0.0302630724 +907 0.03018460934 +908 0.0300128721 +909 0.02996331276 +910 0.02994054303 +911 0.02976720524 +912 0.02959504097 +913 0.02942282365 +914 0.02925282636 +915 0.02918006309 +916 0.02913317828 +917 0.02911150808 +918 0.02894343458 +919 0.02877892144 +920 0.02861290838 +921 0.02853981552 +922 0.02846810508 +923 0.0284316981 +924 0.02841114408 +925 0.02839083207 +926 0.02822959594 +927 0.02818648028 +928 0.02816671677 +929 0.02800433593 +930 0.02784304769 +931 0.02768284411 +932 0.02761445069 +933 0.02758063375 +934 0.02755168591 +935 0.02753301523 +936 0.02737679166 +937 0.02721790031 +938 0.02706034166 +939 0.02690478942 +940 0.0268389905 +941 0.02677583338 +942 0.02674416238 +943 0.02671714026 +944 0.0266985326 +945 0.02654717238 +946 0.02639683714 +947 0.0262452108 +948 0.02609359055 +949 0.02596931466 +950 0.02590718259 +951 0.02588260671 +952 0.02586494568 +953 0.02585070182 +954 0.02582690676 +955 0.02580980124 +956 0.02566171433 +957 0.02551642062 +958 0.02537013423 +959 0.0252266294 +960 0.02520386459 +961 0.025190472 +962 0.02504612145 +963 0.02490273488 +964 0.02476196417 +965 0.02462031768 +966 0.02450412155 +967 0.02448595805 +968 0.02435046126 +969 0.02421682025 +970 0.02408007633 +971 0.02394250335 +972 0.02381219809 +973 0.02367790182 +974 0.02365218133 +975 0.02363720271 +976 0.02350220716 +977 0.02336979077 +978 0.02324373357 +979 0.02311107209 +980 0.02298102014 +981 0.02285811508 +982 0.0227277404 +983 0.0225982347 +984 0.02247836467 +985 0.02235204037 +986 0.02223451937 +987 0.02210788955 +988 0.02198380409 +989 0.02186922502 +990 0.02174475916 +991 0.02162112279 +992 0.02150937519 +993 0.02138881239 +994 0.02127925943 +995 0.02115833375 +996 0.02103989169 +997 0.02093308387 +998 0.02081420684 +999 0.02069612207 diff --git a/src/catboost_info/time_left.tsv b/src/catboost_info/time_left.tsv index be1fa19..c61046c 100644 --- a/src/catboost_info/time_left.tsv +++ b/src/catboost_info/time_left.tsv @@ -1,1001 +1,1001 @@ iter Passed Remaining -0 3 3472 -1 6 3203 -2 9 3081 -3 11 2954 -4 14 2869 -5 17 2824 -6 19 2779 -7 22 2747 -8 24 2721 -9 27 2707 -10 29 2689 -11 32 2676 -12 35 2662 -13 37 2649 -14 40 2640 -15 43 2652 -16 45 2641 -17 48 2630 -18 50 2620 -19 53 2609 -20 55 2602 -21 58 2598 -22 60 2590 -23 63 2583 -24 66 2577 -25 68 2572 -26 71 2567 -27 74 2574 -28 76 2568 -29 79 2562 -30 81 2556 -31 84 2550 -32 86 2546 -33 89 2545 -34 92 2542 -35 94 2537 -36 97 2534 -37 99 2530 -38 102 2526 -39 105 2524 -40 107 2519 -41 110 2514 -42 112 2510 -43 115 2506 -44 117 2502 -45 120 2500 -46 123 2497 -47 125 2492 -48 128 2489 -49 132 2509 -50 135 2527 -51 138 2525 -52 141 2523 -53 143 2518 -54 146 2513 -55 148 2508 -56 151 2504 -57 153 2500 -58 156 2495 -59 158 2490 -60 161 2486 -61 164 2482 -62 166 2477 -63 169 2473 -64 171 2469 -65 174 2466 -66 176 2463 -67 179 2460 -68 182 2457 -69 184 2454 -70 187 2450 -71 189 2446 -72 192 2443 -73 194 2439 -74 197 2437 -75 200 2434 -76 202 2430 -77 205 2427 -78 207 2423 -79 210 2420 -80 213 2416 -81 215 2412 -82 218 2408 -83 220 2404 -84 223 2400 -85 225 2397 -86 228 2393 -87 230 2390 -88 233 2387 -89 235 2384 -90 238 2380 -91 240 2377 -92 243 2374 -93 247 2382 -94 249 2379 -95 252 2375 -96 254 2372 -97 258 2375 -98 265 2413 -99 271 2446 -100 278 2480 -101 281 2476 -102 283 2472 -103 286 2467 -104 289 2463 -105 291 2460 -106 294 2455 -107 296 2451 -108 299 2446 -109 301 2441 -110 304 2437 -111 307 2437 -112 309 2433 -113 312 2428 -114 314 2424 -115 317 2420 -116 320 2416 -117 322 2413 -118 325 2409 -119 328 2405 -120 