-
Notifications
You must be signed in to change notification settings - Fork 0
/
summarizer.py
773 lines (630 loc) · 29.8 KB
/
summarizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
# -*- coding: utf-8 -*-
"""summarizer.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1YeElFFTrKjBAYnQ02wFUgVNXE49YCXad
"""
import pandas as pd
import numpy as np
# !pip install tensorflow==1.12.0
import tensorflow as tf
import re
import nltk
nltk.download('stopwords')
from nltk.corpus import stopwords
import time
from tensorflow.python.layers.core import Dense
from tensorflow.python.ops.rnn_cell_impl import _zero_state_tensors
print('TensorFlow Version: {}'.format(tf.__version__))
# !nvidia-smi
reviews = pd.read_csv('D:/CLICK HERE/Reviews.csv')
reviews.shape
reviews.head()
reviews.isnull().sum()
reviews = reviews.dropna()
reviews = reviews.drop(['Id','ProductId','UserId','ProfileName','HelpfulnessNumerator','HelpfulnessDenominator',
'Score','Time'], 1)
reviews = reviews.reset_index(drop=True)
reviews.head()
# Inspecting some of the reviews
for i in range(5):
print("Review #",i+1)
print(reviews.Summary[i])
print(reviews.Text[i])
print()
# A list of contractions from http://stackoverflow.com/questions/19790188/expanding-english-language-contractions-in-python
contractions = {
"ain't": "am not",
"aren't": "are not",
"can't": "cannot",
"can't've": "cannot have",
"'cause": "because",
"could've": "could have",
"couldn't": "could not",
"couldn't've": "could not have",
"didn't": "did not",
"doesn't": "does not",
"don't": "do not",
"hadn't": "had not",
"hadn't've": "had not have",
"hasn't": "has not",
"haven't": "have not",
"he'd": "he would",
"he'd've": "he would have",
"he'll": "he will",
"he's": "he is",
"how'd": "how did",
"how'll": "how will",
"how's": "how is",
"i'd": "i would",
"i'll": "i will",
"i'm": "i am",
"i've": "i have",
"isn't": "is not",
"it'd": "it would",
"it'll": "it will",
"it's": "it is",
"let's": "let us",
"ma'am": "madam",
"mayn't": "may not",
"might've": "might have",
"mightn't": "might not",
"must've": "must have",
"mustn't": "must not",
"needn't": "need not",
"oughtn't": "ought not",
"shan't": "shall not",
"sha'n't": "shall not",
"she'd": "she would",
"she'll": "she will",
"she's": "she is",
"should've": "should have",
"shouldn't": "should not",
"that'd": "that would",
"that's": "that is",
"there'd": "there had",
"there's": "there is",
"they'd": "they would",
"they'll": "they will",
"they're": "they are",
"they've": "they have",
"wasn't": "was not",
"we'd": "we would",
"we'll": "we will",
"we're": "we are",
"we've": "we have",
"weren't": "were not",
"what'll": "what will",
"what're": "what are",
"what's": "what is",
"what've": "what have",
"where'd": "where did",
"where's": "where is",
"who'll": "who will",
"who's": "who is",
"won't": "will not",
"wouldn't": "would not",
"you'd": "you would",
"you'll": "you will",
"you're": "you are"
}
def clean_text(text, remove_stopwords = True):
'''Remove unwanted characters, stopwords, and format the text to create fewer nulls word embeddings'''
# Convert words to lower case
text = text.lower()
# Replace contractions with their longer forms
if True:
text = text.split()
new_text = []
for word in text:
if word in contractions:
new_text.append(contractions[word])
else:
new_text.append(word)
text = " ".join(new_text)
# Format words and remove unwanted characters
text = re.sub(r'https?:\/\/.*[\r\n]*', '', text, flags=re.MULTILINE)
text = re.sub(r'\<a href', ' ', text)
text = re.sub(r'&', '', text)
text = re.sub(r'[_"\-;%()|+&=*%.,!?:#$@\[\]/]', ' ', text)
text = re.sub(r'<br />', ' ', text)
text = re.sub(r'\'', ' ', text)
# Optionally, remove stop words
if remove_stopwords:
text = text.split()
stops = set(stopwords.words("english"))
text = [w for w in text if not w in stops]
text = " ".join(text)
return text
# Clean the summaries and texts
clean_summaries = []
for summary in reviews.Summary:
clean_summaries.append(clean_text(summary, remove_stopwords=False))
print("Summaries are complete.")
clean_texts = []
for text in reviews.Text:
clean_texts.append(clean_text(text))
print("Texts are complete.")
