forked from ismrmrd/ismrmrd-python-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrecon_multi_reps.py
178 lines (141 loc) · 5.65 KB
/
recon_multi_reps.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# -*- coding: utf-8 -*-
"""
Created on Wed Feb 4 09:59:18 2015
@author: Michael S. Hansen
"""
#%%
import os
import ismrmrd
import ismrmrd.xsd
import numpy as np
import scipy as sp
from ismrmrdtools import show, transform, coils, grappa, sense
#%%
#Convert data from siemens file with
# siemens_to_ismrmrd -f meas_MID00032_FID22409_oil_gre_128_150reps_pause_alpha_10.dat -z 1 -o data_reps_noise.h5
# siemens_to_ismrmrd -f meas_MID00032_FID22409_oil_gre_128_150reps_pause_alpha_10.dat -z 2 -o data_reps_data.h5
# Data can be found in Gadgetron integration test datasets
#filename_noise = 'data_reps_noise.h5'
#filename_data = 'data_reps_data.h5'
filename_noise = 'tpat3_noise.h5'
filename_data = 'tpat3_data.h5'
#%%
# Read the noise data
if not os.path.isfile(filename_noise):
print("%s is not a valid file" % filename_noise)
raise SystemExit
noise_dset = ismrmrd.Dataset(filename_noise, 'dataset', create_if_needed=False)
#%%
# Process the noise data
noise_reps = noise_dset.number_of_acquisitions()
a = noise_dset.read_acquisition(0)
noise_samples = a.number_of_samples
num_coils = a.active_channels
noise_dwell_time = a.sample_time_us
noise = np.zeros((num_coils,noise_reps*noise_samples),dtype=np.complex64)
for acqnum in range(noise_reps):
acq = noise_dset.read_acquisition(acqnum)
# TODO: Currently ignoring noise scans
if not acq.isFlagSet(ismrmrd.ACQ_IS_NOISE_MEASUREMENT):
raise Exception("Errror: non noise scan found in noise calibration")
noise[:,acqnum*noise_samples:acqnum*noise_samples+noise_samples] = acq.data
noise = noise.astype('complex64')
#%% Read the actual data
# Read the noise data
if not os.path.isfile(filename_data):
print("%s is not a valid file" % filename_data)
raise SystemExit
dset = ismrmrd.Dataset(filename_data, 'dataset', create_if_needed=False)
header = ismrmrd.xsd.CreateFromDocument(dset.read_xml_header())
enc = header.encoding[0]
# Matrix size
eNx = enc.encodedSpace.matrixSize.x
eNy = enc.encodedSpace.matrixSize.y
eNz = enc.encodedSpace.matrixSize.z
rNx = enc.reconSpace.matrixSize.x
rNy = enc.reconSpace.matrixSize.y
rNz = enc.reconSpace.matrixSize.z
# Field of View
eFOVx = enc.encodedSpace.fieldOfView_mm.x
eFOVy = enc.encodedSpace.fieldOfView_mm.y
eFOVz = enc.encodedSpace.fieldOfView_mm.z
rFOVx = enc.reconSpace.fieldOfView_mm.x
rFOVy = enc.reconSpace.fieldOfView_mm.y
rFOVz = enc.reconSpace.fieldOfView_mm.z
#Parallel imaging factor
acc_factor = enc.parallelImaging.accelerationFactor.kspace_encoding_step_1
# Number of Slices, Reps, Contrasts, etc.
ncoils = header.acquisitionSystemInformation.receiverChannels
if enc.encodingLimits.slice != None:
nslices = enc.encodingLimits.slice.maximum + 1
else:
nslices = 1
if enc.encodingLimits.repetition != None:
nreps = enc.encodingLimits.repetition.maximum + 1
else:
nreps = 1
if enc.encodingLimits.contrast != None:
ncontrasts = enc.encodingLimits.contrast.maximum + 1
else:
ncontrasts = 1
# In case there are noise scans in the actual dataset, we will skip them.
firstacq=0
for acqnum in range(dset.number_of_acquisitions()):
acq = dset.read_acquisition(acqnum)
if acq.isFlagSet(ismrmrd.ACQ_IS_NOISE_MEASUREMENT):
print("Found noise scan at acq ", acqnum)
continue
else:
firstacq = acqnum
print("Imaging acquisition starts acq ", acqnum)
break
#Calculate prewhiterner taking BWs into consideration
a = dset.read_acquisition(firstacq)
data_dwell_time = a.sample_time_us
noise_receiver_bw_ratio = 0.79
dmtx = coils.calculate_prewhitening(noise,scale_factor=(data_dwell_time/noise_dwell_time)*noise_receiver_bw_ratio)
#%%
# Process the actual data
all_data = np.zeros((nreps, ncontrasts, nslices, ncoils, eNz, eNy, rNx), dtype=np.complex64)
# Loop through the rest of the acquisitions and stuff
for acqnum in range(firstacq,dset.number_of_acquisitions()):
acq = dset.read_acquisition(acqnum)
acq_data_prw = coils.apply_prewhitening(acq.data,dmtx)
# Remove oversampling if needed
if eNx != rNx:
xline = transform.transform_kspace_to_image(acq_data_prw, [1])
x0 = (eNx - rNx) / 2
x1 = (eNx - rNx) / 2 + rNx
xline = xline[:,x0:x1]
acq.resize(rNx,acq.active_channels,acq.trajectory_dimensions)
acq.center_sample = rNx/2
# need to use the [:] notation here to fill the data
acq.data[:] = transform.transform_image_to_kspace(xline, [1])
# Stuff into the buffer
rep = acq.idx.repetition
contrast = acq.idx.contrast
slice = acq.idx.slice
y = acq.idx.kspace_encode_step_1
z = acq.idx.kspace_encode_step_2
all_data[rep, contrast, slice, :, z, y, :] = acq.data
all_data = all_data.astype('complex64')
#%%
# Coil combination
coil_images = transform.transform_kspace_to_image(np.squeeze(np.mean(all_data,0)),(1,2))
(csm,rho) = coils.calculate_csm_walsh(coil_images)
csm_ss = np.sum(csm * np.conj(csm),0)
csm_ss = csm_ss + 1.0*(csm_ss < np.spacing(1)).astype('float32')
if acc_factor > 1:
coil_data = np.squeeze(np.mean(all_data,0))
reload(grappa)
(unmix,gmap) = grappa.calculate_grappa_unmixing(coil_data, acc_factor)
#(unmix,gmap) = sense.calculate_sense_unmixing(acc_factor,csm)
show.imshow(abs(gmap),colorbar=True,scale=(1,2))
recon = np.zeros((nreps, ncontrasts, nslices, eNz, eNy, rNx), dtype=np.complex64)
for r in range(0,nreps):
recon_data = transform.transform_kspace_to_image(np.squeeze(all_data[r,:,:,:,:,:,:]),(1,2))*np.sqrt(acc_factor)
if acc_factor > 1:
recon[r,:,:,:,:] = np.sum(unmix * recon_data,0)
else:
recon[r,:,:,:,:] = np.sum(np.conj(csm) * recon_data,0)
show.imshow(np.squeeze(np.std(np.abs(recon),0)),colorbar=True,scale=(1,2))