-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
70 lines (54 loc) · 1.83 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
from typing import List
from datetime import datetime
from tensorflow.keras import callbacks, optimizers
from tensorflow.keras.models import Model
from load_dataset import load_partial_dataset
def make_callbacks(params: dict) -> List[callbacks.Callback]:
callbacks_list = []
timestamp = datetime.now().strftime("%y-%m-%d_%H_%M_%S")
if params['tensorboard']:
callbacks_list.append(callbacks.TensorBoard(
log_dir='log/fits/fit_' + timestamp + '_' + params['name']
))
if params['modelcheckpoint']:
callbacks_list.append(callbacks.ModelCheckpoint(
'log/models/model_' + timestamp + '_' + params['name'],
monitor='val_loss',
save_best_only=True,
verbose=1
))
if params['earlystopping']:
callbacks_list.append(callbacks.EarlyStopping(
monitor='val_loss', min_delta=0.001,
patience=5,
verbose=1
))
return callbacks_list
def prepare_model(model: Model, params: dict):
model.compile(
optimizer=optimizers.RMSprop(2e-5),
loss="binary_crossentropy",
metrics=["accuracy"],
)
def fit_simple(model: Model, params: dict):
train_ds, val_ds = load_partial_dataset(
directory=params['img_directory'],
batch_size=params['batch_size'],
img_size=params['img_size'],
validation_split=params['validation_split'],
)
prepare_model(model, params)
callbacks_list = make_callbacks(params)
model.fit(
train_ds,
epochs=params['epochs'],
callbacks=callbacks_list,
validation_data=val_ds
)
def fit_cross_val(model: Model, params: dict):
pass
def train(model: Model, params: dict):
if params['cross_validation']:
fit_cross_val(model, params)
else:
fit_simple(model, params)