Skip to content

Latest commit

 

History

History
61 lines (45 loc) · 3.78 KB

README.md

File metadata and controls

61 lines (45 loc) · 3.78 KB

fitch-proof-checker

(Work in progress) A proof checker for natural deduction proofs written in Fitch notation

notations

  • English letters: propositon variables
  • Greek letters: well-formed formula
  • $\land$: conjunction, logical and.
  • $\lor$: disjunction, logical or.
  • $\lnot$: negation, logical not.
  • $\to$: implication.
  • $\vdash$: syntactic consequence, proves.
  • $\vDash$: semantic consequence, entails.

rules of inferences

Basic rules:

Introduction rule Elimination rule
Conjunction $\land$ $\dfrac{\phi \quad \psi}{\phi \land \psi}\ \land_i$ $\dfrac{\phi \land \psi}{\phi}\ \land_e$ and $\dfrac{\phi \land \psi}{\psi}\ \land_e$
Disjunction $\lor$ $\dfrac{\phi}{\phi \lor \psi}\ \lor_i$ and $\dfrac{\psi}{\phi \lor \psi}\ \lor_i$ $\dfrac{\begin{matrix}\ \ \phi \lor \psi\end{matrix}\quad \begin{bmatrix}\phi \ \vdots \ \chi\end{bmatrix}\quad \begin{bmatrix}\psi \ \vdots \ \chi\end{bmatrix}}{\chi}\ \lor_e$
Implication $\to$ $\dfrac{\begin{bmatrix}\phi \ \vdots \ \psi\end{bmatrix}}{\phi \to \psi}\ \to_i$ $\dfrac{\phi \quad \phi\to\psi}{\psi}\ \to_e$
Negation $\lnot$ $\dfrac{\begin{bmatrix}\phi \ \vdots \ \bot\end{bmatrix}}{\lnot\phi}\ \lnot_i$ Not Applicable
Double Negation $\lnot\lnot$ $\dfrac{\phi}{\lnot\lnot\phi}\ \lnot\lnot_i$ $\dfrac{\lnot\lnot\phi}{\phi}\ \lnot\lnot_e$
Bottom $\bot$ $\dfrac{\phi \quad \lnot\phi}{\bot}\ \bot_i$ $\dfrac{\bot}{\phi}\ \bot_e$

Derived rules:

rule name formulation
modus tollens $\dfrac{\lnot\psi \quad \phi\to\psi}{\lnot\phi}\ \text{MT}$
proof by contradiction $\dfrac{\begin{bmatrix}\phi \ \vdots \ \bot\end{bmatrix}}{\lnot\phi}\ \text{PBC}$
law of exccluded middle $\dfrac{}{\phi \lor \lnot\phi}\ \text{LEM}$

todo

  • use exercises in logic in computer science as tests to validate the correctness of this checker
  • test whether the checker does reject typical invalid proofs
  • support referencing proved statements in parent blocks
  • implement a DSL for writing proofs
  • enable named atomic propositions
  • test proof parser

license

Provided under the GPL v3 license.

references

@book{huth2004logic,
  title={Logic in Computer Science: Modelling and reasoning about systems},
  author={Huth, Michael and Ryan, Mark},
  year={2004},
  publisher={Cambridge university press}
}