-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathseql_classify.cpp
455 lines (390 loc) · 13.6 KB
/
seql_classify.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
/*
* Author: Georgiana Ifrim ([email protected])
*
* This library uses a model stored in a trie
* for fast classification of a given test set.
*
* A customized (tuned) classification threshold can be provided as input to the classifier.
* The program simply applies a suffix tree model to the test documents for predicting classification labels.
* Prec, Recall, F1 and Accuracy are reported.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation.
*
*/
#include <limits>
#include <vector>
#include <string>
#include <map>
#include "mmap.h"
#include <algorithm>
#include <cstdio>
#include <unistd.h>
#include <iostream>
#include <fstream>
#include <iterator>
#include <cmath>
#include "common_string_symbol.h"
#include "darts.h"
#include "sys/time.h"
static inline char *read_ptr (char **ptr, size_t size)
{
char *r = *ptr;
*ptr += size;
return r;
}
template <class T> static inline void read_static (char **ptr, T& value)
{
char *r = read_ptr (ptr, sizeof (T));
memcpy (&value, r, sizeof (T));
}
template <typename T1, typename T2>
struct pair_2nd_cmp: public std::binary_function<bool, T1, T2> {
bool operator () (const std::pair <T1, T2>& x1, const std::pair<T1, T2> &x2)
{
return x1.second > x2.second;
}
};
class SEQLClassifier
{
private:
MeCab::Mmap<char> mmap;
double *alpha;
double bias;
Darts::DoubleArray da;
std::vector <int> result;
std::vector <stx::string_symbol> doc;
std::map <std::string, double> rules;
std::map <std::string, int> rules_and_ids;
bool userule;
int oov_docs;
void project (std::string prefix,
unsigned int pos,
size_t trie_pos,
size_t str_pos,
bool token_type)
{
if (pos == doc.size() - 1) return;
// Check traversal with both the next actual unigram in the doc and the wildcard *.
string next_unigrams[2];
next_unigrams[0] = doc[pos + 1].key();
next_unigrams[1] = "*";
for (int i = 0; i < 2; ++i) {
string next_unigram = next_unigrams[i];
std::string item;
if (!token_type) { //word-level token
item = prefix + " " + next_unigram;
} else { // char-level token
item = prefix + next_unigram;
}
//cout << "\nitem: " << item.c_str();
size_t new_trie_pos = trie_pos;
size_t new_str_pos = str_pos;
int id = da.traverse (item.c_str(), new_trie_pos, new_str_pos);
//cout <<"\nid: " << id;
//if (id == -2) return;
if (id == -2) {
if (i == 0) continue;
else return;
}
if (id >= 0) {
if (userule) {
//cout << "\nnew rule: " << item;
rules.insert (std::make_pair(item, alpha[id]));
rules_and_ids.insert (std::make_pair(item, id));
}
result.push_back (id);
}
project (item, pos + 1, new_trie_pos, new_str_pos, token_type);
}
}
public:
SEQLClassifier(): userule(false), oov_docs(0) {};
double getBias() {
return bias;
}
int getOOVDocs() {
return oov_docs;
}
void setRule(bool t)
{
userule = t;
}
bool open (const char *file, double threshold)
{
if (! mmap.open (file)) return false;
char *ptr = mmap.begin ();
unsigned int size = 0;
read_static<unsigned int>(&ptr, size);
da.set_array (ptr);
ptr += size;
read_static<double>(&ptr, bias); // this bias from the model file is not used for classif; it is automatically obtained by summing
// up the features of the model and it is used for info only
bias = -threshold; //set bias to minus user-provided-thereshold
alpha = (double *)ptr;
return true;
}
// Compute the area under the ROC curve.
double calcROC( std::vector< std::pair<double, int> >& forROC )
{
//std::sort( forROC.begin(), forROC.end() );
double area = 0;
double x=0, xbreak=0;
double y=0, ybreak=0;
double prevscore = - numeric_limits<double>::infinity();
for( vector< pair<double, int> >::reverse_iterator ritr=forROC.rbegin(); ritr!=forROC.rend(); ritr++ )
{
double score = ritr->first;
int label = ritr->second;
//cout << "\nscore: " << score << " label: " << label;
if( score != prevscore ) {
//cout << "\nx: " << x << " xbreak: " << xbreak << " y: " << y << " ybreak: " << ybreak;
area += (x-xbreak)*(y+ybreak)/2.0;
//cout << "\narea: " << area;
xbreak = x;
ybreak = y;
prevscore = score;
}
if( label > 0) y ++;
else x ++;
}
area += (x-xbreak)*(y+ybreak)/2.0; //the last bin
if( 0==y || x==0 ) area = 0.0; // degenerate case
else area = 100.0 * area /( x*y );
//cout << "\narea: " << area;
return area;
}
// Compute the area under the ROC50 curve.
// Fixes the number of negatives to 50.
