-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
160 lines (137 loc) · 4.38 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import os
import sys
import yaml
sys.path.append("/home/haseebs/workspace/CSN/semantic_code_search")
import wandb
import torch
import argparse
import numpy as np
from pytorch_lightning import loggers
from pytorch_lightning import Trainer, seed_everything
from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping
from dataset import CSNDataset
from models.model_factory import ModelFactory
def run():
parser = argparse.ArgumentParser()
parser.add_argument("-t", "--train", action="store_true", help="whether to train")
parser.add_argument(
"-e", "--evaluate", action="store_true", help="whether to evaluate only"
)
parser.add_argument(
"-l", "--load", action="store", type=str, help="path to checkpoint"
)
parser.add_argument(
"-r", "--runid", action="store", type=str, help="optional run id"
)
parser.add_argument(
"-c",
"--config",
action="store",
default="config-default.yaml",
type=str,
help="path to config",
)
args = parser.parse_args()
if (not args.train and not args.evaluate) or (args.evaluate and not args.load):
print("wrong args passed")
exit(0)
print(f"Loading config parameters from {args.config}")
cfg_file = yaml.safe_load(open(args.config))
languages = [k.split("/")[-1] for k in cfg_file["data_dirs"]["value"]]
cfg_file["languages"] = {"value": languages}
print(f"Training on languages: {languages}")
run_id = None
if args.runid:
run_id = args.runid
elif args.load:
run_id = args.load.split("/")[1].split("-")[2]
logger = loggers.WandbLogger(
experiment=wandb.init(
project="semantic-code-search",
resume=run_id,
config={k: v["value"] for k, v in cfg_file.items()},
)
)
seed_everything(wandb.config["seed"])
train_dataset = CSNDataset(
hparams=wandb.config,
keep_keys=wandb.config["keep_keys"],
data_split="train",
languages=languages,
logger=logger,
)
valid_dataset = CSNDataset(
hparams=wandb.config,
keep_keys=wandb.config["keep_keys"],
data_split="valid",
languages=languages,
)
test_datasets = [
CSNDataset(
hparams=wandb.config,
keep_keys=wandb.config["keep_keys_test"],
data_split="test",
languages=languages,
)
]
for language in languages:
test_datasets.append(
CSNDataset(
hparams=wandb.config,
keep_keys=wandb.config["keep_keys_test"],
data_split="test",
languages=[language],
)
)
model_factory = ModelFactory(
{k: wandb.config.get(k) for k in wandb.config.keys()},
train_dataset,
valid_dataset,
test_datasets,
)
model = model_factory.get_model(wandb.config["model_type"])
early_stop_callback = EarlyStopping(
monitor="val_mrr",
min_delta=0.00,
patience=wandb.config["patience"],
verbose=True,
mode="max",
)
checkpoint_callback = ModelCheckpoint(
filepath=wandb.run.dir + "/{epoch:02d}_best_checkpoint",
monitor="val_mrr",
verbose=True,
mode="max",
)
if args.load and args.train:
print(f"Loading checkpoint from #{args.load} and evaluating")
trainer = Trainer(
max_epochs=wandb.config["max_epochs"],
gradient_clip_val=wandb.config["gradient_clip"],
early_stop_callback=early_stop_callback,
checkpoint_callback=checkpoint_callback,
progress_bar_refresh_rate=10,
logger=logger,
deterministic=True,
resume_from_checkpoint=args.load,
# train_percent_check=0.01,
# val_percent_check=0.06,
gpus=1,
distributed_backend="dp",
)
# from IPython import embed; embed()
if args.train:
trainer.fit(model)
if args.evaluate and args.load:
print(f"Loading checkpoint from #{args.load} and evaluating on test set")
model = model.load_from_checkpoint(
args.load,
train_dataset=train_dataset,
valid_dataset=valid_dataset,
test_datasets=test_datasets,
)
trainer.test(model)
# close session manually since we used the hack
wandb.join(0)
if __name__ == "__main__":
run()