Note: Functions taking Tensor
arguments can also take anything accepted by
tf.convert_to_tensor
.
[TOC]
TensorFlow provides allows you to wrap python/numpy functions as TensorFlow operators.
Wraps a python function and uses it as a TensorFlow op.
Given a python function func
, which takes numpy arrays as its
inputs and returns numpy arrays as its outputs, wrap this function as an
operation in a TensorFlow graph. The following snippet constructs a simple
TensorFlow graph that invokes the np.sinh()
NumPy function as a operation
in the graph:
def my_func(x):
# x will be a numpy array with the contents of the placeholder below
return np.sinh(x)
inp = tf.placeholder(tf.float32)
y = tf.py_func(my_func, [inp], tf.float32)
N.B. The tf.py_func()
operation has the following known limitations:
-
The body of the function (i.e.
func
) will not be serialized in aGraphDef
. Therefore, you should not use this function if you need to serialize your model and restore it in a different environment. -
The operation must run in the same address space as the Python program that calls
tf.py_func()
. If you are using distributed TensorFlow, you must run atf.train.Server
in the same process as the program that callstf.py_func()
and you must pin the created operation to a device in that server (e.g. usingwith tf.device():
).
func
: A Python function, which accepts a list of NumPyndarray
objects having element types that match the correspondingtf.Tensor
objects ininp
, and returns a list ofndarray
objects (or a singlendarray
) having element types that match the corresponding values inTout
.inp
: A list ofTensor
objects.Tout
: A list or tuple of tensorflow data types or a single tensorflow data type if there is only one, indicating whatfunc
returns.stateful
: (Boolean.) If True, the function should be considered stateful. If a function is stateless, when given the same input it will return the same output and have no observable side effects. Optimizations such as common subexpression elimination are only performed on stateless operations.name
: A name for the operation (optional).
A list of Tensor
or a single Tensor
which func
computes.