-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathseql_classify_tune_threshold_min_errors.cpp
394 lines (329 loc) · 11.8 KB
/
seql_classify_tune_threshold_min_errors.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
/*
* Author: Georgiana Ifrim ([email protected])
*
* This library uses a model stored in a trie
* for fast classification of a given document set.
*
* The classification threshold is tuned on the given set in order
* to maximize accuracy. This code is used for tuning the classification
* threshold on the training set.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation.
*
*/
#include <limits>
#include <vector>
#include <string>
#include <map>
#include "mmap.h"
#include <algorithm>
#include <cstdio>
#include <unistd.h>
#include <iostream>
#include <fstream>
#include <iterator>
#include <cmath>
#include "common_string_symbol.h"
#include "darts.h"
#include "sys/time.h"
static inline char *read_ptr (char **ptr, size_t size)
{
char *r = *ptr;
*ptr += size;
return r;
}
template <class T> static inline void read_static (char **ptr, T& value)
{
char *r = read_ptr (ptr, sizeof (T));
memcpy (&value, r, sizeof (T));
}
template <typename T1, typename T2>
struct pair_2nd_cmp: public std::binary_function<bool, T1, T2> {
bool operator () (const std::pair <T1, T2>& x1, const std::pair<T1, T2> &x2)
{
return x1.second > x2.second;
}
};
class SEQLClassifier
{
private:
MeCab::Mmap<char> mmap;
double *alpha;
Darts::DoubleArray da;
std::vector <int> result;
std::vector <stx::string_symbol> doc;
std::map <std::string, double> rules;
bool userule;
// Recursive traversal of strings starting at pos.
// prefix: current prefix, pos: current pos in the document
void project (std::string prefix, unsigned int pos, size_t trie_pos, size_t str_pos, bool token_type) {
if (pos == doc.size() - 1) return;
// Check traversal with both the next actual unigram in the doc and the wildcard *.
string next_unigrams[2];
next_unigrams[0] = doc[pos + 1].key();
next_unigrams[1] = "*";
for (int i = 0; i < 2; ++i) {
string next_unigram = next_unigrams[i];
std::string item;
if (!token_type) { //word-level token
item = prefix + " " + next_unigram;
} else { // char-level token
item = prefix + next_unigram;
}
//cout << "\nitem: " << item.c_str();
size_t new_trie_pos = trie_pos;
size_t new_str_pos = str_pos;
int id = da.traverse (item.c_str(), new_trie_pos, new_str_pos);
//cout <<"\nid: " << id;
//if (id == -2) return;
if (id == -2) {
if (i == 0) continue;
else return;
}
if (id >= 0) {
if (userule) {
//cout << "\nnew rule: " << item;
rules.insert (std::make_pair (item, alpha[id]));
}
result.push_back (id);
}
project (item, pos + 1, new_trie_pos, new_str_pos, token_type);
}
}
public:
double bias;
SEQLClassifier(): userule(false) {};
void setRule(bool t) {
userule = t;
}
bool open (const char *file) {
if (! mmap.open (file)) return false;
char *ptr = mmap.begin ();
unsigned int size = 0;
read_static<unsigned int>(&ptr, size);
da.set_array (ptr);
ptr += size;
read_static<double>(&ptr, bias);
alpha = (double *)ptr;
return true;
}
// Compute the area under the ROC curve.
double calcROC( std::vector< std::pair<double, int> >& forROC ) {
//std::sort( forROC.begin(), forROC.end() );
double area = 0;
double x=0, xbreak=0;
double y=0, ybreak=0;
double prevscore = - numeric_limits<double>::infinity();
for( vector< pair<double, int> >::reverse_iterator ritr=forROC.rbegin(); ritr!=forROC.rend(); ritr++ )
{
double score = ritr->first;
int label = ritr->second;
if( score != prevscore ) {
area += (x-xbreak)*(y+ybreak)/2.0;
xbreak = x;
ybreak = y;
prevscore = score;
}
if( label > 0) y ++;
else x ++;
}
area += (x-xbreak)*(y+ybreak)/2.0; //the last bin
if( 0==y || x==0 ) area = 0.0; // degenerate case
else area = 100.0 * area /( x*y );
return area;
}
// Classify with several classif threshold provided.
