-
Notifications
You must be signed in to change notification settings - Fork 0
/
Record_SNRprofiles.py
745 lines (424 loc) · 27 KB
/
Record_SNRprofiles.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
# coding: utf-8
# Record SNR profiles for each crhydronei directory
# Information coming from data_vs_rad.dat
import numpy as np
from astropy.table import Table, vstack, Column
import os, sys, time
import astropy.io.fits as fits
pathw=os.getcwd() # Current work directory
class cd:
"""Context manager for changing the current working directory"""
def __init__(self, newPath):
self.newPath = os.path.expanduser(newPath)
def __enter__(self):
self.savedPath = os.getcwd()
os.chdir(self.newPath)
def __exit__(self, etype, value, traceback):
os.chdir(self.savedPath)
subdirect = []
for i, el in enumerate([x[1] for x in os.walk(pathw)][0]):
if len(el) > 25: # Record elements like ChN_Ia_sch115_ifort_2000yr_2p0
subdirect.append(el)
# List of all subdirectories. Change the parameter [0] depending on the needs (i.e., on the depth of the nested grid of subdirectories)
# It should always be x[1], which corresponds to the directories present in the current work path. x[2] comprises the files present in the current work path
subdirect = sorted(subdirect, key=str.lower) # Otherwise, capitalized strings go first and the vector becomes a mess
path_files = []
for i in range(len(subdirect)):
path_files.append(i)
if 'ddta' in subdirect[i]:
path_files[i] = pathw + '/' + subdirect[i] + '/model_ddta/'
if 'ddt12' in subdirect[i]:
path_files[i] = pathw + '/' + subdirect[i] + '/model_ddt12/'
if 'ddt16' in subdirect[i]:
path_files[i] = pathw + '/' + subdirect[i] + '/model_ddt16/'
if 'ddt24' in subdirect[i]:
path_files[i] = pathw + '/' + subdirect[i] + '/model_ddt24/'
if 'ddt40' in subdirect[i]:
path_files[i] = pathw + '/' + subdirect[i] + '/model_ddt40/'
elif 'sch088' in subdirect[i]:
path_files[i] = pathw + '/' + subdirect[i] + '/model_sch088/'
elif 'sch097' in subdirect[i]:
path_files[i] = pathw + '/' + subdirect[i] + '/model_sch097/'
elif 'sch106' in subdirect[i]:
path_files[i] = pathw + '/' + subdirect[i] + '/model_sch106/'
elif 'sch115' in subdirect[i]:
path_files[i] = pathw + '/' + subdirect[i] + '/model_sch115/'
nion_befH = 0
nion_H = 2 # H+0,+1
nion_befHe = 2
nion_He = 3 # He+0,...+2
nion_befC = 5
nion_C = 7 # C+0,...+6
nion_befN = 12
nion_N = 8 # N+0,...+7
nion_befO = 20
nion_O = 9 # O+0,...+8
nion_befNe = 29
nion_Ne = 11 # Ne+0,...+10
nion_befMg = 40
nion_Mg = 13 # Mg+0,...+12
nion_befSi = 53
nion_Si = 15 # Si+0,...+14
nion_befS = 68
nion_S = 17 # S+0,...+16
nion_befAr = 85
nion_Ar = 19 # Ar+0,...+18
nion_befCa = 104
nion_Ca = 21 # Ca+0,...+20
nion_befFe = 125
nion_Fe = 27 # Fe+0,...+26
nion_befNi = 152
