diff --git a/A/A1_Load_Cellranger_Data.ipynb b/A/A1_Load_Cellranger_Data.ipynb
index 61eb30d..38aa3ff 100644
--- a/A/A1_Load_Cellranger_Data.ipynb
+++ b/A/A1_Load_Cellranger_Data.ipynb
@@ -1056,52 +1056,6 @@
"##### For each library check out names of features / hashtags"
]
},
- {
- "cell_type": "code",
- "execution_count": 37,
- "id": "87f62c22-3c28-4d52-b267-cd29a06cc6e3",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Index(['1.1', '2.1', 'S3', '4.1', '5.1', '6.1', '7.1', '8.1', '9.1', '10.1'], dtype='object')\n",
- "Index(['12.1', '13.1', '14.1', '15.1', '16.1', '17.1', '18.1', '19.1'], dtype='object')\n",
- "Index(['21.1', '22.1', '23.1', '25.1', '26.1', '27.1', '6.1'], dtype='object')\n",
- "Index(['S1', '2.2', '3.2', '4.2', 'S5', '6.2', 'S7', '8.2', '9.2', '10.2'], dtype='object')\n",
- "Index(['11.2', '12.2', '13.2', '14.2', '15.2', '16.2', '7.2', '18.2', '19.2',\n",
- " '20.2'],\n",
- " dtype='object')\n",
- "Index(['21.2', '22.2', '23.2', '24.2', '25.2', '26.2', '27.2', '28.2', 'S9',\n",
- " '13.2'],\n",
- " dtype='object')\n",
- "Index(['11.3', '2.3', '3.3', '4.3', '5.3', '6.3', '7.3', '8.3', '9.3', 'S10'], dtype='object')\n",
- "Index(['13.3', '15.3', '18.3', '19.3', '20.3', '21.3', '22.3', '23.3', '24.3',\n",
- " '25.3'],\n",
- " dtype='object')\n",
- "Index(['26.3', '27.3', '28.3', '26', '28', '33', '34', '10.3', 'S9', 'S10'], dtype='object')\n",
- "Index(['2.4', '3.4', 'S3', '5.4', '6.4', '7.4', '8.4', '11.4', '13.4', '15.4'], dtype='object')\n",
- "Index(['Ch-CCS-2', 'Ch-CCS-4', 'Ch-CCS-5', 'Ch-CCS-7', 'Ch-CCS-8', 'Ch-CCS-10',\n",
- " 'Ch-CCS-14', 'Ch-CCS-15', 'Ch-CCS-16', 'Ch-CCS-21'],\n",
- " dtype='object')\n",
- "Index(['Ch-CCS-22', 'Ch-CCS-23', 'Ch-CCS-27', 'Ch-CCS-29', 'Ch-CCS-30',\n",
- " 'Ch-CCS-32', 'C-CCS-17', 'C-CCS-19', 'C-CCS-24', 'C-CCS-25'],\n",
- " dtype='object')\n",
- "Index(['No-CCS-1', 'No-CCS-3', 'No-CCS-6', 'No-CCS-9', 'No-CCS-11',\n",
- " 'No-CCS-12', 'No-CCS-13', 'No-CCS-18', 'No-CCS-20', 'No-CCS-31'],\n",
- " dtype='object')\n",
- "Index(['20.4', '21.4', '22.4', '23.4', '24.4', '26.4', '28.4', '4.4', '6.4',\n",
- " 'S10'],\n",
- " dtype='object')\n"
- ]
- }
- ],
- "source": [
- "for key in protein_dict:\n",
- " print(protein_dict[key].var_names)"
- ]
- },
{
"cell_type": "code",
"execution_count": 38,
diff --git a/B/.ipynb_checkpoints/B3_Combine_Concat_Scanorama-checkpoint.ipynb b/B/.ipynb_checkpoints/B3_Combine_Concat_Scanorama-checkpoint.ipynb
index f30eea2..c84ef4f 100644
--- a/B/.ipynb_checkpoints/B3_Combine_Concat_Scanorama-checkpoint.ipynb
+++ b/B/.ipynb_checkpoints/B3_Combine_Concat_Scanorama-checkpoint.ipynb
@@ -590,221 +590,6 @@