# Inspect the cleaned summaries and texts to ensure they have been cleaned well
for i in range(5):
print("Clean Review #",i+1)
print(clean_summaries[i])
print(clean_texts[i])
print()
def count_words(count_dict, text):
'''Count the number of occurrences of each word in a set of text'''
for sentence in text:
for word in sentence.split():
if word not in count_dict:
count_dict[word] = 1
else:
count_dict[word] += 1
# Find the number of times each word was used and the size of the vocabulary
word_counts = {}
count_words(word_counts, clean_summaries)
count_words(word_counts, clean_texts)
print("Size of Vocabulary:", len(word_counts))
# Load Conceptnet Numberbatch's (CN) embeddings, similar to GloVe, but probably better
# (https://github.com/commonsense/conceptnet-numberbatch)
embeddings_index = {}
with open('D:/CLICK HERE/numberbatch-en-19.08.txt', encoding='utf-8') as f:
for line in f:
values = line.split(' ')
word = values[0]
embedding = np.asarray(values[1:], dtype='float32')
embeddings_index[word] = embedding
print('Word embeddings:', len(embeddings_index))
# Find the number of words that are missing from CN, and are used more than our threshold.
missing_words = 0
threshold = 20
for word, count in word_counts.items():
if count > threshold:
if word not in embeddings_index:
missing_words += 1
missing_ratio = round(missing_words/len(word_counts),4)*100
print("Number of words missing from CN:", missing_words)
print("Percent of words that are missing from vocabulary: {}%".format(missing_ratio))
# Limit the vocab that we will use to words that appear ≥ threshold or are in GloVe
#dictionary to convert words to integers
vocab_to_int = {}
value = 0
for word, count in word_counts.items():
if count >= threshold or word in embeddings_index:
vocab_to_int[word] = value
value += 1
# Special tokens that will be added to our vocab
codes = ["<UNK>","<PAD>","<EOS>","<GO>"]
# Add codes to vocab
for code in codes:
vocab_to_int[code] = len(vocab_to_int)
# Dictionary to convert integers to words
int_to_vocab = {}
for word, value in vocab_to_int.items():
int_to_vocab[value] = word
usage_ratio = round(len(vocab_to_int) / len(word_counts),4)*100
print("Total number of unique words:", len(word_counts))
print("Number of words we will use:", len(vocab_to_int))
print("Percent of words we will use: {}%".format(usage_ratio))
# Need to use 300 for embedding dimensions to match CN's vectors.
embedding_dim = 300
nb_words = len(vocab_to_int)
# Create matrix with default values of zero
word_embedding_matrix = np.zeros((nb_words, embedding_dim), dtype=np.float32)
for word, i in vocab_to_int.items():
if word in embeddings_index:
word_embedding_matrix[i] = embeddings_index[word]
else:
# If word not in CN, create a random embedding for it
new_embedding = np.array(np.random.uniform(-1.0, 1.0, embedding_dim))
embeddings_index[word] = new_embedding
word_embedding_matrix[i] = new_embedding
# Check if value matches len(vocab_to_int)
print(len(word_embedding_matrix))
def convert_to_ints(text, word_count, unk_count, eos=False):
'''Convert words in text to an integer.
If word is not in vocab_to_int, use UNK's integer.
Total the number of words and UNKs.