nion_Ni = 29 # Ni+0,...+28
nion_befNa = 181
nion_Na = 12 # Na+0,...+11
nion_befAl = 193
nion_Al = 14 # Al+0,...+13
nion_befP = 207
nion_P = 16 # P+0,...+15
nion_befTi = 223
nion_Ti = 23 # Ti+0,...+22
nion_befCr = 246
nion_Cr = 25 # Cr+0,...+24
nion_befMn = 271
nion_Mn = 26 # Mn+0,...+25
# 297 ions in total
Nions = 297
Nelem = 19
elements = np.asarray(['H', 'He', 'C', 'N', 'O', 'Ne', 'Mg', 'Si', 'S', 'Ar', 'Ca', 'Fe', 'Ni', 'Na', 'Al', 'P', 'Ti', 'Cr', 'Mn'])
idx_ion_limit = [] # For instance, the last component will be [nion_befMn, nion_befMn + nion_Mn]. Simplify notation
tnion_befH = 0
tnion_H = 1 # H+1
tnion_befHe = 1
tnion_He = 2 # He+1,...+2
tnion_befC = 3
tnion_C = 6 # C+1,...+6
tnion_befN = 9
tnion_N = 7 # N+1,...+7
tnion_befO = 16
tnion_O = 8 # O+1,...+8
tnion_befNe = 24
tnion_Ne = 10 # Ne+1,...+10
tnion_befMg = 34
tnion_Mg = 12 # Mg+1,...+12
tnion_befSi = 46
tnion_Si = 14 # Si+1,...+14
tnion_befS = 60
tnion_S = 16 # S+1,...+16
tnion_befAr = 76
tnion_Ar = 18 # Ar+1,...+18
tnion_befCa = 94
tnion_Ca = 20 # Ca+1,...+20
tnion_befFe = 114
tnion_Fe = 26 # Fe+1,...+26
tnion_befNi = 140
tnion_Ni = 28 # Ni+1,...+28
tnion_befNa = 168
tnion_Na = 11 # Na+1,...+11
tnion_befAl = 179
tnion_Al = 13 # Al+1,...+13
tnion_befP = 192
tnion_P = 15 # P+1,...+15
tnion_befTi = 207
tnion_Ti = 22 # Ti+1,...+22
tnion_befCr = 229
tnion_Cr = 24 # Cr+1,...+24
tnion_befMn = 253
tnion_Mn = 25 # Mn+1,...+25
# (297 ions - 19 elements) ion temperatures in total
idx_tion_limit = [] # Different for the ion temperatures: neutrals do NOT belong to the array. See the explanation below
for index, el in enumerate(elements):
idx_ion_limit.append([0, 0])
idx_ion_limit[index] = [vars()['nion_bef' + el], vars()['nion_bef' + el] + vars()['nion_' + el]] # Index limits
idx_tion_limit.append([0, 0])
idx_tion_limit[index] = [vars()['tnion_bef' + el], vars()['tnion_bef' + el] + vars()['tnion_' + el]] # Index limits
def heaviside(x):
""" Heaviside step function """
if (x > 0):
result = 1
elif (x == 0):
result = 0.5
else:
result = 0
return result
# Assume nshocks is not equal for each model
pc_to_cm = 3.086e18
Msun = 1.98E33
dist = 10 #kpc
for idx, path in enumerate(path_files):
#20 profiles, regardless of nshocks:
# num_div_print = 20 !Number of profile printouts
data_vs_rad = np.loadtxt(path + 'data_vs_rad.dat')
data_vs_rad_age = np.unique(data_vs_rad[:,19]) # time_yr_run
if data_vs_rad_age[0] == 0:
data_vs_rad_age = data_vs_rad_age[1:]
data_vs_rad_iRS = np.zeros(len(data_vs_rad_age), dtype=int)
data_vs_rad_iCD = np.zeros(len(data_vs_rad_age), dtype=int)
data_vs_rad_iFS = np.zeros(len(data_vs_rad_age), dtype=int)
r = [ []*i for i in range(len(data_vs_rad_age)) ]
dm = [ []*i for i in range(len(data_vs_rad_age)) ]