"library_sample_group_mapping['sample'] = library_sample_group_mapping['sample'].str.replace('(\\.0)', '')"
]
},
- {
- "cell_type": "code",
- "execution_count": 114,
- "id": "67085051-9610-481e-b5cd-84e1bb8b1d21",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " library.hashtag | \n",
- " age | \n",
- " sex | \n",
- " m | \n",
- " classification | \n",
- " group | \n",
- " measurement | \n",
- " sample | \n",
- " library | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 0 | \n",
- " <NA> | \n",
- " 55 | \n",
- " f | \n",
- " K1 | \n",
- " vollstaendiger_ausschluss | \n",
- " no_ccs | \n",
- " TP0 | \n",
- " 1 | \n",
- " <NA> | \n",
- "
\n",
- " \n",
- " 1 | \n",
- " 1.2 | \n",
- " 62 | \n",
- " m | \n",
- " M2 | \n",
- " acs_w_o_infection | \n",
- " acs | \n",
- " TP1 | \n",
- " 2.1 | \n",
- " L1 | \n",
- "
\n",
- " \n",
- " 2 | \n",
- " 1.4 | \n",
- " 76 | \n",
- " m | \n",
- " M4 | \n",
- " acs_w_o_infection | \n",
- " acs | \n",
- " TP1 | \n",
- " 4.1 | \n",
- " L1 | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " 3.9 | \n",
- " 50 | \n",
- " m | \n",
- " M6 | \n",
- " acs_w_o_infection | \n",
- " acs | \n",
- " TP1 | \n",
- " 6.1 | \n",
- " L3 | \n",
- "
\n",
- " \n",
- " 4 | \n",
- " 1.7 | \n",
- " 66 | \n",
- " m | \n",
- " M7 | \n",
- " acs_w_o_infection | \n",
- " acs | \n",
- " TP1 | \n",
- " 7.1 | \n",
- " L1 | \n",
- "
\n",
- " \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- "
\n",
- " \n",
- " 117 | \n",
- " 12.9 | \n",
- " 58 | \n",
- " m | \n",
- " K24 | \n",
- " koronarsklerose | \n",
- " no_ccs | \n",
- " TP0 | \n",
- " 24 | \n",
- " L12 | \n",
- "
\n",
- " \n",
- " 118 | \n",
- " 12.1 | \n",
- " 66 | \n",
- " m | \n",
- " K25 | \n",
- " koronarsklerose | \n",
- " no_ccs | \n",
- " TP0 | \n",
- " 25 | \n",
- " L12 | \n",
- "
\n",
- " \n",
- " 119 | \n",
- " 9.4 | \n",
- " 64 | \n",
- " m | \n",
- " K26 | \n",
- " koronarsklerose | \n",
- " no_ccs | \n",
- " TP0 | \n",
- " 26 | \n",
- " L9 | \n",
- "
\n",
- " \n",
- " 120 | \n",
- " 9.6 | \n",
- " 76 | \n",
- " f | \n",
- " K33 | \n",
- " koronarsklerose | \n",
- " no_ccs | \n",
- " TP0 | \n",
- " 33 | \n",
- " L9 | \n",
- "
\n",
- " \n",
- " 121 | \n",
- " 9.7 | \n",
- " 66 | \n",
- " m | \n",
- " K34 | \n",
- " koronarsklerose | \n",
- " no_ccs | \n",
- " TP0 | \n",
- " 34 | \n",
- " L9 | \n",
- "
\n",
- " \n",
- "
\n",
- "
122 rows × 9 columns
\n",
- "
"
- ],
- "text/plain": [
- " library.hashtag age sex m classification group \\\n",
- "0 55 f K1 vollstaendiger_ausschluss no_ccs \n",
- "1 1.2 62 m M2 acs_w_o_infection acs \n",
- "2 1.4 76 m M4 acs_w_o_infection acs \n",
- "3 3.9 50 m M6 acs_w_o_infection acs \n",