Add EOS token to the end of texts'''
ints = []
for sentence in text:
sentence_ints = []
for word in sentence.split():
word_count += 1
if word in vocab_to_int:
sentence_ints.append(vocab_to_int[word])
else:
sentence_ints.append(vocab_to_int["<UNK>"])
unk_count += 1
if eos:
sentence_ints.append(vocab_to_int["<EOS>"])
ints.append(sentence_ints)
return ints, word_count, unk_count
# Apply convert_to_ints to clean_summaries and clean_texts
word_count = 0
unk_count = 0
int_summaries, word_count, unk_count = convert_to_ints(clean_summaries, word_count, unk_count)
int_texts, word_count, unk_count = convert_to_ints(clean_texts, word_count, unk_count, eos=True)
unk_percent = round(unk_count/word_count,4)*100
print("Total number of words in headlines:", word_count)
print("Total number of UNKs in headlines:", unk_count)
print("Percent of words that are UNK: {}%".format(unk_percent))
def create_lengths(text):
'''Create a data frame of the sentence lengths from a text'''
lengths = []
for sentence in text:
lengths.append(len(sentence))
return pd.DataFrame(lengths, columns=['counts'])
lengths_summaries = create_lengths(int_summaries)
lengths_texts = create_lengths(int_texts)
print("Summaries:")
print(lengths_summaries.describe())
print()
print("Texts:")
print(lengths_texts.describe())
# Inspect the length of texts
print(np.percentile(lengths_texts.counts, 90))
print(np.percentile(lengths_texts.counts, 95))
print(np.percentile(lengths_texts.counts, 99))
# Inspect the length of summaries
print(np.percentile(lengths_summaries.counts, 90))
print(np.percentile(lengths_summaries.counts, 95))
print(np.percentile(lengths_summaries.counts, 99))
def unk_counter(sentence):
'''Counts the number of time UNK appears in a sentence.'''
unk_count = 0
for word in sentence:
if word == vocab_to_int["<UNK>"]:
unk_count += 1
return unk_count
# Sort the summaries and texts by the length of the texts, shortest to longest
# Limit the length of summaries and texts based on the min and max ranges.
# Remove reviews that include too many UNKs
sorted_summaries = []
sorted_texts = []
max_text_length = 84
max_summary_length = 13
min_length = 2
unk_text_limit = 1
unk_summary_limit = 0
for length in range(min(lengths_texts.counts), max_text_length):
for count, words in enumerate(int_summaries):
if (len(int_summaries[count]) >= min_length and
len(int_summaries[count]) <= max_summary_length and
len(int_texts[count]) >= min_length and
unk_counter(int_summaries[count]) <= unk_summary_limit and
unk_counter(int_texts[count]) <= unk_text_limit and
length == len(int_texts[count])
):
sorted_summaries.append(int_summaries[count])
sorted_texts.append(int_texts[count])
# Compare lengths to ensure they match
print(len(sorted_summaries))
print(len(sorted_texts))
"""BUILDING MODEL"""
def model_inputs():
'''Create palceholders for inputs to the model'''
input_data = tf.placeholder(tf.int32, [None, None], name='input')
targets = tf.placeholder(tf.int32, [None, None], name='targets')
lr = tf.placeholder(tf.float32, name='learning_rate')
keep_prob = tf.placeholder(tf.float32, name='keep_prob')
summary_length = tf.placeholder(tf.int32, (None,), name='summary_length')
max_summary_length = tf.reduce_max(summary_length, name='max_dec_len')
text_length = tf.placeholder(tf.int32, (None,), name='text_length')
return input_data, targets, lr, keep_prob, summary_length, max_summary_length, text_length
def process_encoding_input(target_data, vocab_to_int, batch_size):
'''Remove the last word id from each batch and concat the <GO> to the begining of each batch'''
ending = tf.strided_slice(target_data, [0, 0], [batch_size, -1], [1, 1])
dec_input = tf.concat([tf.fill([batch_size, 1], vocab_to_int['<GO>']), ending], 1)
return dec_input
def encoding_layer(rnn_size, sequence_length, num_layers, rnn_inputs, keep_prob):
'''Create the encoding layer'''
for layer in range(num_layers):
with tf.variable_scope('encoder_{}'.format(layer)):
cell_fw = tf.contrib.rnn.LSTMCell(rnn_size,
initializer=tf.random_uniform_initializer(-0.1, 0.1, seed=2))