330 2401 -121 333 2397 -122 335 2392 -123 337 2387 -124 340 2384 -125 343 2379 -126 345 2375 -127 348 2371 -128 350 2368 -129 353 2364 -130 355 2359 -131 358 2356 -132 360 2352 -133 363 2348 -134 365 2344 -135 368 2341 -136 371 2338 -137 373 2335 -138 376 2331 -139 378 2327 -140 381 2324 -141 384 2320 -142 386 2317 -143 389 2314 -144 391 2310 -145 394 2307 -146 397 2303 -147 399 2299 -148 402 2296 -149 404 2292 -150 407 2289 -151 409 2285 -152 412 2281 -153 414 2278 -154 417 2274 -155 419 2271 -156 422 2267 -157 424 2264 -158 427 2260 -159 430 2258 -160 432 2254 -161 435 2251 -162 437 2248 -163 440 2244 -164 442 2241 -165 445 2238 -166 448 2235 -167 450 2232 -168 453 2229 -169 455 2226 -170 458 2222 -171 461 2219 -172 463 2215 -173 466 2212 -174 468 2209 -175 471 2205 -176 473 2202 -177 476 2199 -178 478 2196 -179 481 2192 -180 483 2189 -181 486 2186 -182 488 2182 -183 491 2179 -184 493 2176 -185 496 2173 -186 499 2170 -187 501 2166 -188 504 2163 -189 506 2160 -190 509 2157 -191 511 2154 -192 514 2151 -193 517 2148 -194 519 2145 -195 522 2141 -196 524 2138 -197 527 2135 -198 529 2132 -199 532 2129 -200 534 2126 -201 537 2124 -202 540 2121 -203 542 2118 -204 545 2114 -205 547 2111 -206 550 2108 -207 552 2105 -208 555 2102 -209 558 2099 -210 560 2096 -211 563 2092 -212 565 2089 -213 568 2086 -214 570 2083 -215 573 2080 -216 575 2076 -217 578 2073 -218 580 2071 -219 583 2068 -220 586 2065 -221 588 2062 -222 591 2059 -223 593 2057 -224 596 2054 -225 598 2050 -226 601 2047 -227 603 2044 -228 606 2041 -229 608 2038 -230 611 2035 -231 613 2032 -232 616 2029 -233 618 2026 -234 621 2022 -235 623 2019 -236 626 2016 -237 628 2013 -238 631 2011 -239 634 2008 -240 636 2005 -241 639 2002 -242 641 1999 -243 644 1996 -244 647 1995 -245 650 1992 -246 652 1989 -247 655 1986 -248 657 1983 -249 660 1980 -250 662 1978 -251 665 1975 -252 668 1972 -253 670 1969 -254 673 1966 -255 675 1964 -256 678 1961 -257 680 1958 -258 683 1955 -259 685 1952 -260 688 1949 -261 691 1946 -262 693 1943 -263 696 1941 -264 698 1938 -265 701 1935 -266 703 1932 -267 706 1929 -268 709 1927 -269 711 1924 -270 714 1922 -271 717 1919 -272 720 1917 -273 722 1915 -274 725 1912 -275 728 1910 -276 730 1907 -277 733 1904 -278 736 1902 -279 738 1899 -280 741 1898 -281 744 1895 -282 747 1893 -283 749 1890 -284 752 1887 -285 754 1884 -286 757 1881 -287 759 1878 -288 762 1875 -289 764 1872 -290 767 1869 -291 771 1869 -292 773 1866 -293 776 1865 -294 779 1862 -295 781 1859 -296 784 1856 -297 786 1853 -298 789 1850 -299 792 1848 -300 794 1845 -301 797 1842 -302 799 1840 -303 802 1837 -304 805 1834 -305 807 1831 -306 810 1828 -307 812 1825 -308 815 1823 -309 817 1820 -310 820 1817 -311 822 1814 -312 825 1812 -313 828 1809 -314 830 1806 -315 833 1804 -316 836 1801 -317 838 1798 -318 841 1795 -319 843 1793 -320 846 1790 -321 849 1787 -322 851 1784 -323 854 1782 -324 856 1779 -325 859 1776 -326 861 1773 -327 864 1770 -328 866 1768 -329 869 1765 -330 872 1762 -331 874 1759 -332 877 1756 -333 883 1761 -334 888 1763 -335 893 1764 -336 897 1764 -337 900 1763 -338 903 1762 -339 906 1760 -340 909 1758 -341 912 1755 -342 915 1752 -343 917 1750 -344 920 1747 -345 922 1744 -346 925 1741 -347 928 1738 -348 930 1735 -349 933 1732 -350 935 1729 -351 938 1726 -352 940 1724 -353 943 1721 -354 945 1718 -355 948 1715 -356 950 1712 -357 953 1709 -358 955 1706 -359 958 1704 -360 961 1701 -361 963 1698 -362 966 1695 -363 968 1692 -364 971 1689 -365 973 1686 -366 976 1684 -367 978 1681 -368 981 1678 -369 983 1675 -370 986 1672 -371 988 1669 -372 991 