- "4 1.7 66 m M7 acs_w_o_infection acs \n",
- ".. ... ... .. ... ... ... \n",
- "117 12.9 58 m K24 koronarsklerose no_ccs \n",
- "118 12.1 66 m K25 koronarsklerose no_ccs \n",
- "119 9.4 64 m K26 koronarsklerose no_ccs \n",
- "120 9.6 76 f K33 koronarsklerose no_ccs \n",
- "121 9.7 66 m K34 koronarsklerose no_ccs \n",
- "\n",
- " measurement sample library \n",
- "0 TP0 1 \n",
- "1 TP1 2.1 L1 \n",
- "2 TP1 4.1 L1 \n",
- "3 TP1 6.1 L3 \n",
- "4 TP1 7.1 L1 \n",
- ".. ... ... ... \n",
- "117 TP0 24 L12 \n",
- "118 TP0 25 L12 \n",
- "119 TP0 26 L9 \n",
- "120 TP0 33 L9 \n",
- "121 TP0 34 L9 \n",
- "\n",
- "[122 rows x 9 columns]"
- ]
- },
- "execution_count": 114,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "library_sample_group_mapping"
- ]
- },
{
"cell_type": "markdown",
"id": "c41338a4-1d48-48ea-98bd-8c52d2bb7358",
@@ -833,197 +618,6 @@
"print('Last modified' + time.ctime(os.path.getmtime(dataset_path)))"
]
},
- {
- "cell_type": "code",
- "execution_count": 116,
- "id": "780f0cec-8bb8-4c23-af65-e249fa75607d",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " Unnamed: 0 | \n",
- " library.hashtag | \n",
- " m | \n",
- " measurement | \n",
- " delta_ef_value_group | \n",
- " delta_ef_value | \n",
- " sample | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 0 | \n",
- " 1 | \n",
- " 1.2 | \n",
- " M2 (1,15) | \n",
- " TP1 | \n",
- " x_greater_1 | \n",
- " 1.15 | \n",
- " 2.1 | \n",
- "
\n",
- " \n",
- " 1 | \n",
- " 2 | \n",
- " 1.4 | \n",
- " M4 (3,1) | \n",
- " TP1 | \n",
- " x_greater_1 | \n",
- " 3.10 | \n",
- " 4.1 | \n",
- "
\n",
- " \n",
- " 2 | \n",
- " 3 | \n",
- " 1.9 | \n",
- " M9 (14,3) | \n",
- " TP1 | \n",
- " x_greater_1 | \n",
- " 14.30 | \n",
- " 9.1 | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " 4 | \n",
- " 2.5 | \n",
- " M15 (5,2) | \n",
- " TP1 | \n",
- " x_greater_1 | \n",
- " 5.20 | \n",
- " 15.1 | \n",
- "
\n",
- " \n",
- " 4 | \n",
- " 5 | \n",
- " 2.9 | \n",
- " M19 (1,15) | \n",
- " TP1 | \n",
- " x_greater_1 | \n",
- " 1.15 | \n",
- " 19.1 | \n",
- "
\n",
- " \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- "
\n",
- " \n",
- " 93 | \n",
- " 94 | \n",
- " - | \n",
- " M12 | \n",
- " TP3 | \n",
- " NaN | \n",
- " NaN | \n",
- " 12.3 | \n",
- "
\n",
- " \n",
- " 94 | \n",
- " 95 | \n",
- " - | \n",
- " M16 | \n",
- " TP3 | \n",
- " NaN | \n",
- " NaN | \n",
- " 16.3 | \n",
- "
\n",
- " \n",
- " 95 | \n",
- " 96 | \n",
- " 10.8 | \n",
- " M11 | \n",
- " TP4 | \n",
- " NaN | \n",
- " NaN | \n",
- " 11.4 | \n",
- "
\n",
- " \n",
- " 96 | \n",
- " 97 | \n",
- " - | \n",
- " M12 | \n",
- " TP4 | \n",
- " NaN | \n",
- " NaN | \n",
- " 12.4 | \n",
- "
\n",
- " \n",
- " 97 | \n",