cell_fw = tf.contrib.rnn.DropoutWrapper(cell_fw,
input_keep_prob = keep_prob)
cell_bw = tf.contrib.rnn.LSTMCell(rnn_size,
initializer=tf.random_uniform_initializer(-0.1, 0.1, seed=2))
cell_bw = tf.contrib.rnn.DropoutWrapper(cell_bw,
input_keep_prob = keep_prob)
enc_output, enc_state = tf.nn.bidirectional_dynamic_rnn(cell_fw,
cell_bw,
rnn_inputs,
sequence_length,
dtype=tf.float32)
# Join outputs since we are using a bidirectional RNN
enc_output = tf.concat(enc_output,2)
return enc_output, enc_state
def training_decoding_layer(dec_embed_input, summary_length, dec_cell, initial_state, output_layer,
vocab_size, max_summary_length):
'''Create the training logits'''
training_helper = tf.contrib.seq2seq.TrainingHelper(inputs=dec_embed_input,
sequence_length=summary_length,
time_major=False)
training_decoder = tf.contrib.seq2seq.BasicDecoder(dec_cell,
training_helper,
initial_state,
output_layer)
training_logits, _ , _ = tf.contrib.seq2seq.dynamic_decode(training_decoder,
output_time_major=False,
impute_finished=True,
maximum_iterations=max_summary_length)
return training_decoder
def inference_decoding_layer(embeddings, start_token, end_token, dec_cell, initial_state, output_layer,
max_summary_length, batch_size):
'''Create the inference logits'''
start_tokens = tf.tile(tf.constant([start_token], dtype=tf.int32), [batch_size], name='start_tokens')
inference_helper = tf.contrib.seq2seq.GreedyEmbeddingHelper(embeddings,
start_tokens,
end_token)
inference_decoder = tf.contrib.seq2seq.BasicDecoder(dec_cell,
inference_helper,
initial_state,
output_layer)
inference_logits, _ , _ = tf.contrib.seq2seq.dynamic_decode(inference_decoder,
output_time_major=False,
impute_finished=True,
maximum_iterations=max_summary_length)
return inference_decoder
def decoding_layer(dec_embed_input, embeddings, enc_output, enc_state, vocab_size, text_length, summary_length,
max_summary_length, rnn_size, vocab_to_int, keep_prob, batch_size, num_layers):
'''Create the decoding cell and attention for the training and inference decoding layers'''
for layer in range(num_layers):
with tf.variable_scope('decoder_{}'.format(layer)):
lstm = tf.contrib.rnn.LSTMCell(rnn_size,
initializer=tf.random_uniform_initializer(-0.1, 0.1, seed=2))
dec_cell = tf.contrib.rnn.DropoutWrapper(lstm,
input_keep_prob = keep_prob)
output_layer = Dense(vocab_size,
kernel_initializer = tf.truncated_normal_initializer(mean = 0.0, stddev=0.1))
attn_mech = tf.contrib.seq2seq.BahdanauAttention(rnn_size,
enc_output,
text_length,
normalize=False,
name='BahdanauAttention')
dec_cell = tf.contrib.seq2seq.AttentionWrapper(dec_cell,
attn_mech,
rnn_size)
#initial_state = tf.contrib.seq2seq.AttentionWrapperState(enc_state[0],
# _zero_state_tensors(rnn_size,
# batch_size,
# tf.float32))
initial_state = dec_cell.zero_state(batch_size=batch_size,dtype=tf.float32).clone(cell_state=enc_state[0])
with tf.variable_scope("decode"):
training_decoder = training_decoding_layer(dec_embed_input,
summary_length,
dec_cell,
initial_state,
output_layer,
vocab_size,
max_summary_length)
training_logits,_ ,_ = tf.contrib.seq2seq.dynamic_decode(training_decoder,
output_time_major=False,
impute_finished=True,
maximum_iterations=max_summary_length)
with tf.variable_scope("decode", reuse=True):
inference_decoder = inference_decoding_layer(embeddings,
vocab_to_int['<GO>'],
vocab_to_int['<EOS>'],
dec_cell,
initial_state,
output_layer,
max_summary_length,
batch_size)
inference_logits,_ ,_ = tf.contrib.seq2seq.dynamic_decode(inference_decoder,
output_time_major=False,
impute_finished=True,
maximum_iterations=max_summary_length)
return training_logits, inference_logits
def seq2seq_model(input_data, target_data, keep_prob, text_length, summary_length, max_summary_length,
vocab_size, rnn_size, num_layers, vocab_to_int, batch_size):
'''Use the previous functions to create the training and inference logits'''
# Use Numberbatch's embeddings and the newly created ones as our embeddings
embeddings = word_embedding_matrix
enc_embed_input = tf.nn.embedding_lookup(embeddings, input_data)