// Stop computing curve after seeing 50 negatives.
double calcROC50( std::vector< std::pair<double, int> >& forROC )
{
//std::sort( forROC.begin(), forROC.end() );
double area50 = 0;
double x=0, xbreak=0;
double y=0, ybreak=0;
double prevscore = - numeric_limits<double>::infinity();
for( vector< pair<double, int> >::reverse_iterator ritr=forROC.rbegin(); ritr!=forROC.rend(); ritr++ )
{
double score = ritr->first;
int label = ritr->second;
if( score != prevscore && x < 50) {
area50 += (x-xbreak)*(y+ybreak)/2.0;
xbreak = x;
ybreak = y;
prevscore = score;
}
if( label > 0) y ++;
else if (x < 50) x ++;
}
area50 += (x-xbreak)*(y+ybreak)/2.0; //the last bin
if( 0==y || x==0 ) area50 = 0.0; // degenerate case
else area50 = 100.0 * area50 /( 50*y );
return area50;
}
double classify (const char *line, bool token_type)
{
result.clear ();
doc.clear ();
rules.clear ();
double r = bias;
// Prepare instance as a vector of string_symbol
str2node (line, doc, token_type);
for (unsigned int i = 0; i < doc.size(); ++i) {
std::string item = doc[i].key();
int id;
da.exactMatchSearch (item.c_str(), id);
//int id = da.exactMatchSearch (doc[i].key().c_str());
if (id == -2) continue;
if (id >= 0) {
if (userule) {
rules.insert (std::make_pair(doc[i].key(), alpha[id]));
rules_and_ids.insert (std::make_pair(doc[i].key(), id));
}
result.push_back (id);
}
project (doc[i].key(), i, 0, 0, token_type);
}
std::sort (result.begin(), result.end());
// Binary frequencies, erase the duplicate feature ids, features count only once.
result.erase (std::unique (result.begin(), result.end()), result.end());
if (result.size() == 0) {
if (userule)
cout << "\n Test doc out of vocabulary\n";
oov_docs++;
}
for (unsigned int i = 0; i < result.size(); ++i) r += alpha[result[i]];
return r;
}
std::ostream &printRules (std::ostream &os)
{
std::vector <std::pair <std::string, double> > tmp;
for (std::map <std::string, double>::iterator it = rules.begin();
it != rules.end(); ++it)
tmp.push_back (std::make_pair(it->first, it->second));
std::sort (tmp.begin(), tmp.end(), pair_2nd_cmp<std::string, double>());
os << "\nrule: " << bias << " __DFAULT__" << std::endl;
// for (std::vector <std::pair <std::string, double> >::iterator it = tmp.begin();
// it != tmp.end(); ++it)
for (std::map <std::string, double>::iterator it = rules.begin();
it != rules.end(); ++it)
//os << "rule: " << rules_and_ids[it->first] << " " << it->second << " " << it->first << std::endl;
os << "rule: " << it->first << " " << it->second << std::endl;
return os;
}
std::ostream &printIds (std::ostream &os) {
for (std::map <std::string, int>::iterator it = rules_and_ids.begin(); it != rules_and_ids.end(); ++it)
os << (it->second + 1) << ":1.0 ";
os << "\n";
return os;
}
};
#define OPT " [-n token_type: 0 word tokens, 1 char tokens] [-t classif_threshold] [-v verbose] test_file binary_model_file"
int main (int argc, char **argv)
{
std::istream *is = 0;
unsigned int verbose = 0;
double threshold = 0; // By default zero threshold = zero bias.
// By default char tokens.
bool token_type = 1;
// Profiling variables.
struct timeval t;
struct timeval t_origin;
gettimeofday(&t_origin, NULL);
int opt;
while ((opt = getopt(argc, argv, "n:t:v:")) != -1) {
switch(opt) {
case 'n':
token_type = atoi(optarg);
break;
case 't':
threshold = atof(optarg);
break;
case 'v':
verbose = atoi(optarg);
break;
default:
std::cout << "Usage: " << argv[0] << OPT << std::endl;
return -1;
}
}
if (argc < 3) {
std::cout << "Usage: " << argv[0] << OPT << std::endl;
return -1;
}
if (! strcmp (argv[argc - 2], "-")) {
is = &std::cin;
} else {
is = new std::ifstream (argv[argc - 2]);
if (! *is) {
std::cerr << argv[0] << " " << argv[argc-2] << " No such file or directory" << std::endl;
return -1;
}
}
SEQLClassifier seql;
if (verbose >= 3) seql.setRule (true);
if (! seql.open (argv[argc-1], threshold)) {
std::cerr << argv[0] << " " << argv[argc-1] << " No such file or directory" << std::endl;
return -1;
}
std::string line;
char *column[4];
// Predicted and true scores for all docs.