1666 -373 993 1663 -374 996 1661 -375 999 1658 -376 1001 1655 -377 1004 1652 -378 1006 1649 -379 1009 1646 -380 1011 1643 -381 1014 1640 -382 1016 1638 -383 1019 1635 -384 1021 1632 -385 1024 1629 -386 1027 1627 -387 1029 1624 -388 1032 1621 -389 1034 1618 -390 1037 1615 -391 1039 1612 -392 1042 1609 -393 1044 1607 -394 1047 1604 -395 1049 1601 -396 1052 1598 -397 1054 1595 -398 1057 1592 -399 1060 1590 -400 1062 1587 -401 1065 1584 -402 1067 1581 -403 1070 1578 -404 1072 1575 -405 1075 1573 -406 1077 1570 -407 1080 1567 -408 1082 1564 -409 1085 1562 -410 1087 1559 -411 1090 1556 -412 1093 1553 -413 1095 1550 -414 1098 1548 -415 1102 1547 -416 1105 1545 -417 1108 1542 -418 1110 1540 -419 1113 1537 -420 1115 1534 -421 1118 1531 -422 1120 1528 -423 1123 1525 -424 1125 1523 -425 1128 1520 -426 1130 1517 -427 1133 1514 -428 1135 1511 -429 1138 1508 -430 1140 1505 -431 1143 1503 -432 1145 1500 -433 1148 1497 -434 1150 1494 -435 1153 1492 -436 1156 1489 -437 1158 1486 -438 1161 1483 -439 1163 1481 -440 1166 1478 -441 1168 1475 -442 1171 1472 -443 1173 1469 -444 1176 1467 -445 1178 1464 -446 1181 1461 -447 1184 1458 -448 1186 1456 -449 1189 1453 -450 1191 1450 -451 1194 1447 -452 1196 1445 -453 1199 1442 -454 1202 1440 -455 1204 1437 -456 1207 1434 -457 1209 1431 -458 1212 1429 -459 1214 1426 -460 1217 1423 -461 1220 1420 -462 1222 1418 -463 1225 1415 -464 1227 1412 -465 1231 1411 -466 1237 1412 -467 1243 1414 -468 1249 1414 -469 1252 1411 -470 1254 1409 -471 1257 1406 -472 1259 1403 -473 1262 1401 -474 1265 1398 -475 1267 1395 -476 1270 1392 -477 1272 1390 -478 1276 1388 -479 1278 1385 -480 1281 1382 -481 1283 1379 -482 1286 1377 -483 1289 1374 -484 1292 1372 -485 1295 1370 -486 1298 1367 -487 1301 1365 -488 1303 1362 -489 1306 1359 -490 1309 1357 -491 1311 1354 -492 1314 1351 -493 1316 1348 -494 1319 1346 -495 1322 1343 -496 1325 1341 -497 1327 1338 -498 1330 1335 -499 1332 1332 -500 1335 1329 -501 1337 1327 -502 1340 1324 -503 1343 1321 -504 1345 1318 -505 1348 1316 -506 1350 1313 -507 1353 1310 -508 1356 1308 -509 1358 1305 -510 1361 1302 -511 1363 1299 -512 1366 1297 -513 1368 1294 -514 1371 1291 -515 1374 1288 -516 1376 1286 -517 1379 1283 -518 1381 1280 -519 1384 1277 -520 1386 1275 -521 1389 1272 -522 1392 1269 -523 1394 1266 -524 1397 1264 -525 1399 1261 -526 1402 1258 -527 1404 1255 -528 1407 1253 -529 1409 1250 -530 1412 1247 -531 1415 1244 -532 1417 1242 -533 1420 1239 -534 1423 1236 -535 1425 1234 -536 1428 1231 -537 1430 1228 -538 1433 1225 -539 1435 1223 -540 1438 1220 -541 1440 1217 -542 1443 1214 -543 1446 1212 -544 1448 1209 -545 1451 1206 -546 1453 1203 -547 1456 1201 -548 1458 1198 -549 1461 1195 -550 1464 1193 -551 1466 1190 -552 1469 1187 -553 1471 1184 -554 1474 1181 -555 1476 1179 -556 1479 1176 -557 1481 1173 -558 1484 1170 -559 1486 1168 -560 1489 1165 -561 1491 1162 -562 1494 1160 -563 1497 1157 -564 1499 1154 -565 1502 1151 -566 1504 1149 -567 1507 1146 -568 1509 1143 -569 1512 1140 -570 1514 1138 -571 1517 1135 -572 1520 1132 -573 1522 1130 -574 1525 1127 -575 1527 1124 -576 1530 1121 -577 1532 1119 -578 1535 1116 -579 1537 1113 -580 1540 1110 -581 1542 1108 -582 1545 1105 -583 1547 1102 -584 1550 1099 -585 1552 1097 -586 1555 1094 -587 1557 1091 -588 1560 1088 -589 1562 1086 -590 1565 1083 -591 1568 1080 -592 1570 1078 -593 1573 1075 -594 1575 1072 -595 1578 1069 -596 1580 1066 -597 1582 1064 -598 1585 1061 -599 1588 1058 -600 1590 1056 -601 1593 1053 -602 1595 1050 -603 1598 1047 -604 1600 1045 -605 1603 1042 -606 1605 1039 -607 1608 1037 -608 