lagm = [ []*i for i in range(len(data_vs_rad_age)) ]
r_amb = [ []*i for i in range(len(data_vs_rad_age)) ]
dm_amb = [ []*i for i in range(len(data_vs_rad_age)) ]
lagm_amb = [ []*i for i in range(len(data_vs_rad_age)) ]
data_vs_rad_age_block = [ []*i for i in range(len(data_vs_rad_age)) ]
uxx = [ []*i for i in range(len(data_vs_rad_age)) ]
te = [ []*i for i in range(len(data_vs_rad_age)) ]
rho = [ []*i for i in range(len(data_vs_rad_age)) ]
xnee = [ []*i for i in range(len(data_vs_rad_age)) ]
ti = [ []*i for i in range(len(data_vs_rad_age)) ]
xni = [ []*i for i in range(len(data_vs_rad_age)) ]
tau = [ []*i for i in range(len(data_vs_rad_age)) ]
uxx_amb = [ []*i for i in range(len(data_vs_rad_age)) ]
te_amb = [ []*i for i in range(len(data_vs_rad_age)) ]
rho_amb = [ []*i for i in range(len(data_vs_rad_age)) ]
xnee_amb = [ []*i for i in range(len(data_vs_rad_age)) ]
ti_amb = [ []*i for i in range(len(data_vs_rad_age)) ]
xni_amb = [ []*i for i in range(len(data_vs_rad_age)) ]
tau_amb = [ []*i for i in range(len(data_vs_rad_age)) ]
for ag, datag in enumerate(data_vs_rad_age):
data_vs_rad_age_block[ag] = np.where(data_vs_rad[:,19] == datag)[0]
data_vs_rad_iRS[ag] = np.where(data_vs_rad[:,11][data_vs_rad_age_block[ag]] == 1)[0][0] # rev_shock
data_vs_rad_iCD[ag] = np.where(data_vs_rad[:,18][data_vs_rad_age_block[ag]] == 1)[0][0] # rad_o_CD
data_vs_rad_iFS[ag] = np.where(data_vs_rad[:,17][data_vs_rad_age_block[ag]] == 1)[0][0] # rad_o_FS
r[ag] = data_vs_rad[data_vs_rad_age_block[ag]][0:data_vs_rad_iCD[ag]][:,2] * pc_to_cm # radius in cm
dm[ag] = 4*np.pi * r[ag]**2 * data_vs_rad[data_vs_rad_age_block[ag]][0:data_vs_rad_iCD[ag]][:,3]
lagm[ag] = np.zeros(len(r[ag]))
r_amb[ag] = data_vs_rad[data_vs_rad_age_block[ag]][data_vs_rad_iCD[ag]:data_vs_rad_iFS[ag]][:,2] * pc_to_cm # radius in cm
dm_amb[ag] = 4*np.pi * r_amb[ag]**2 * data_vs_rad[data_vs_rad_age_block[ag]][data_vs_rad_iCD[ag]:data_vs_rad_iFS[ag]][:,3]
lagm_amb[ag] = np.zeros(len(r_amb[ag]))
uxx[ag] = data_vs_rad[data_vs_rad_age_block[ag]][0:data_vs_rad_iCD[ag]][:,5] # v [km/s]
te[ag] = data_vs_rad[data_vs_rad_age_block[ag]][0:data_vs_rad_iCD[ag]][:,34] # te
rho[ag] = data_vs_rad[data_vs_rad_age_block[ag]][0:data_vs_rad_iCD[ag]][:,3] # rho
xnee[ag] = data_vs_rad[data_vs_rad_age_block[ag]][0:data_vs_rad_iCD[ag]][:,28] # xnee
# CAREFUL: Neutrals not heated by shock. Hence, the 19 neutral ions have NO ion temperature, which explains the "- Nelem" factor
ti[ag] = data_vs_rad[data_vs_rad_age_block[ag]][0:data_vs_rad_iCD[ag]][:,35 : 35 + Nions - Nelem] # ti for all the ion species
xni[ag] = data_vs_rad[data_vs_rad_age_block[ag]][0:data_vs_rad_iCD[ag]][:,35 + Nions - Nelem : 35 + Nions - Nelem + Nions] # ni for all the ion species