enc_output, enc_state = encoding_layer(rnn_size, text_length, num_layers, enc_embed_input, keep_prob)
dec_input = process_encoding_input(target_data, vocab_to_int, batch_size)
dec_embed_input = tf.nn.embedding_lookup(embeddings, dec_input)
training_logits, inference_logits = decoding_layer(dec_embed_input,
embeddings,
enc_output,
enc_state,
vocab_size,
text_length,
summary_length,
max_summary_length,
rnn_size,
vocab_to_int,
keep_prob,
batch_size,
num_layers)
return training_logits, inference_logits
def pad_sentence_batch(sentence_batch):
"""Pad sentences with <PAD> so that each sentence of a batch has the same length"""
max_sentence = max([len(sentence) for sentence in sentence_batch])
return [sentence + [vocab_to_int['<PAD>']] * (max_sentence - len(sentence)) for sentence in sentence_batch]
def get_batches(summaries, texts, batch_size):
"""Batch summaries, texts, and the lengths of their sentences together"""
for batch_i in range(0, len(texts)//batch_size):
start_i = batch_i * batch_size
summaries_batch = summaries[start_i:start_i + batch_size]
texts_batch = texts[start_i:start_i + batch_size]
pad_summaries_batch = np.array(pad_sentence_batch(summaries_batch))
pad_texts_batch = np.array(pad_sentence_batch(texts_batch))
# Need the lengths for the _lengths parameters
pad_summaries_lengths = []
for summary in pad_summaries_batch:
pad_summaries_lengths.append(len(summary))
pad_texts_lengths = []
for text in pad_texts_batch:
pad_texts_lengths.append(len(text))
yield pad_summaries_batch, pad_texts_batch, pad_summaries_lengths, pad_texts_lengths
# Set the Hyperparameters
epochs = 15
batch_size = 64
rnn_size = 256
num_layers = 2
learning_rate = 0.005
keep_probability = 0.75
# Build the graph
train_graph = tf.Graph()
# Set the graph to default to ensure that it is ready for training
with train_graph.as_default():
# Load the model inputs
input_data, targets, lr, keep_prob, summary_length, max_summary_length, text_length = model_inputs()
# Create the training and inference logits
training_logits, inference_logits = seq2seq_model(tf.reverse(input_data, [-1]),
targets,
keep_prob,
text_length,
summary_length,
max_summary_length,
len(vocab_to_int)+1,
rnn_size,
num_layers,
vocab_to_int,
batch_size)
# Create tensors for the training logits and inference logits
training_logits = tf.identity(training_logits.rnn_output, 'logits')
inference_logits = tf.identity(inference_logits.sample_id, name='predictions')
# Create the weights for sequence_loss
masks = tf.sequence_mask(summary_length, max_summary_length, dtype=tf.float32, name='masks')
with tf.name_scope("optimization"):
# Loss function
cost = tf.contrib.seq2seq.sequence_loss(
training_logits,
targets,
masks)
# Optimizer
optimizer = tf.train.AdamOptimizer(learning_rate)
# Gradient Clipping
gradients = optimizer.compute_gradients(cost)
capped_gradients = [(tf.clip_by_value(grad, -5., 5.), var) for grad, var in gradients if grad is not None]
train_op = optimizer.apply_gradients(capped_gradients)
print("Graph is built.")
"""Training the Model"""
# Subset the data for training
start = 200000
end = start + 300000
sorted_summaries_short = sorted_summaries[start:end]
sorted_texts_short = sorted_texts[start:end]
print("The shortest text length:", len(sorted_texts_short[0]))
print("The longest text length:",len(sorted_texts_short[-1]))
# Train the Model
# learning_rate_decay = 0.95
# min_learning_rate = 0.0005
# display_step = 20 # Check training loss after every 20 batches
# stop_early = 0
# stop = 6 #3 # If the update loss does not decrease in 3 consecutive update checks, stop training
# per_epoch = 6 # Make 3 update checks per epoch
# update_check = (len(sorted_texts_short)//batch_size//per_epoch)-1
# update_loss = 0
# batch_loss = 0
# summary_update_loss = [] # Record the update losses for saving improvements in the model
# tf.reset_default_graph()
# checkpoint = "C:/Users/Harshit/Desktop/python/summarizer/best_model.ckpt" #300k sentence
# with tf.Session(graph=train_graph) as sess:
# sess.run(tf.global_variables_initializer())