1611 1034 -609 1613 1031 -610 1616 1028 -611 1619 1026 -612 1621 1023 -613 1624 1021 -614 1626 1018 -615 1629 1015 -616 1632 1013 -617 1635 1010 -618 1637 1007 -619 1640 1005 -620 1642 1002 -621 1645 999 -622 1647 997 -623 1650 994 -624 1653 991 -625 1655 989 -626 1658 986 -627 1660 983 -628 1663 981 -629 1666 978 -630 1668 975 -631 1671 973 -632 1673 970 -633 1676 967 -634 1679 965 -635 1681 962 -636 1684 959 -637 1687 957 -638 1690 954 -639 1692 952 -640 1695 949 -641 1698 947 -642 1701 944 -643 1703 941 -644 1706 939 -645 1709 936 -646 1712 934 -647 1714 931 -648 1717 928 -649 1719 926 -650 1722 923 -651 1725 920 -652 1729 918 -653 1731 916 -654 1734 913 -655 1736 910 -656 1739 908 -657 1742 905 -658 1744 902 -659 1747 900 -660 1749 897 -661 1752 894 -662 1755 892 -663 1757 889 -664 1760 886 -665 1762 884 -666 1765 881 -667 1767 878 -668 1770 875 -669 1773 873 -670 1775 870 -671 1778 867 -672 1780 865 -673 1783 862 -674 1785 859 -675 1788 857 -676 1791 854 -677 1793 851 -678 1796 849 -679 1798 846 -680 1801 843 -681 1804 841 -682 1806 838 -683 1809 835 -684 1811 833 -685 1814 830 -686 1816 827 -687 1820 825 -688 1823 822 -689 1825 820 -690 1828 817 -691 1830 814 -692 1833 812 -693 1836 809 -694 1838 806 -695 1841 804 -696 1844 801 -697 1846 799 -698 1849 796 -699 1851 793 -700 1854 790 -701 1856 788 -702 1859 785 -703 1861 782 -704 1864 780 -705 1867 777 -706 1869 774 -707 1872 772 -708 1874 769 -709 1877 766 -710 1880 764 -711 1882 761 -712 1885 758 -713 1887 756 -714 1890 753 -715 1892 750 -716 1895 748 -717 1897 745 -718 1900 742 -719 1902 739 -720 1905 737 -721 1907 734 -722 1910 731 -723 1913 729 -724 1915 726 -725 1918 723 -726 1920 721 -727 1923 718 -728 1925 715 -729 1928 713 -730 1931 710 -731 1933 707 -732 1936 705 -733 1938 702 -734 1941 699 -735 1943 697 -736 1946 694 -737 1949 691 -738 1951 689 -739 1954 686 -740 1956 683 -741 1959 681 -742 1961 678 -743 1964 675 -744 1966 673 -745 1969 670 -746 1972 667 -747 1974 665 -748 1977 662 -749 1979 659 -750 1982 657 -751 1984 654 -752 1987 651 -753 1990 649 -754 1992 646 -755 1995 644 -756 1997 641 -757 2000 638 -758 2002 635 -759 2005 633 -760 2007 630 -761 2010 627 -762 2013 625 -763 2015 622 -764 2018 619 -765 2020 617 -766 2023 614 -767 2025 611 -768 2028 609 -769 2030 606 -770 2033 603 -771 2035 601 -772 2038 598 -773 2041 595 -774 2043 593 -775 2046 590 -776 2048 587 -777 2051 585 -778 2053 582 -779 2056 579 -780 2058 577 -781 2061 574 -782 2064 572 -783 2066 569 -784 2069 566 -785 2072 564 -786 2077 562 -787 2080 559 -788 2083 557 -789 2085 554 -790 2088 551 -791 2090 549 -792 2093 546 -793 2095 543 -794 2098 541 -795 2101 538 -796 2103 535 -797 2106 533 -798 2109 530 -799 2111 527 -800 2114 525 -801 2116 522 -802 2119 519 -803 2121 517 -804 2124 514 -805 2126 511 -806 2129 509 -807 2132 506 -808 2134 504 -809 2137 501 -810 2139 498 -811 2142 496 -812 2145 493 -813 2147 490 -814 2150 488 -815 2152 485 -816 2155 482 -817 2157 480 -818 2160 477 -819 2163 474 -820 2165 472 -821 2168 469 -822 2170 466 -823 2173 464 -824 2176 461 -825 2178 458 -826 2181 456 -827 2183 453 -828 2186 450 -829 2188 448 -830 2191 445 -831 2193 442 -832 2196 440 -833 2198 437 -834 2201 434 -835 2203 432 -836 2206 429 -837 2209 427 -838 2212 424 -839 2215 421 -840 2217 419 -841 2220 416 -842 2223 414 -843 2225 411 -844 2228 408 -845 2230 406 -846 2233 403 -847 2235 400 -848 2238 398 -849 2240 395 -850 2244 392 -851 2246 390 -852 2249 387 -853 2251 384 -854 2254 382 -855 2256 379 -856 2259 376 -857 2261 374 -858 2264 371 -859 2266 