-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
75 lines (58 loc) · 2.04 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import os
import config
from dataset import Dataset, DataLoader
import tensorflow as tf
import segmentation_models as sm
def get_model():
model = sm.Unet(config.BACKBONE,
classes=config.NUM_CLASSES,
activation=config.ACTIVATION)
optim = tf.keras.optimizers.Adam(config.LR)
dice_loss = sm.losses.DiceLoss()
focal_loss = sm.losses.BinaryFocalLoss()
total_loss = dice_loss + (1 * focal_loss)
metrics = [sm.metrics.IOUScore(
threshold=0.5), sm.metrics.FScore(threshold=0.5)]
model.compile(optim, total_loss, metrics)
return model
def main():
# LOAD DATA
preprocess_input = sm.get_preprocessing(config.BACKBONE)
# Dataset for train images
train_dataset = Dataset(
config.TRAIN_IMAGES_DIR,
config.TRAIN_MAPS_DIR,
augmentation=config.transforms,
preprocessing=config.get_preprocessing(preprocess_input),
)
# Dataset for validation images
valid_dataset = Dataset(
config.VALID_IMAGES_DIR,
config.TRAIN_MAPS_DIR,
augmentation=config.transforms,
preprocessing=config.get_preprocessing(preprocess_input),
)
train_dataloader = DataLoader(
train_dataset, batch_size=config.BATCH_SIZE, shuffle=True)
valid_dataloader = DataLoader(valid_dataset, batch_size=1, shuffle=False)
# LOAD MODEL
model = get_model()
callbacks = [
tf.keras.callbacks.ModelCheckpoint(
config.WEIGHT_FILE, save_weights_only=True, save_best_only=True, mode='min'),
tf.keras.callbacks.ReduceLROnPlateau()
]
if config.LOAD_WEIGHTS and config.WEIGHT_FILE in os.listdir():
print("=> Loading checkpoint ...")
model.load_weights('best_model.h5')
model.fit_generator(
train_dataloader,
steps_per_epoch=len(train_dataloader),
epochs=config.EPOCHS,
callbacks=callbacks,
validation_data=valid_dataloader,
validation_steps=len(valid_dataloader),
)
if __name__ == "__main__":
sm.set_framework('tf.keras')
main()