-
Notifications
You must be signed in to change notification settings - Fork 0
/
2dparticles.cpp
313 lines (255 loc) · 10.1 KB
/
2dparticles.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
#include <SFML/Graphics.hpp>
#include <iostream>
#include <cstdint>
#include "tensor/tensor.hpp"
#include <chrono>
#include <cmath>
#include "ops/ops.h"
#include "vector/vectors.hpp"
#define repulsion 0.02
#define gravity 0.001
#define warp 0.0
#define scale 1
int size = 1;
auto numthreads = 12;
int particlecount = 1e5;
#define width 1024 * scale
#define height 1024 * scale
void draw_circle(Tensor &screenbuffer, int x, int y, int radius, int r, int g, int b, int a)
{
for (int i = -radius; i < radius; i++)
{
for (int j = -radius; j < radius; j++)
{
if (i * i + j * j < radius * radius && x + j > 0 && x + j < screenbuffer.shape[1] && y + i > 0 && y + i < screenbuffer.shape[0])
{
uint64_t *pixel = screenbuffer.get<uint64_t>(y + i, x + j);
uint8_t *pixel8 = (uint8_t *)pixel;
pixel8[0] += r;
pixel8[1] += g;
pixel8[2] += b;
pixel8[3] = 255;
}
}
}
};
#define FADEOFF(io,jo) sqrt((io*io+jo*jo + 1.0))
// #define FADEOFF(io, jo) 1.0
// #define FADEOFF(io,jo) sqrt(io*io+jo*jo + 1.0)
#include <thread>
void ProcessParticles(Tensor *Particles, Tensor *TensorField, int numParticles)
{
while (1)
{
auto friction = 0.0;
for (int i = -size; i < size + 1; i++)
{
for (int j = -size; j < size + 1; j++)
{
friction += 1 / FADEOFF(i, j);
}
}
friction = 1. / friction;
for (int i = 0; i < numParticles; i++)
{
float4 &particle = *(*Particles)[i].as<float4>();
if (particle.x == 0 || particle.y == 0)
{
continue;
}
auto mm = particle.w;
if (mm > 0)
{
float4 momentum = {0, 0, 0, 0};
// #pragma omp parallel for
for (int io = -size; io < size + 1; io++)
{
for (int jo = -size; jo < size + 1; jo++)
{
int2 offset = {io, jo};
momentum += *TensorField->get<float4>(particle.y + offset.y, particle.x + offset.x);
*TensorField->get<float4>(particle.y + offset.y, particle.x + offset.x) *= 0.0;
}
}
momentum.y += gravity;
momentum *= mm;
particle += momentum;
if (particle.x + momentum.x < 1 || particle.x + momentum.x > width - 2 || particle.y + momentum.y < 1 || particle.y + momentum.y > height - 2)
{
if (particle.y + momentum.y < 1 || particle.y + momentum.y > height - 2)
{
momentum.y *= -1.0;
particle.y = std::max(1.0f + size, std::min(float(height - (1.0 + size)), particle.y + momentum.y));
}
if (particle.x + momentum.x < 1 || particle.x + momentum.x > width - 2)
{
momentum.x *= -1.0;
particle.x = std::max(1.0f + size, std::min(float(width - (1.0 + size)), particle.x + momentum.x));
}
}
// particle.x = std::max(1.0f + size+1, std::min(float(width - (1.0 + size)), particle.x));
// particle.y = std::max(1.0f + size+1, std::min(float(height - (1.0 + size)), particle.y));
auto aa = momentum * friction;
// }
// #pragma omp parallel for
for (int io = -size; io < size + 1; io++)
{
for (int jo = -size; jo < size + 1; jo++)
{
int2 offset = {io, jo};
auto fade = FADEOFF(io, jo);
float4 offsetto = float4({io, jo, 0, 0}) / fade;
int2 poffset = {particle.x + offset.x, particle.y + offset.y};
float4 moffset = (offsetto * repulsion + aa) / fade;
*TensorField->get<float4>(poffset.y, poffset.x) += moffset;
}
}
}
else
{
// #pragma omp parallel for
for (int io = -size - 2; io < size + 3; io++)
{
for (int jo = -size - 2; jo < size + 3; jo++)
{
int2 offset = {io, jo};
int2 poffset = {particle.x + offset.x, particle.y + offset.y};
*TensorField->get<float4>(poffset.y, poffset.x) *= -1.0;
}
}
}
//
}
// std::this_thread::sleep_for(std::chrono::milliseconds(1));
}
}
struct thread
{
Tensor *Particles;
Tensor *TensorField;
int numParticles;
std::thread t;
thread(Tensor &TensorField, int numParticles)
{