369 -860 2269 366 -861 2271 363 -862 2274 361 -863 2277 358 -864 2279 355 -865 2282 353 -866 2284 350 -867 2287 347 -868 2289 345 -869 2292 342 -870 2294 339 -871 2296 337 -872 2299 334 -873 2302 331 -874 2304 329 -875 2307 326 -876 2309 323 -877 2312 321 -878 2315 318 -879 2317 316 -880 2320 313 -881 2322 310 -882 2325 308 -883 2327 305 -884 2330 302 -885 2332 300 -886 2335 297 -887 2337 294 -888 2340 292 -889 2344 289 -890 2346 287 -891 2349 284 -892 2351 281 -893 2354 279 -894 2357 276 -895 2359 273 -896 2362 271 -897 2364 268 -898 2367 265 -899 2370 263 -900 2372 260 -901 2375 258 -902 2378 255 -903 2380 252 -904 2383 250 -905 2385 247 -906 2388 244 -907 2390 242 -908 2393 239 -909 2395 236 -910 2398 234 -911 2401 231 -912 2403 229 -913 2406 226 -914 2408 223 -915 2411 221 -916 2414 218 -917 2416 215 -918 2419 213 -919 2421 210 -920 2424 207 -921 2426 205 -922 2429 202 -923 2432 200 -924 2434 197 -925 2437 194 -926 2439 192 -927 2442 189 -928 2444 186 -929 2447 184 -930 2449 181 -931 2452 178 -932 2454 176 -933 2457 173 -934 2459 171 -935 2462 168 -936 2465 165 -937 2467 163 -938 2470 160 -939 2472 157 -940 2475 155 -941 2477 152 -942 2480 149 -943 2482 147 -944 2485 144 -945 2488 142 -946 2490 139 -947 2493 136 -948 2495 134 -949 2498 131 -950 2500 128 -951 2503 126 -952 2506 123 -953 2508 120 -954 2511 118 -955 2513 115 -956 2516 113 -957 2518 110 -958 2521 107 -959 2524 105 -960 2526 102 -961 2529 99 -962 2531 97 -963 2534 94 -964 2536 92 -965 2539 89 -966 2542 86 -967 2544 84 -968 2547 81 -969 2549 78 -970 2552 76 -971 2554 73 -972 2557 70 -973 2559 68 -974 2562 65 -975 2565 63 -976 2567 60 -977 2570 57 -978 2572 55 -979 2575 52 -980 2577 49 -981 2580 47 -982 2582 44 -983 2585 42 -984 2588 39 -985 2590 36 -986 2593 34 -987 2595 31 -988 2598 28 -989 2600 26 -990 2603 23 -991 2606 21 -992 2608 18 -993 2611 15 -994 2613 13 -995 2616 10 -996 2618 7 -997 2621 5 -998 2623 2 -999 2626 0 +0 0 394 +1 0 347 +2 0 314 +3 1 306 +4 1 303 +5 1 299 +6 2 299 +7 2 300 +8 2 303 +9 3 301 +10 3 300 +11 3 298 +12 3 296 +13 4 292 +14 4 282 +15 4 277 +16 4 278 +17 5 278 +18 5 276 +19 5 278 +20 5 279 +21 6 278 +22 6 278 +23 6 278 +24 7 278 +25 7 277 +26 7 277 +27 7 277 +28 8 275 +29 8 276 +30 8 276 +31 9 273 +32 9 273 +33 9 273 +34 9 272 +35 10 273 +36 10 273 +37 10 273 +38 11 273 +39 11 272 +40 11 272 +41 11 272 +42 12 272 +43 12 272 +44 12 272 +45 13 271 +46 13 272 +47 13 273 +48 14 273 +49 14 272 +50 14 273 +51 14 271 +52 15 273 +53 15 273 +54 15 273 +55 16 274 +56 16 274 +57 16 274 +58 17 273 +59 17 273 +60 17 273 +61 18 272 +62 18 272 +63 18 272 +64 18 270 +65 19 270 +66 19 270 +67 19 270 +68 20 270 +69 20 269 +70 20 269 +71 20 268 +72 21 268 +73 21 268 +74 21 267 +75 22 267 +76 22 267 +77 22 266 +78 22 266 +79 23 266 +80 23 265 +81 23 265 +82 23 265 +83 24 264 +84 24 264 +85 24 264 +86 25 264 +87 25 263 +88 25 263 +89 26 263 +90 26 262 +91 26 262 +92 26 262 +93 27 261 +94 27 260 +95 27 260 +96 28 266 +97 29 271 +98 30 276 +99 30 275 +100 30 275 +101 31 274 +102 31 274 +103 31 273 +104 32 273 +105 32 272 +106 32 272 +107 32 271 +108 33 272 +109 33 272 +110 34 272 +111 34 270 +112 34 270 +113 34 269 +114 34 268 +115 35 268 +116 35 267 +117 35 267 +118 36 266 +119 36 265 +120 36 265 +121 36 264 +122 37 264 +123 37 263 +124 37 263 +125 37 263 +126 38 262 +127 38 262 +128 38 262 +129 39 261 +130 39 261 +131 39 260 +132 39 260 +133 40 259 +134 40 259 +135 40 259 +136 40 257 +137 41 257 +138 41 256 +139 41 256 +140 41 255 +141 42 255 +142 43 259 +143 44 264 +144 44 264 +145 45 263 +146 