vector<pair<double, int> > scores;
unsigned int all = 0;
unsigned int correct = 0;
unsigned int res_a = 0;
unsigned int res_b = 0;
unsigned int res_c = 0;
unsigned int res_d = 0;
//cout << "\n\nreading test data...\n";
while (std::getline (*is, line)) {
if (line[0] == '\0' || line[0] == ';') continue;
if (line[line.size() - 1] == '\r') {
line[line.size() - 1] = '\0';
}
//cout << "\nline:*" << aux.c_str() << "*";
if (2 != tokenize ((char *)line.c_str(), "\t ", column, 2)) {
std::cerr << "Format Error: " << line.c_str() << std::endl;
return -1;
}
//cout <<"\ncolumn[0]:*" << column[0] << "*";
//cout <<"\ncolumn[1]:*" << column[1] << "*";
//cout.flush();
int y = atoi (column[0]);
//cout << "\ny: " << y;
double predicted_score = seql.classify (column[1], token_type);
// Keep predicted and true score.
scores.push_back(pair<double, int>(predicted_score, y));
// Transform the predicted_score which is a real number, into a probability,
// using the logistic transformation: exp^{predicted_score} / 1 + exp^{predicted_score} = 1 / 1 + e^{-predicted_score}.
double predicted_prob;
if (predicted_score < -8000) {
predicted_prob = 0;
} else {
predicted_prob = 1.0 / (1.0 + exp(-predicted_score));
}
if (verbose == 1) {
std::cout << y << " " << predicted_score << " " << predicted_prob << std::endl;
} else if (verbose == 2) {
std::cout << y << " " << predicted_score << " " << predicted_prob << " " << column[1] << std::endl;
} else if (verbose == 4) {
std::cout << "<instance>" << std::endl;
std::cout << y << " " << predicted_score << " " << predicted_prob << " " << column[1] << std::endl;
seql.printRules (std::cout);
std::cout << "</instance>" << std::endl;
} else if (verbose == 5) {
std::cout << y << " ";
seql.printIds (std::cout);
}
all++;
if (predicted_score > 0) {
if(y > 0) correct++;
if(y > 0) res_a++; else res_b++;
} else {
if(y < 0) correct++;
if(y > 0) res_c++; else res_d++;
}
}
double prec = 1.0 * res_a/(res_a + res_b);
if (res_a + res_b == 0) prec = 0;
double rec = 1.0 * res_a/(res_a + res_c);
if (res_a + res_c == 0) rec = 0;
double f1 = 2 * rec * prec / (prec+rec);
if (prec + rec == 0) f1 = 0;
double specificity = 1.0 * res_d/(res_d + res_b);
if (res_d + res_b == 0) specificity = 0;
// sensitivity = recall
double sensitivity = 1.0 * res_a/(res_a + res_c);
if (res_a + res_c == 0) sensitivity = 0;
double fss = 2 * specificity * sensitivity / (specificity + sensitivity);
if (specificity + sensitivity == 0) fss = 0;
// Sort the scores ascendingly by the predicted score.
sort(scores.begin(), scores.end());
double AUC = seql.calcROC(scores);
double AUC50 = seql.calcROC50(scores);
double balanced_error = 0.5 * ((1.0 * res_c / (res_a + res_c)) + (1.0 * res_b / (res_b + res_d)));
//if (verbose >= 3) {
std::printf ("Classif Threshold: %.5f\n", -seql.getBias());
std::printf ("Accuracy: %.5f%% (%d/%d)\n", 100.0 * correct / all , correct, all);
std::printf ("Error: %.5f%% (%d/%d)\n", 100.0 - 100.0 * correct / all, all - correct, all);
std::printf ("Balanced Error: %.5f%%\n", 100.0 * balanced_error);
std::printf ("AUC: %.5f%%\n", AUC);
//std::printf ("(1 - AUC): %.5f%%\n", 100 - AUC);
std::printf ("AUC50: %.5f%%\n", AUC50);
std::printf ("Precision: %.5f%% (%d/%d)\n", 100.0 * prec, res_a, res_a + res_b);
std::printf ("Recall: %.5f%% (%d/%d)\n", 100.0 * rec, res_a, res_a + res_c);
std::printf ("F1: %.5f%%\n", 100.0 * f1);
std::printf ("Specificity: %.5f%% (%d/%d)\n", 100.0 * specificity, res_d, res_d + res_b);
std::printf ("Sensitivity: %.5f%% (%d/%d)\n", 100.0 * sensitivity, res_a, res_a + res_c);
std::printf ("FSS: %.5f%%\n", 100.0 * fss);
std::printf ("System/Answer p/p p/n n/p n/n: %d %d %d %d\n", res_a,res_b,res_c,res_d);
std::printf ("OOV docs: %d\n", seql.getOOVDocs());
gettimeofday(&t, NULL);
cout << "end classification( " << (t.tv_sec - t_origin.tv_sec) << " seconds; " << (t.tv_sec - t_origin.tv_sec) / 60.0 << " minutes )\n";
cout.flush();
//}
if (is != &std::cin) delete is;
return 0;
}