tau[ag] = data_vs_rad[data_vs_rad_age_block[ag]][0:data_vs_rad_iCD[ag]][:,-1] # tau = ne*t
uxx_amb[ag] = data_vs_rad[data_vs_rad_age_block[ag]][data_vs_rad_iCD[ag]:data_vs_rad_iFS[ag]][:,5] # v [km/s]
te_amb[ag] = data_vs_rad[data_vs_rad_age_block[ag]][data_vs_rad_iCD[ag]:data_vs_rad_iFS[ag]][:,34] # te
rho_amb[ag] = data_vs_rad[data_vs_rad_age_block[ag]][data_vs_rad_iCD[ag]:data_vs_rad_iFS[ag]][:,3] # rho
xnee_amb[ag] = data_vs_rad[data_vs_rad_age_block[ag]][data_vs_rad_iCD[ag]:data_vs_rad_iFS[ag]][:,28] # xnee
ti_amb[ag] = data_vs_rad[data_vs_rad_age_block[ag]][data_vs_rad_iCD[ag]:data_vs_rad_iFS[ag]][:,35 : 35 + Nions - Nelem] # ti
xni_amb[ag] = data_vs_rad[data_vs_rad_age_block[ag]][data_vs_rad_iCD[ag]:data_vs_rad_iFS[ag]][:,35 + Nions - Nelem : 35 + Nions - Nelem + Nions] # ni
tau_amb[ag] = data_vs_rad[data_vs_rad_age_block[ag]][data_vs_rad_iCD[ag]:data_vs_rad_iFS[ag]][:,-1] # tau = ne*t
for j, el in enumerate(r[ag]): #RS
if j == 0:
lagm[ag][j] = dm[ag][j] * el / Msun
else:
# TRAPEZOIDAL RULE FOR INTEGRATING
lagm[ag][j] = lagm[ag][j-1] + 0.5 * (dm[ag][j]+dm[ag][j-1]) * (r[ag][j]-r[ag][j-1]) / Msun
for o, al in enumerate(r_amb[ag]): #FS
if o == 0:
lagm_amb[ag][o] = 0.
else:
# TRAPEZOIDAL RULE FOR INTEGRATING
lagm_amb[ag][o] = lagm_amb[ag][o-1] + 0.5*(dm_amb[ag][o]+dm_amb[ag][o-1])*(r_amb[ag][o]-r_amb[ag][o-1]) / Msun
lagm = np.asarray(lagm)
r = np.asarray(r)
uxx = np.asarray(uxx)
te = np.asarray(te)
rho = np.asarray(rho)
xnee = np.asarray(xnee)
ti = np.asarray(ti)
tau = np.asarray(tau)
lagm_amb = np.asarray(lagm_amb)
r_amb = np.asarray(r_amb)
uxx_amb = np.asarray(uxx_amb)
te_amb = np.asarray(te_amb)
rho_amb = np.asarray(rho_amb)
xnee_amb = np.asarray(xnee_amb)
ti_amb = np.asarray(ti_amb)
tau_amb = np.asarray(tau_amb)
# Correct some nans
for i in range(np.shape(ti)[0]): # np.shape(ti)[0] = np.shape(ti_amb)[0] (ages x radial coordinate)[0] = ages
for j in range(np.shape(ti)[1]):
for a in range(Nions - Nelem):
# Correct some nans
if np.isfinite(ti[i][j][a]) == False:
if a > 0:
ti[i][j][a] = ti[i][j][a-1]
else:
ti[i][j][a] = ti[i][j][0]
for aa in range(Nions):
if np.isfinite(xni[i][j][aa]) == False:
xni[i][j][aa] = -99
for k in range(np.shape(ti_amb[i])[0]):
for b in range(Nions - Nelem):
# Correct some nans
if np.isfinite(ti_amb[i][k][b]) == False:
if b > 0:
ti_amb[i][k][b] = ti_amb[i][k][b-1]
else:
ti_amb[i][k][b] = ti_amb[i][k][0]
for bb in range(Nions):
if np.isfinite(xni_amb[i][k][bb]) == False:
xni_amb[i][k][bb] = -99
# For ti_average calculations
wh_neutral = np.zeros(Nelem, dtype=int)
for ineu, neu in enumerate(idx_ion_limit):
wh_neutral[ineu] = neu[0]
wh_noneutral = np.arange(Nions, dtype=int)
wh_neutral = list(wh_neutral)
wh_noneutral = list(wh_noneutral)
for inoneu in sorted(wh_neutral, reverse=True):