45 262 +147 45 262 +148 45 262 +149 46 261 +150 46 260 +151 46 260 +152 46 259 +153 47 261 +154 47 261 +155 48 260 +156 48 259 +157 48 259 +158 48 259 +159 49 258 +160 49 258 +161 49 257 +162 50 256 +163 50 256 +164 50 256 +165 50 255 +166 51 255 +167 51 254 +168 51 255 +169 52 254 +170 52 254 +171 52 253 +172 52 253 +173 53 252 +174 53 252 +175 53 252 +176 54 251 +177 54 251 +178 54 251 +179 55 250 +180 55 250 +181 55 249 +182 55 249 +183 56 249 +184 56 248 +185 56 248 +186 57 251 +187 58 254 +188 59 254 +189 59 254 +190 60 254 +191 60 253 +192 60 253 +193 60 252 +194 61 252 +195 61 253 +196 62 252 +197 62 252 +198 62 252 +199 62 251 +200 63 251 +201 63 250 +202 63 250 +203 64 249 +204 64 249 +205 64 249 +206 64 248 +207 65 248 +208 65 247 +209 65 248 +210 66 247 +211 66 247 +212 66 246 +213 67 246 +214 67 245 +215 67 245 +216 67 244 +217 68 244 +218 68 243 +219 68 243 +220 68 243 +221 69 242 +222 69 242 +223 69 242 +224 70 241 +225 70 241 +226 70 240 +227 71 240 +228 71 240 +229 72 242 +230 73 243 +231 73 244 +232 74 244 +233 74 243 +234 74 243 +235 75 242 +236 75 244 +237 76 243 +238 76 243 +239 76 242 +240 76 242 +241 77 241 +242 77 241 +243 77 240 +244 77 240 +245 78 239 +246 78 239 +247 78 239 +248 79 241 +249 80 241 +250 80 240 +251 80 240 +252 81 239 +253 81 239 +254 81 239 +255 82 238 +256 82 238 +257 82 237 +258 82 237 +259 83 236 +260 83 236 +261 83 235 +262 84 235 +263 84 234 +264 84 234 +265 84 233 +266 85 233 +267 85 233 +268 85 232 +269 86 234 +270 87 235 +271 88 236 +272 88 236 +273 88 235 +274 89 235 +275 89 236 +276 90 235 +277 90 235 +278 90 234 +279 91 234 +280 91 233 +281 91 233 +282 91 233 +283 92 232 +284 92 232 +285 92 231 +286 93 231 +287 93 230 +288 93 230 +289 94 230 +290 94 231 +291 95 231 +292 95 230 +293 95 230 +294 96 229 +295 96 229 +296 96 228 +297 96 228 +298 97 228 +299 97 227 +300 97 227 +301 98 226 +302 98 226 +303 98 225 +304 98 225 +305 99 225 +306 99 224 +307 99 224 +308 100 224 +309 100 224 +310 101 225 +311 102 226 +312 103 226 +313 103 226 +314 104 226 +315 104 226 +316 104 225 +317 105 225 +318 105 224 +319 105 224 +320 105 224 +321 106 223 +322 106 223 +323 106 222 +324 107 222 +325 107 222 +326 107 221 +327 107 221 +328 108 220 +329 108 220 +330 108 220 +331 109 219 +332 109 219 +333 109 218 +334 110 218 +335 110 218 +336 110 217 +337 110 217 +338 111 216 +339 111 216 +340 111 216 +341 112 215 +342 112 215 +343 112 214 +344 112 214 +345 113 214 +346 113 213 +347 113 213 +348 114 213 +349 114 213 +350 115 213 +351 115 212 +352 116 213 +353 116 213 +354 117 214 +355 118 214 +356 118 213 +357 118 213 +358 119 212 +359 119 212 +360 119 211 +361 120 211 +362 120 211 +363 120 210 +364 120 210 +365 121 209 +366 121 209 +367 121 209 +368 122 208 +369 122 208 +370 122 207 +371 122 207 +372 123 207 +373 123 206 +374 123 206 +375 124 205 +376 124 205 +377 124 205 +378 124 204 +379 125 204 +380 125 203 +381 125 203 +382 126 203 +383 126 202 +384 126 202 +385 126 201 +386 127 201 +387 127 201 +388 127 200 +389 128 201 +390 128 200 +391 129 200 +392 129 199 +393 129 199 +394 129 199 +395 130 198 +396 131 199 +397 132 200 +398 132 200 +399 133 199 +400 133 199 +401 133 198 +402 133 198 +403 134 198 +404 134 197 +405 134 197 +406 135 196 +407 135 196 +408 135 196 +409 135 195 +410 136 195 +411 136 194 +412 136 194 +413 137 194 +414 137 193 +415 137 193 +416 137 192 +417 138 192 +418 138 192 +419 138 191 +420 139 191 +421 139 190 +422 139 190 +423 139 190 +424 140 189 +425 140 189 +426 140 188 +427 141 188 +428 141 188 +429 141 187 +430 