// Return classification results in vector<double> results_tuned_threshold.
void classify (const char *line, double* predicted_score, bool token_type) {
result.clear ();
doc.clear ();
rules.clear ();
// Prepare instance as a vector of string_symbol, where sting symbol is a word or a character depending on tokenization type
str2node (line, doc, token_type);
for (unsigned int i = 0; i < doc.size(); ++i) {
std::string item = doc[i].key();
int id;
da.exactMatchSearch (item.c_str(), id);
//cout << "\ndoc[i]: " << doc[i].key();
//cout << "\nid: " << id;
if (id == -2) continue;
if (id >= 0) {
if (userule) {
//cout << "\nnew rule: " << doc[i].key();
rules.insert (std::make_pair (doc[i].key(), alpha[id]));
}
result.push_back (id);
}
project (doc[i].key(), i, 0, 0, token_type);
}
std::sort (result.begin(), result.end());
// Binary frequencies, erase the duplicate feature ids, features count only once.
result.erase (std::unique (result.begin(), result.end()), result.end());
for (unsigned int i = 0; i < result.size(); ++i) {
(*predicted_score) += alpha[result[i]];
}
}
std::ostream &printRules (std::ostream &os) {
std::vector <std::pair <std::string, double> > tmp;
for (std::map <std::string, double>::iterator it = rules.begin(); it != rules.end(); ++it)
tmp.push_back (std::make_pair (it->first, it->second));
std::sort (tmp.begin(), tmp.end(), pair_2nd_cmp<std::string, double>());
//os << "rule: " << bias << " __DFAULT__" << std::endl;
for (std::vector <std::pair <std::string, double> >::iterator it = tmp.begin(); it != tmp.end(); ++it)
os << "rule: " << it->second << " " << it->first << std::endl;
return os;
}
};
#define OPT " [-v verbose] [-n token_type: 0 word tokens, 1 char tokens] test_file binary_model_file"
int main (int argc, char **argv) {
std::istream *is = 0;
unsigned int verbose = 0;
// By default char token.
bool token_type = 1;
// Profiling variables.
struct timeval t;
struct timeval t_origin;
gettimeofday(&t_origin, NULL);
int opt;
while ((opt = getopt(argc, argv, "n:v:")) != -1) {
switch(opt) {
case 'n':
token_type = atoi(optarg);
break;
case 'v':
verbose = atoi (optarg);
break;
default:
std::cout << "Usage: " << argv[0] << OPT << std::endl;
return -1;
}
}
if (argc < 3) {
std::cout << "Usage: " << argv[0] << OPT << std::endl;
return -1;
}
if (! strcmp (argv[argc - 2], "-")) {
is = &std::cin;
} else {
is = new std::ifstream (argv[argc - 2]);
if (! *is) {
std::cerr << argv[0] << " " << argv[argc-2] << " No such file or directory" << std::endl;
return -1;
}
}
SEQLClassifier seql;
if (verbose >= 3) seql.setRule (true);
if (! seql.open (argv[argc-1])) {
std::cerr << argv[0] << " " << argv[argc-1] << " No such file or directory" << std::endl;
return -1;
}
std::string line;
char *column[4];
// Predicted score for a single document.
double predicted_score = 0;
// Predicted and true scores for all docs.
vector<pair<double, int> > scores;
// Total number of true positives.
unsigned int num_positives = 0;
// Total number of docs.
unsigned int all = 0;
cout << "\nreading training file for classif_tune_threshold...\n\n";
// Gather the predicted scores for all docs.
while (std::getline (*is, line)) {
if (line[0] == '\0' || line[0] == ';') continue;
if (line[line.size() - 1] == '\r') {
line[line.size() - 1] = '\0';
}
if (2 != tokenize ((char *)line.c_str(), "\t ", column, 2)) {
std::cerr << "Format Error: " << line.c_str() << std::endl;
return -1;
}
// cout <<"\ncolumn[0]:*" << column[0] << "*";
// cout <<"\ncolumn[1]:*" << column[1] << "*";
// cout.flush();
int y = atoi (column[0]);
predicted_score = 0;
seql.classify (column[1], &predicted_score, token_type);
// Keep predicted and true score.