del wh_noneutral[inoneu] # Remove opposite set
# Mean and average ion temperature, whose indices are (age, radial/mass coordinate, ion)
# But beware: ti are log-values!!!!!!!!
ti_mean = np.zeros((np.shape(ti)[0],np.shape(ti)[1]))
ti_mean_amb = []
ti_aver = np.zeros((np.shape(ti)[0],np.shape(ti)[1]))
ti_aver_amb = []
# Also calculate ti, xni, xel = sum(xni), zel_aver = average charge state. But beware: xni are log-values!!!!!!!!
for index, el in enumerate(elements):
vars()['ti_' + el] = [] # Ion temperatures (ti_H, ti_He,...)
vars()['ti_' + el + '_amb'] = [] # Ion temperatures (ti_H_amb, ti_He_amb,...)
vars()['xni_' + el] = [] # Ion fractions (xni_H, xni_He,...)
vars()['xni_' + el + '_amb'] = [] # Ion fractions (xni_H_amb, xni_He_amb,...)
for i in range(np.shape(ti)[0]):
vars()['ti_' + el].append([0.])
vars()['ti_' + el][i] = (vars()['ti_' + el][i])*np.shape(ti[i])[0]
vars()['xni_' + el].append([0.])
vars()['xni_' + el][i] = (vars()['xni_' + el][i])*np.shape(xni[i])[0]
for j in range(np.shape(ti)[1]):
vars()['ti_' + el][i][j] = ti[i][j][idx_tion_limit[index][0] : idx_tion_limit[index][1]]
vars()['xni_' + el][i][j] = xni[i][j][idx_ion_limit[index][0] : idx_ion_limit[index][1]]
if index == 0: # Avoid looping unnecessarily
ti_mean[i][j] = np.log10(np.mean(10**ti[i][j]))
# Beware of the wh_noneutral indices
ti_aver[i][j] = np.log10(np.sum(10**ti[i][j]*10**xni[i][j][wh_noneutral])/np.sum(10**xni[i][j][wh_noneutral]))
vars()['ti_' + el + '_amb'].append([0.])
vars()['ti_' + el + '_amb'][i] = (vars()['ti_' + el + '_amb'][i])*np.shape(ti_amb[i])[0]
vars()['xni_' + el + '_amb'].append([0.])
vars()['xni_' + el + '_amb'][i] = (vars()['xni_' + el + '_amb'][i])*np.shape(xni_amb[i])[0]
if index == 0: # Avoid looping unnecessarily
ti_mean_amb.append([0.]) # NEITHER APPEND K NOR ZERO!!!!!!!!
ti_mean_amb[i] = (ti_mean_amb[i])*(np.shape(ti_amb[i])[0])
ti_mean_amb[i] = np.asarray(ti_mean_amb[i])
ti_aver_amb.append([0.]) # NEITHER APPEND K NOR ZERO!!!!!!!!