- " 98 | \n",
- " - | \n",
- " M16 | \n",
- " TP4 | \n",
- " NaN | \n",
- " NaN | \n",
- " 16.4 | \n",
- "
\n",
- " \n",
- "
\n",
- "
98 rows × 7 columns
\n",
- "
"
- ],
- "text/plain": [
- " Unnamed: 0 library.hashtag m measurement delta_ef_value_group \\\n",
- "0 1 1.2 M2 (1,15) TP1 x_greater_1 \n",
- "1 2 1.4 M4 (3,1) TP1 x_greater_1 \n",
- "2 3 1.9 M9 (14,3) TP1 x_greater_1 \n",
- "3 4 2.5 M15 (5,2) TP1 x_greater_1 \n",
- "4 5 2.9 M19 (1,15) TP1 x_greater_1 \n",
- ".. ... ... ... ... ... \n",
- "93 94 - M12 TP3 NaN \n",
- "94 95 - M16 TP3 NaN \n",
- "95 96 10.8 M11 TP4 NaN \n",
- "96 97 - M12 TP4 NaN \n",
- "97 98 - M16 TP4 NaN \n",
- "\n",
- " delta_ef_value sample \n",
- "0 1.15 2.1 \n",
- "1 3.10 4.1 \n",
- "2 14.30 9.1 \n",
- "3 5.20 15.1 \n",
- "4 1.15 19.1 \n",
- ".. ... ... \n",
- "93 NaN 12.3 \n",
- "94 NaN 16.3 \n",
- "95 NaN 11.4 \n",
- "96 NaN 12.4 \n",
- "97 NaN 16.4 \n",
- "\n",
- "[98 rows x 7 columns]"
- ]
- },
- "execution_count": 116,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "library_sample_ef_mapping"
- ]
- },
{
"cell_type": "code",
"execution_count": 117,
diff --git a/B/B3_Combine_Concat_Scanorama.ipynb b/B/B3_Combine_Concat_Scanorama.ipynb
index f30eea2..c84ef4f 100644
--- a/B/B3_Combine_Concat_Scanorama.ipynb
+++ b/B/B3_Combine_Concat_Scanorama.ipynb
@@ -590,221 +590,6 @@
"library_sample_group_mapping['sample'] = library_sample_group_mapping['sample'].str.replace('(\\.0)', '')"
]
},
- {
- "cell_type": "code",
- "execution_count": 114,
- "id": "67085051-9610-481e-b5cd-84e1bb8b1d21",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " library.hashtag | \n",
- " age | \n",
- " sex | \n",
- " m | \n",
- " classification | \n",
- " group | \n",
- " measurement | \n",
- " sample | \n",
- " library | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 0 | \n",
- " <NA> | \n",
- " 55 | \n",
- " f | \n",
- " K1 | \n",
- " vollstaendiger_ausschluss | \n",
- " no_ccs | \n",
- " TP0 | \n",
- " 1 | \n",
- " <NA> | \n",
- "
\n",
- " \n",
- " 1 | \n",
- " 1.2 | \n",
- " 62 | \n",
- " m | \n",
- " M2 | \n",
- " acs_w_o_infection | \n",
- " acs | \n",
- " TP1 | \n",
- " 2.1 | \n",
- " L1 | \n",
- "
\n",
- " \n",
- " 2 | \n",
- " 1.4 | \n",
- " 76 | \n",
- " m | \n",
- " M4 | \n",
- " acs_w_o_infection | \n",
- " acs | \n",
- " TP1 | \n",
- " 4.1 | \n",
- " L1 | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " 3.9 | \n",
- " 50 | \n",
- " m | \n",
- " M6 | \n",
- " acs_w_o_infection | \n",
- " acs | \n",
- " TP1 | \n",
- " 6.1 | \n",
- " L3 | \n",
- "
\n",
- " \n",
- " 4 | \n",
- " 1.7 | \n",
- " 66 | \n",
- " m | \n",
- " M7 | \n",
- " acs_w_o_infection | \n",
- " acs | \n",