142 187 +431 142 187 +432 142 186 +433 142 186 +434 143 185 +435 143 185 +436 143 185 +437 143 184 +438 144 184 +439 144 183 +440 144 183 +441 145 184 +442 147 184 +443 147 184 +444 147 184 +445 147 183 +446 148 183 +447 148 182 +448 148 182 +449 149 182 +450 149 181 +451 149 181 +452 149 180 +453 150 180 +454 150 180 +455 150 179 +456 151 179 +457 151 179 +458 151 178 +459 151 178 +460 152 177 +461 152 177 +462 152 177 +463 153 176 +464 153 176 +465 153 176 +466 153 175 +467 154 175 +468 154 174 +469 154 174 +470 155 174 +471 155 173 +472 155 173 +473 155 173 +474 156 173 +475 157 172 +476 157 172 +477 157 172 +478 157 171 +479 158 171 +480 158 170 +481 158 170 +482 159 170 +483 159 169 +484 159 169 +485 160 170 +486 161 170 +487 162 170 +488 162 169 +489 162 169 +490 162 168 +491 163 168 +492 163 168 +493 163 167 +494 164 167 +495 164 167 +496 164 166 +497 165 166 +498 165 166 +499 165 165 +500 165 165 +501 166 164 +502 166 164 +503 166 164 +504 167 163 +505 167 163 +506 167 163 +507 167 162 +508 168 162 +509 168 161 +510 168 161 +511 169 161 +512 169 160 +513 169 160 +514 169 160 +515 170 159 +516 170 159 +517 170 158 +518 171 158 +519 171 158 +520 171 157 +521 171 157 +522 172 157 +523 172 156 +524 172 156 +525 173 155 +526 173 155 +527 173 155 +528 173 154 +529 174 154 +530 174 154 +531 174 153 +532 175 153 +533 175 153 +534 175 152 +535 176 152 +536 176 152 +537 176 151 +538 176 151 +539 177 151 +540 177 150 +541 177 150 +542 178 149 +543 178 149 +544 178 149 +545 179 148 +546 179 148 +547 179 148 +548 180 147 +549 180 147 +550 180 147 +551 180 146 +552 181 146 +553 181 146 +554 181 145 +555 182 145 +556 182 145 +557 182 144 +558 182 144 +559 183 143 +560 183 143 +561 183 143 +562 184 142 +563 184 142 +564 184 142 +565 184 141 +566 185 141 +567 185 141 +568 185 140 +569 186 140 +570 186 140 +571 186 139 +572 186 139 +573 187 138 +574 187 138 +575 187 138 +576 188 137 +577 188 137 +578 188 137 +579 189 136 +580 189 136 +581 189 136 +582 190 135 +583 190 135 +584 190 135 +585 190 134 +586 191 134 +587 191 134 +588 191 133 +589 192 133 +590 192 133 +591 192 132 +592 192 132 +593 193 132 +594 193 131 +595 193 131 +596 194 131 +597 194 130 +598 194 130 +599 194 129 +600 195 129 +601 195 129 +602 195 128 +603 196 128 +604 196 128 +605 196 127 +606 196 127 +607 197 127 +608 197 126 +609 197 126 +610 198 126 +611 198 125 +612 198 125 +613 198 125 +614 199 124 +615 199 124 +616 199 124 +617 200 123 +618 200 123 +619 200 122 +620 200 122 +621 201 122 +622 201 121 +623 201 121 +624 202 121 +625 202 120 +626 202 120 +627 202 120 +628 203 119 +629 203 119 +630 203 119 +631 204 118 +632 204 118 +633 204 118 +634 204 117 +635 205 117 +636 205 117 +637 205 116 +638 206 116 +639 206 116 +640 206 115 +641 207 115 +642 207 115 +643 207 114 +644 207 114 +645 208 114 +646 208 113 +647 208 113 +648 209 113 +649 209 112 +650 209 112 +651 209 112 +652 210 111 +653 210 111 +654 210 110 +655 211 110 +656 211 110 +657 211 109 +658 211 109 +659 212 109 +660 212 108 +661 212 108 +662 213 108 +663 213 107 +664 213 107 +665 213 107 +666 214 106 +667 214 106 +668 214 106 +669 215 105 +670 215 105 +671 215 105 +672 215 104 +673 216 104 +674 216 104 +675 216 103 +676 217 103 +677 217 103 +678 217 102 +679 217 102 +680 218 102 +681 218 101 +682 218 101 +683 219 101 +684 219 100 +685 219 100 +686 220 100 +687 220 99 +688 220 99 +689 220 99 +690 221 98 +691 221 98 +692 221 98 +693 222 97 +694 222 97 +695 222 97 +696 222 96 +697 223 96 +698 223 96 +699 223 95 +700 224 95 +701 224 95 +702 224 94 +703 