this->Particles = new Tensor({numParticles, 4}, kFLOAT_32);
this->TensorField = &TensorField;
*Particles = 0;
this->numParticles = numParticles;
}
void start()
{
t = std::thread(
[Particles = this->Particles, TensorField = this->TensorField, numParticles = this->numParticles]()
{
ProcessParticles(Particles, TensorField, numParticles);
});
}
};
int main()
{
// auto friction = ((1.0-0.0)/ pow(size*2 + 1,2));
// create the window
sf::RenderWindow window(sf::VideoMode(width / scale, height / scale), "Some Funky Title");
// create a texture
sf::Texture texture;
texture.create(width, height);
// Create a pixel buffer to fill with RGBA data
Tensor screenbuffer = Tensor({width, height, 4}, kUINT_8);
Tensor TensorField = Tensor({width, height, 4}, kFLOAT_32);
std::vector<thread> threads;
for (int i = 0; i < numthreads; i++)
{
threads.push_back(thread(TensorField, particlecount / numthreads));
threads[i].start();
}
screenbuffer = 0;
auto count = 0;
TensorField = 0;
// The colour we will fill the window with
unsigned char red = 0;
unsigned char blue = 255;
auto currenttime = std::chrono::system_clock::now();
// run the program as long as the window is open
auto lastFrame = std::chrono::system_clock::now();
auto fps = 60;
bool ispressed = false;
double2 startdragpos = {0, 0};
int frame = 0;
bool but = 0;
while (window.isOpen())
{
// check all the window's events that were triggered since the last iteration of the loop
sf::Event event;
while (window.pollEvent(event))
{
// "close requested" event: we close the window
if (event.type == sf::Event::Closed)
window.close();
}
// clear the window with black color
auto show = (std::chrono::system_clock::now() - lastFrame) > std::chrono::milliseconds(1000 / fps);
if (show)
{
lastFrame = std::chrono::system_clock::now();
window.clear(sf::Color::Black);
screenbuffer = 0;
}
// Create RGBA value to fill screen with.
// Increment red and decrement blue on each cycle. Leave green=0, and make opaque
// uint32_t RGBA;
// Stuff data into buffer
// get mouse position in the window
sf::Vector2i localPosition = sf::Mouse::getPosition(window);
// TensorFieldLast = TensorFieldLast*0.5;
// TensorField[] = a;
bool lpressed = sf::Mouse::isButtonPressed(sf::Mouse::Left);
bool rpressed = sf::Mouse::isButtonPressed(sf::Mouse::Right);
bool pressed = lpressed || rpressed;
if (pressed && !ispressed)
{
startdragpos = {localPosition.x + rand() % scale, localPosition.y};
but = lpressed;
}
if (!pressed && ispressed)
{
auto enddragpos = int2{localPosition.x, localPosition.y};
for (int i = startdragpos.x; i < enddragpos.x; i += (size * 2) * but + 1)
{
for (int j = startdragpos.y; j < enddragpos.y; j += (size * 2) * but + 1)
{
auto part = (*threads[count%numthreads].Particles)[(count++)/numthreads].as<float4>();
// *part = double2{i * scale, j*scale };
part->x = i * scale;
part->y = j * scale;
part->w = but ? 1 : 0;
}
}
}
ispressed = pressed;
// Update screen
if (show)
{
for (int tt = 0; tt < numthreads; tt++)
{
for (int i = 0; threads[tt].numParticles > i; i++)
{
auto part = (*threads[tt].Particles)[i].as<float4>();
if(part->x == 0 || part->y == 0)continue;
draw_circle(screenbuffer, part->x/scale, part->y/scale, (size+1)/scale, 0, tt*255/numthreads,255,255);
}
}
texture.update((uint8_t *)screenbuffer.data);
sf::Sprite sprite(texture);
window.draw(sprite);
// end the current frame
window.display();
auto currtime = std::chrono::system_clock::now();
std::cout << "frames per second(0dp): " << int(1.0 / std::chrono::duration<double>(currtime - currenttime).count()) << " : Active Particles: " << std::min(count, particlecount) << "\r";
std::cout << std::flush;
currenttime = currtime;
frame++;
}
// if(frame==1000)break;
}
return 0;
}