scores.push_back(pair<double, int>(predicted_score, y));
// Transform the predicted_score which is a real number, into a probability,
// using the logistic transformation: exp^{predicted_score} / 1 + exp^{predicted_score} = 1 / 2+ e^{-predicted_score}.
double predicted_prob;
if (predicted_score < -8000) {
predicted_prob = 0;
} else {
predicted_prob = 1.0 / (1.0 + exp(-predicted_score));
}
if (verbose == 1) {
std::cout << y << " " << predicted_score << " " << predicted_prob << std::endl;
} else if (verbose == 2) {
std::cout << y << " " << predicted_score << " " << predicted_prob << " " << column[1] << std::endl;
} else if (verbose >= 3) {
std::cout << "<instance>" << std::endl;
std::cout << y << " " << predicted_score << " " << predicted_prob << " " << column[1] << std::endl;
seql.printRules (std::cout);
std::cout << "</instance>" << std::endl;
}
++all;
if (y > 0) {
++num_positives;
}
}
// Sort the scores ascendingly by the predicted score.
sort(scores.begin(), scores.end());
double AUC = seql.calcROC(scores);
std::printf ("AUC: %.5f%%\n", AUC);
std::printf ("(1 - AUC): %.5f%%\n", (100 - AUC));
// Choose the threshold that minimized the errors on training data.
// Same as Madigan et al BBR.
// Start by retrieving all, e.g. predict all as positives.
// Compute the error as FP + FN.
unsigned int TP = num_positives;
unsigned int FP = all - num_positives;
unsigned int FN = 0;
unsigned int TN = 0;
unsigned int min_error = FP + FN;
unsigned int current_error = 0;
double best_threshold = -numeric_limits<double>::max();
for (unsigned int i = 0; i < all; ++i) {
// Take only 1st in a string of equal values
if (i != 0 && scores[i].first > scores[i-1].first) {
current_error = FP + FN; // sum of errors, e.g # training errors
if (current_error < min_error) {
min_error = current_error;
best_threshold = (scores[i-1].first + scores[i].first) / 2;
//cout << "\nThreshold: " << best_threshold;
//cout << "\n# errors (FP + FN): " << min_error;
//std::printf ("\nAccuracy: %.5f%% (%d/%d)\n", 100.0 * (TP + TN) / all, TP + TN, all);
}
}
if (scores[i].second > 0) {
FN++; TP--;
}else{
FP--; TN++;
}
}
// Finally, check the "retrieve none" situation
current_error = FP + FN;
if (current_error < min_error) {
min_error = current_error;
best_threshold = scores[all-1].first + 1;
//cout << "\nThreshold (retrieve none): " << best_threshold;
//cout << "\n# errors (FP + FN): " << min_error;
//std::printf ("\nAccuracy: %.5f%% (%d/%d)\n", 100.0 * (TP + TN) / all, TP + TN, all);
}
// This procedure finds best_threshold such as if(predicted_score > best_threshold) classify pos;
// Our seql_classify code uses predicted_score + bias > 0, thus we need to take -threshold.
gettimeofday(&t, NULL);
cout << "end classification( " << (t.tv_sec - t_origin.tv_sec) << " seconds; " << (t.tv_sec - t_origin.tv_sec) / 60.0 << " minutes )\n";
cout.flush();
// cout << "\nBest Threshold: " << best_threshold;
cout << "\n# errors (FP + FN): " << min_error;
std::printf ("\nAccuracy: %.5f%% (%d/%d)\n", 100.0 * (all - min_error) / all, all - min_error, all);
// std::cout << "\nBias (-best_threshold):" << -best_threshold << std::endl;
cout << "\nBest threshold: " << best_threshold;
if (is != &std::cin) delete is;
return 0;
}