ti_aver_amb[i] = (ti_aver_amb[i])*(np.shape(ti_amb[i])[0])
ti_aver_amb[i] = np.asarray(ti_aver_amb[i])
for k in range(np.shape(ti_amb[i])[0]):
vars()['ti_' + el + '_amb'][i][k] = ti_amb[i][k][idx_tion_limit[index][0] : idx_tion_limit[index][1]]
vars()['xni_' + el + '_amb'][i][k] = xni_amb[i][k][idx_ion_limit[index][0] : idx_ion_limit[index][1]]
if index == 0: # Avoid looping unnecessarily
ti_mean_amb[i][k] = np.log10(np.mean(10**ti_amb[i][k]))
ti_aver_amb[i][k] = np.log10(np.sum(10**ti_amb[i][k]*10**xni_amb[i][k][wh_noneutral])\
/np.sum(10**xni_amb[i][k][wh_noneutral]))
if index == 0: # Avoid looping unnecessarily
ti_mean_amb[i] = np.asarray(ti_mean_amb[i])
ti_aver_amb[i] = np.asarray(ti_aver_amb[i])
# This is needed for the next calculations (below dotted line)
vars()['ti_' + el] = np.asarray(vars()['ti_' + el])
vars()['ti_' + el + '_amb'] = np.asarray(vars()['ti_' + el + '_amb'])
vars()['xni_' + el] = np.asarray(vars()['xni_' + el])
vars()['xni_' + el + '_amb'] = np.asarray(vars()['xni_' + el + '_amb'])
if index == 0: # Avoid looping unnecessarily
ti_mean_amb = np.asarray(ti_mean_amb)
ti_aver_amb = np.asarray(ti_aver_amb)
#------------------------------------------------------------------------------------------------------------------------------#
vars()['x' + el] = np.sum(10**vars()['xni_' + el], axis=2) # Number fractions (xH, xHe,...) [xH = np.sum(10**xni_H, axis=2)]
vars()['x' + el + '_amb'] = [] # Number fractions (xH_amb, xHe_amb,...)
# Herman says:
#If you are only interested in the ion fractions within an element inside a particular grid,
#then you can use the cnc array in ion_cnc_evo.dat as well. That file only contains info in
#the shocked plasma (i.e. from RS to FS). However, to integrate and obtain the overall ejecta
#or CSM distribution, you still need to know the number densities, right? i.e., from the ion
#fractions, you need to multiply with the abundance as a function of radius (also available
#in the same file), and then with the volumes to weight the contribution from each shell.
#If you use densities from data_vs_rad.dat, you can skip the abundance part.
#For the plot I sent you, as mentioned above, you need to first multiply the volume of each
#radial grid (or shell) to the population and add them up, before you renormalize with the maximum ion fraction.
vars()['z' + el + '_aver'] = np.zeros((np.shape(ti)[0],np.shape(ti)[1])) # Average charge states (zH_aver, zHe_aver,...)
vars()['z' + el + '_aver_amb'] = [] # Average charge states (zH_aver_amb, zHe_aver_amb,...)
vars()['EMi_' + el] = np.zeros(np.shape(vars()['xni_' + el])) # Integrated emission measure for each ion and mass coordinate
vars()['EM_' + el] = np.zeros(np.shape(vars()['x' + el])) # Integrated emission measure for each element and mass coordinate
vars()['EM_' + el + '_tot'] = np.zeros(len(data_vs_rad_age)) # Total emission measure for each element
#vars()['EMi_' + el + '_amb'] = []
#vars()['EM_' + el + '_amb'] = []
#vars()['EM_' + el + '_tot_amb']= np.zeros(len(data_vs_rad_age))
for i in range(np.shape(ti)[0]):
for j in range(np.shape(ti)[1]):
# Only the shocked ejecta contributes to the emission measure. Remove layers with r < RS
hv_EM = heaviside(r[i][j] - r[i][data_vs_rad_iRS[i]])
for a in range(vars()['nion_' + el]): # Number of ions for each element
vars()['z' + el + '_aver'][i][j] += a*10**vars()['xni_' + el][i][j][a] # Charge * abundance
# Volume integral of (n_e*n_ion) normmalized to 10 kpc
vars()['EMi_' + el][i][j][a] = np.trapz(y = hv_EM * 10**vars()['xni_' + el][i][0:j][:,a] * 10**xnee[i][0:j] \
* 4*np.pi * r[i][0:j]**2 , x = r[i][0:j]) / (4*np.pi*(pc_to_cm*1000*dist)**2)
vars()['z' + el + '_aver'][i][j] /= vars()['x' + el][i][j] # /= np.sum(10**xni_H[i][j]) # Normalizes with total abund.