# # If we want to continue training a previous session
# # loader = tf.train.import_meta_graph(checkpoint + '.meta')
# # loader.restore(sess, checkpoint)
# #sess.run(tf.local_variables_initializer())
# for epoch_i in range(1, epochs+1):
# update_loss = 0
# batch_loss = 0
# for batch_i, (summaries_batch, texts_batch, summaries_lengths, texts_lengths) in enumerate(
# get_batches(sorted_summaries_short, sorted_texts_short, batch_size)):
# start_time = time.time()
# _, loss = sess.run(
# [train_op, cost],
# {input_data: texts_batch,
# targets: summaries_batch,
# lr: learning_rate,
# summary_length: summaries_lengths,
# text_length: texts_lengths,
# keep_prob: keep_probability})
# batch_loss += loss
# update_loss += loss
# end_time = time.time()
# batch_time = end_time - start_time
# if batch_i % display_step == 0 and batch_i > 0:
# print('Epoch {:>3}/{} Batch {:>4}/{} - Loss: {:>6.3f}, Seconds: {:>4.2f}'
# .format(epoch_i,
# epochs,
# batch_i,
# len(sorted_texts_short) // batch_size,
# batch_loss / display_step,
# batch_time*display_step))
# batch_loss = 0
# #saver = tf.train.Saver()
# #saver.save(sess, checkpoint)
# if batch_i % update_check == 0 and batch_i > 0:
# print("Average loss for this update:", round(update_loss/update_check,3))
# summary_update_loss.append(update_loss)
# # If the update loss is at a new minimum, save the model
# if update_loss <= min(summary_update_loss):
# print('New Record!')
# stop_early = 0
# saver = tf.train.Saver()
# saver.save(sess, checkpoint)
# else:
# print("No Improvement.")
# stop_early += 1
# if stop_early == stop:
# break
# update_loss = 0
# # Reduce learning rate, but not below its minimum value
# learning_rate *= learning_rate_decay
# if learning_rate < min_learning_rate:
# learning_rate = min_learning_rate
# if stop_early == stop:
# print("Stopping Training.")
# break
checkpoint = "C:/Users/Harshit/Desktop/python/summarizer/best_model.ckpt"
loaded_graph = tf.Graph()
with tf.Session(graph=loaded_graph) as sess:
# Load saved model
loader = tf.train.import_meta_graph(checkpoint + '.meta')
loader.restore(sess, checkpoint)
names = []
[names.append(n.name) for n in loaded_graph.as_graph_def().node]
#names
"""Making Summaries"""
def text_to_seq(text):
'''Prepare the text for the model'''
text = clean_text(text)
return [vocab_to_int.get(word, vocab_to_int['<UNK>']) for word in text.split()]
# Create your own review or use one from the dataset
# input_sentence = "I have never eaten an apple before, but this red one was nice. \
# I think that I will try a green apple next time."
# text = text_to_seq(input_sentence)
random = np.random.randint(0,len(clean_texts))
input_sentence = clean_texts[random]
text = text_to_seq(clean_texts[random])
checkpoint = "C:/Users/Harshit/Desktop/python/summarizer/best_model.ckpt"
loaded_graph = tf.Graph()
with tf.Session(graph=loaded_graph) as sess:
# Load saved model
loader = tf.train.import_meta_graph(checkpoint + '.meta')
loader.restore(sess, checkpoint)
input_data = loaded_graph.get_tensor_by_name('input:0')
logits = loaded_graph.get_tensor_by_name('predictions:0')
text_length = loaded_graph.get_tensor_by_name('text_length:0')
summary_length = loaded_graph.get_tensor_by_name('summary_length:0')
keep_prob = loaded_graph.get_tensor_by_name('keep_prob:0')
#Multiply by batch_size to match the model's input parameters
answer_logits = sess.run(logits, {input_data: [text]*batch_size,
summary_length: [np.random.randint(5,8)],
text_length: [len(text)]*batch_size,
keep_prob: 1.0})[0]
# Remove the padding from the tweet
pad = vocab_to_int["<PAD>"]
print('Original Text:', reviews.Text[random])
print('Original summary:', reviews.Summary[random])#clean_summaries[random]
print('\nText')
print(' Word Ids: {}'.format([i for i in text]))
print(' Input Words: {}'.format(" ".join([int_to_vocab[i] for i in text])))
print('\nSummary')
print(' Word Ids: {}'.format([i for i in answer_logits if i != pad]))
print(' Response Words: {}'.format(" ".join([int_to_vocab[i] for i in answer_logits if i != pad])))