-
Notifications
You must be signed in to change notification settings - Fork 10
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
TensorFlow Implementation #23
Comments
StackOverflow article on how to assign values to variables in TF |
Testing with: import tensorflow as tf
with tf.Session() as sess:
x = tf.placeholder(tf.float32, shape=[None, 784], name="x")
y = tf.placeholder(tf.float32, [None, 10], name="y")
w = tf.placeholder(tf.float32, [784, 10], name="weights_in")
W = tf.Variable(tf.zeros([784, 10]), name="weights")
b = tf.Variable(tf.zeros([10]))
y_out = tf.add(tf.matmul(x, W), b, name="y_out")
#cross_entropy = tf.reduce_mean(-tf.reduce_sum(y * tf.log(y_out), reduction_indices=[1]))
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=y_out))
train_step = tf.train.AdamOptimizer(0.005).minimize(cross_entropy, name="train")
correct_prediction = tf.equal(tf.argmax(y_out,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32), name="test")
init = tf.variables_initializer(tf.global_variables(), name="init")
tf.train.write_graph(sess.graph_def,
'./',
'mnist_adam_0.005_mlp.pb', as_text=False) |
PerformanceWhen running the PR #32 I get the following performance bottleneck with the Data file reading taking up a large majority of the time: |
I don't know that there are good alternatives to buffered IO. The only other way that could be possible is reading the data once and keeping all the samples in memory. Just to allocate enough memory for the training features, we need 784 4-byte floats to represent one feature vector. 60000 samples gives us 784x4x60,000 bytes which is ~188 Mb of memory. Thats a bit much. |
Goals
Use TensorFlow for model back-ends to enable better extensibility. This issue will server as a base of operations regarding the progress and/or discussion around the implementation.
Aspects
@tylermzeller and I believe the following would be some of the required implementation plan to enable the above goal:
Pre-Requisites
NOTE: most of these can be explored through desktop TensorFlow applications
Structure Project as
Single app
vsLibrary
The text was updated successfully, but these errors were encountered: