-
Notifications
You must be signed in to change notification settings - Fork 4.9k
/
RangeSumQuery2dImmutable.cpp
103 lines (96 loc) · 4.09 KB
/
RangeSumQuery2dImmutable.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
// Source : https://leetcode.com/problems/range-sum-query-2d-immutable/
// Author : Hao Chen
// Date : 2015-11-14
/***************************************************************************************
*
* Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined
* by its upper left corner (row1, col1) and lower right corner (row2, col2).
*
* The above rectangle (with the red border) is defined by (row1, col1) = (2, 1) and
* (row2, col2) = (4, 3), which contains sum = 8.
*
* Example:
*
* Given matrix = [
* [3, 0, 1, 4, 2],
* [5, 6, 3, 2, 1],
* [1, 2, 0, 1, 5],
* [4, 1, 0, 1, 7],
* [1, 0, 3, 0, 5]
* ]
*
* sumRegion(2, 1, 4, 3) -> 8
* sumRegion(1, 1, 2, 2) -> 11
* sumRegion(1, 2, 2, 4) -> 12
*
* Note:
*
* You may assume that the matrix does not change.
* There are many calls to sumRegion function.
* You may assume that row1 ≤ row2 and col1 ≤ col2.
*
***************************************************************************************/
/*
*
* Construct a 2D array `sums[row+1][col+1]`
*
* (**notice**: we add additional blank row `sums[0][col+1]={0}` and blank column `sums[row+1][0]={0}`
* to remove the edge case checking), so, we can have the following definition
*
* `sums[i+1][j+1]` represents the sum of area from `matrix[0][0]` to `matrix[i][j]`
*
* To calculate sums, the ideas as below
*
* +-----+-+-------+ +--------+-----+ +-----+---------+ +-----+--------+
* | | | | | | | | | | | | |
* | | | | | | | | | | | | |
* +-----+-+ | +--------+ | | | | +-----+ |
* | | | | = | | + | | | - | |
* +-----+-+ | | | +-----+ | | |
* | | | | | | | |
* | | | | | | | |
* +---------------+ +--------------+ +---------------+ +--------------+
*
* sums[i][j] = sums[i-1][j] + sums[i][j-1] - sums[i-1][j-1] +
*
* matrix[i-1][j-1]
*
* So, we use the same idea to find the specific area's sum.
*
*
*
* +---------------+ +--------------+ +---------------+ +--------------+ +--------------+
* | | | | | | | | | | | | | |
* | (r1,c1) | | | | | | | | | | | | |
* | +------+ | | | | | | | +---------+ | +---+ |
* | | | | = | | | - | | | - | (r1,c2) | + | (r1,c1) |
* | | | | | | | | | | | | | |
* | +------+ | +---------+ | +---+ | | | | |
* | (r2,c2)| | (r2,c2)| | (r2,c1) | | | | |
* +---------------+ +--------------+ +---------------+ +--------------+ +--------------+
*
*
*/
class NumMatrix {
private:
int row, col;
vector<vector<int>> sums;
public:
NumMatrix(vector<vector<int>> &matrix) {
row = matrix.size();
col = row>0 ? matrix[0].size() : 0;
sums = vector<vector<int>>(row+1, vector<int>(col+1, 0));
for(int i=1; i<=row; i++) {
for(int j=1; j<=col; j++) {
sums[i][j] = sums[i-1][j] + sums[i][j-1] - sums[i-1][j-1] + matrix[i-1][j-1];
}
}
}
int sumRegion(int row1, int col1, int row2, int col2) {
return sums[row2+1][col2+1] - sums[row2+1][col1] - sums[row1][col2+1] + sums[row1][col1];
}
};
// Your NumMatrix object will be instantiated and called as such:
// NumMatrix numMatrix(matrix);
// numMatrix.sumRegion(0, 1, 2, 3);
// numMatrix.sumRegion(1, 2, 3, 4);