vars()['EM_' + el][i][j] = np.sum(vars()['EMi_' + el][i][j])
vars()['EM_' + el + '_tot'][i] = vars()['EM_' + el][i][-1]
vars()['x' + el + '_amb'].append([0.]) # NEITHER APPEND "i" NOR INTEGER ZERO!!!!!!!!
vars()['x' + el + '_amb'][i] = (vars()['x' + el + '_amb'][i])*(np.shape(ti_amb[i])[0])
vars()['x' + el + '_amb'][i] = np.asarray(vars()['x' + el + '_amb'][i])
vars()['z' + el + '_aver_amb'].append([0.])
vars()['z' + el + '_aver_amb'][i] = (vars()['z' + el + '_aver_amb'][i])*(np.shape(ti_amb[i])[0])
#vars()['EMi_' + el + '_amb'].append([0.]) # NEITHER APPEND "i" NOR INTEGER ZERO!!!!!!!!
#vars()['EMi_' + el + '_amb'][i] = np.zeros(np.shape(vars()['xni_' + el + '_amb'][i]))
#vars()['EM_' + el + '_amb'].append([0.])
#vars()['EM_' + el + '_amb'][i] = (vars()['EM_' + el + '_amb'][i])*(np.shape(ti_amb[i])[0])
for k in range(np.shape(ti_amb[i])[0]):
vars()['x' + el + '_amb'][i][k] = np.sum(10**vars()['xni_' + el + '_amb'][i][k])
for b in range(vars()['nion_' + el]):
vars()['z' + el + '_aver_amb'][i][k] += b*10**vars()['xni_' + el + '_amb'][i][k][b]
#vars()['EMi_' + el + '_amb'][i][k][b] = \
# np.trapz(y = np.asarray(10**np.asarray(vars()['xni_' + el + '_amb'][i]))[0:k][:,b] *\
# np.asarray(10**np.asarray(xnee_amb[i]))[0:k] * 4*np.pi * r_amb[i][0:k]**2 , x = r_amb[i][0:k])
vars()['z' + el + '_aver_amb'][i][k] /= vars()['x' + el + '_amb'][i][k] # /= np.sum(10**xni_amb_H[i][k])
#vars()['EM_' + el + '_amb'][i][k] = np.sum(vars()['EMi_' + el + '_amb'][i][k])
#vars()['EM_' + el + '_tot_amb'][i] = vars()['EM_' + el + '_amb'][i][-1]
vars()['x' + el + '_amb'][i] = np.asarray(vars()['x' + el + '_amb'][i])
vars()['z' + el + '_aver_amb'][i] = np.asarray(vars()['z' + el + '_aver_amb'][i])
vars()['x' + el + '_amb'] = np.asarray(vars()['x' + el + '_amb'])
vars()['z' + el + '_aver_amb'] = np.asarray(vars()['z' + el + '_aver_amb'])
# Record final FITS table with model parameters for every mass coordinate
# Each sub-table will contain information for a given age
prihdr = fits.Header()
prihdr['DATE'] = time.strftime("%m/%d/%Y")
prihdr['COMMENT'] = '= Physical profile of a modeled SNR for several expansion ages. Includes shocked ejecta and ambient medium'
prihdu = fits.PrimaryHDU(header=prihdr)
cols = [0]*len(data_vs_rad_age)
tbhdu = [0]*(len(data_vs_rad_age) + 1) # Header + cols
tbhdu[0] = prihdu
for ag, datag in enumerate(data_vs_rad_age):
cols.append([0.])