224 94 +704 225 94 +705 225 93 +706 225 93 +707 227 93 +708 227 93 +709 227 93 +710 228 92 +711 228 92 +712 228 92 +713 228 91 +714 229 91 +715 229 91 +716 229 90 +717 230 90 +718 230 90 +719 230 89 +720 230 89 +721 231 89 +722 231 88 +723 231 88 +724 232 88 +725 232 87 +726 232 87 +727 233 87 +728 233 86 +729 233 86 +730 234 86 +731 234 85 +732 234 85 +733 235 85 +734 235 84 +735 235 84 +736 235 84 +737 236 83 +738 236 83 +739 236 83 +740 237 82 +741 237 82 +742 237 82 +743 237 81 +744 238 81 +745 238 81 +746 238 80 +747 239 80 +748 239 80 +749 239 79 +750 239 79 +751 240 79 +752 240 78 +753 240 78 +754 241 78 +755 241 77 +756 241 77 +757 241 77 +758 242 76 +759 242 76 +760 242 76 +761 243 75 +762 243 75 +763 243 75 +764 244 74 +765 244 74 +766 244 74 +767 244 73 +768 245 73 +769 245 73 +770 245 72 +771 246 72 +772 246 72 +773 246 71 +774 247 71 +775 248 71 +776 249 71 +777 250 71 +778 251 71 +779 252 71 +780 253 71 +781 254 71 +782 256 70 +783 257 70 +784 258 70 +785 258 70 +786 258 70 +787 259 69 +788 260 69 +789 260 69 +790 260 68 +791 261 68 +792 261 68 +793 261 67 +794 262 67 +795 263 67 +796 265 67 +797 266 67 +798 267 67 +799 268 67 +800 269 66 +801 270 66 +802 271 66 +803 272 66 +804 273 66 +805 273 65 +806 274 65 +807 275 65 +808 275 65 +809 275 64 +810 276 64 +811 276 63 +812 276 63 +813 277 63 +814 278 63 +815 279 63 +816 280 62 +817 281 62 +818 282 62 +819 283 62 +820 285 62 +821 286 62 +822 287 61 +823 288 61 +824 288 61 +825 288 60 +826 289 60 +827 289 60 +828 289 59 +829 290 59 +830 290 59 +831 290 58 +832 291 58 +833 291 57 +834 291 57 +835 291 57 +836 292 56 +837 293 56 +838 294 56 +839 295 56 +840 296 56 +841 297 55 +842 298 55 +843 300 55 +844 301 55 +845 301 54 +846 301 54 +847 302 54 +848 302 53 +849 302 53 +850 304 53 +851 304 52 +852 304 52 +853 304 52 +854 305 51 +855 305 51 +856 305 51 +857 306 50 +858 306 50 +859 306 49 +860 307 49 +861 307 49 +862 308 48 +863 309 48 +864 310 48 +865 311 48 +866 312 48 +867 313 47 +868 313 47 +869 313 46 +870 314 46 +871 314 46 +872 314 45 +873 315 45 +874 316 45 +875 317 44 +876 318 44 +877 318 44 +878 319 43 +879 319 43 +880 319 43 +881 320 42 +882 320 42 +883 320 42 +884 321 41 +885 321 41 +886 321 40 +887 322 40 +888 322 40 +889 323 40 +890 324 39 +891 325 39 +892 326 39 +893 328 38 +894 329 38 +895 330 38 +896 331 38 +897 331 37 +898 332 37 +899 332 36 +900 332 36 +901 333 36 +902 333 35 +903 334 35 +904 334 35 +905 334 34 +906 334 34 +907 335 33 +908 335 33 +909 335 33 +910 336 32 +911 336 32 +912 336 32 +913 336 31 +914 338 31 +915 339 31 +916 340 30 +917 341 30 +918 342 30 +919 343 29 +920 344 29 +921 345 29 +922 346 28 +923 347 28 +924 347 28 +925 347 27 +926 348 27 +927 348 27 +928 348 26 +929 349 26 +930 349 25 +931 349 25 +932 350 25 +933 350 24 +934 350 24 +935 351 24 +936 351 23 +937 351 23 +938 351 22 +939 352 22 +940 353 22 +941 354 21 +942 355 21 +943 356 21 +944 357 20 +945 358 20 +946 359 20 +947 361 19 +948 362 19 +949 362 19 +950 362 18 +951 362 18 +952 363 17 +953 363 17 +954 363 17 +955 364 16 +956 364 16 +957 364 15 +958 365 15 +959 365 15 +960 365 14 +961 366 14 +962 366 14 +963 366 13 +964 366 13 +965 368 12 +966 369 12 +967 370 12 +968 371 11 +969 372 11 +970 372 11 +971 373 10 +972 373 10 +973 373 9 +974 374 9 +975 375 9 +976 376 8 +977 377 8 +978 377 8 +979 377 7 +980 378 7 +981 378 6 +982 378 6 +983 379 6 +984 379 5 +985 379 5 +986 380 5 +987 380 4 +988 380 4 +989 381 3 +990 381 3 +991 381 3 +992 382 2 +993 384 2 +994 385 1 +995 386 1 +996 387 1 +997 388 0 +998 389 0 +999 390 0