-
Notifications
You must be signed in to change notification settings - Fork 194
/
setup.py
56 lines (47 loc) · 1.59 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""The setup script."""
from setuptools import setup, find_packages
long_description = """
**pycox** is a python package for survival analysis and time-to-event prediction with [PyTorch](https://pytorch.org/).
It is built on the [torchtuples](https://github.com/havakv/torchtuples) package for training [PyTorch](https://pytorch.org/) models.
Read the documentation at: https://github.com/havakv/pycox
The package contains
- survival models: (Logistic-Hazard, DeepHit, DeepSurv, Cox-Time, MTLR, etc.)
- evaluation criteria (concordance, Brier score, Binomial log-likelihood, etc.)
- event-time datasets (SUPPORT, METABRIC, KKBox, etc)
- simulation studies
- illustrative examples
"""
requirements = [
'torchtuples>=0.2.0',
'feather-format>=0.4.0',
'h5py>=2.9.0',
'numba>=0.44',
'scikit-learn>=0.21.2',
'requests>=2.22.0',
'py7zr>=0.11.3',
]
setup(
name='pycox',
version='0.3.0',
description="Survival analysis with PyTorch",
long_description=long_description,
long_description_content_type='text/markdown',
author="Haavard Kvamme",
author_email='[email protected]',
url='https://github.com/havakv/pycox',
packages=find_packages(),
include_package_data=True,
install_requires=requirements,
license="BSD license",
zip_safe=False,
keywords='pycox',
classifiers=[
'Development Status :: 2 - Pre-Alpha',
'Intended Audience :: Developers',
'License :: OSI Approved :: BSD License',
'Natural Language :: English',
],
python_requires='>=3.8'
)