r_conc = np.concatenate((r[ag]/pc_to_cm, r_amb[ag]/pc_to_cm), axis=0)
r_Table = fits.Column(name = 'r', format='1E', unit='pc', array = r_conc)
lagm_conc = np.concatenate((lagm[ag], lagm[ag][-1] + lagm_amb[ag]), axis=0)
lagm_Table = fits.Column(name = 'lagm', format='1E', unit='Msun', array = lagm_conc)
uxx_conc = np.concatenate((uxx[ag], uxx_amb[ag]), axis=0)
uxx_Table = fits.Column(name = 'v', format='1E', unit='km+1s-1', array = uxx_conc)
te_conc = np.concatenate((te[ag], te_amb[ag]), axis=0)
te_Table = fits.Column(name = 'te', format='1E', unit='K', array = te_conc)
rho_conc = np.concatenate((rho[ag], rho_amb[ag]), axis=0)
rho_Table = fits.Column(name = 'rho', format='1E', unit='g+1cm-3', array = rho_conc)
xnee_conc = np.concatenate((xnee[ag], xnee_amb[ag]), axis=0)
xnee_Table = fits.Column(name = 'xnee', format='1E', unit='cm-3', array = xnee_conc)
tau_conc = np.concatenate((tau[ag], tau_amb[ag]), axis=0)
tau_Table = fits.Column(name = 'tau', format='1E', unit='cm-3s+1', array = tau_conc)
ti_aver_conc = np.concatenate((ti_aver[ag], ti_aver_amb[ag]), axis=0)
ti_aver_Table = fits.Column(name = 'ti_aver', format='1E', unit='K', array = ti_aver_conc)
cols_Table = [r_Table, lagm_Table, uxx_Table, te_Table, rho_Table, xnee_Table, tau_Table, ti_aver_Table]
for index, el in enumerate(elements):
vars()['x' + el + '_conc'] = np.concatenate((vars()['x' + el][ag], vars()['x' + el + '_amb'][ag]), axis=0)
vars()['x' + el + '_Table'] = fits.Column(name = 'x' + el, format='1E', unit='cm-3', \
array = vars()['x' + el + '_conc'])
vars()['z' + el + '_aver' + '_conc'] = np.concatenate((vars()['z' + el + '_aver'][ag],\
vars()['z' + el + '_aver' + '_amb'][ag]), axis=0)
vars()['z' + el + '_aver' + '_Table'] = fits.Column(name = 'z' + el + '_aver', format='1E', \
array = vars()['z' + el + '_aver' + '_conc'])
vars()['EM_' + el + '_conc'] = np.concatenate((vars()['EM_' + el][ag], np.zeros(len(r_amb[ag]))), axis=0)
vars()['EM_' + el + '_Table'] = fits.Column(name = 'EM_' + el, format='1E', unit='cm-5', \
array = vars()['EM_' + el + '_conc'])
cols_Table.append(vars()['x' + el + '_Table'])
cols_Table.append(vars()['z' + el + '_aver' + '_Table'])
cols_Table.append(vars()['EM_' + el + '_Table'])
cols[ag] = fits.BinTableHDU.from_columns(cols_Table)
tbhdu[ag + 1] = fits.BinTableHDU.from_columns(cols[ag].columns, name = str(int(datag)) + 'yr', header = None)
## path_files.split(os.sep) will yield, for '/home/hector/CR_NEI_hydro/ChN_Ia_ddta_ifort_500yr_2p0/model_ddta/',
## ['', 'home', 'hector', 'CR_NEI_hydro', 'ChN_Ia_ddta_ifort_500yr_2p0', 'model_ddta', '']
explmodel = path.split(os.sep)[-2].split("_")[-1]
rhoISM = path.split(os.sep)[-3].split("_")[-1]
# Write table
tbhdulist = fits.HDUList(tbhdu)
tbhdulist.writeto('SNRprofile_%s_%s.fits' % (explmodel, rhoISM), overwrite = True)