- " TP1 | \n",
- " 7.1 | \n",
- " L1 | \n",
- "
\n",
- " \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- "
\n",
- " \n",
- " 117 | \n",
- " 12.9 | \n",
- " 58 | \n",
- " m | \n",
- " K24 | \n",
- " koronarsklerose | \n",
- " no_ccs | \n",
- " TP0 | \n",
- " 24 | \n",
- " L12 | \n",
- "
\n",
- " \n",
- " 118 | \n",
- " 12.1 | \n",
- " 66 | \n",
- " m | \n",
- " K25 | \n",
- " koronarsklerose | \n",
- " no_ccs | \n",
- " TP0 | \n",
- " 25 | \n",
- " L12 | \n",
- "
\n",
- " \n",
- " 119 | \n",
- " 9.4 | \n",
- " 64 | \n",
- " m | \n",
- " K26 | \n",
- " koronarsklerose | \n",
- " no_ccs | \n",
- " TP0 | \n",
- " 26 | \n",
- " L9 | \n",
- "
\n",
- " \n",
- " 120 | \n",
- " 9.6 | \n",
- " 76 | \n",
- " f | \n",
- " K33 | \n",
- " koronarsklerose | \n",
- " no_ccs | \n",
- " TP0 | \n",
- " 33 | \n",
- " L9 | \n",
- "
\n",
- " \n",
- " 121 | \n",
- " 9.7 | \n",
- " 66 | \n",
- " m | \n",
- " K34 | \n",
- " koronarsklerose | \n",
- " no_ccs | \n",
- " TP0 | \n",
- " 34 | \n",
- " L9 | \n",
- "
\n",
- " \n",
- "
\n",
- "
122 rows × 9 columns
\n",
- "
"
- ],
- "text/plain": [
- " library.hashtag age sex m classification group \\\n",
- "0 55 f K1 vollstaendiger_ausschluss no_ccs \n",
- "1 1.2 62 m M2 acs_w_o_infection acs \n",
- "2 1.4 76 m M4 acs_w_o_infection acs \n",
- "3 3.9 50 m M6 acs_w_o_infection acs \n",
- "4 1.7 66 m M7 acs_w_o_infection acs \n",
- ".. ... ... .. ... ... ... \n",
- "117 12.9 58 m K24 koronarsklerose no_ccs \n",
- "118 12.1 66 m K25 koronarsklerose no_ccs \n",
- "119 9.4 64 m K26 koronarsklerose no_ccs \n",
- "120 9.6 76 f K33 koronarsklerose no_ccs \n",
- "121 9.7 66 m K34 koronarsklerose no_ccs \n",
- "\n",
- " measurement sample library \n",
- "0 TP0 1 \n",
- "1 TP1 2.1 L1 \n",
- "2 TP1 4.1 L1 \n",
- "3 TP1 6.1 L3 \n",
- "4 TP1 7.1 L1 \n",
- ".. ... ... ... \n",
- "117 TP0 24 L12 \n",
- "118 TP0 25 L12 \n",
- "119 TP0 26 L9 \n",
- "120 TP0 33 L9 \n",
- "121 TP0 34 L9 \n",
- "\n",
- "[122 rows x 9 columns]"
- ]
- },
- "execution_count": 114,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "library_sample_group_mapping"
- ]
- },
{
"cell_type": "markdown",
"id": "c41338a4-1d48-48ea-98bd-8c52d2bb7358",
@@ -833,197 +618,6 @@
"print('Last modified' + time.ctime(os.path.getmtime(dataset_path)))"
]
},
- {
- "cell_type": "code",
- "execution_count": 116,
- "id": "780f0cec-8bb8-4c23-af65-e249fa75607d",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " Unnamed: 0 | \n",
- " library.hashtag | \n",
- " m | \n",
- " measurement | \n",
- " delta_ef_value_group | \n",
- " delta_ef_value | \n",
- " sample | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 0 | \n",
- " 1 | \n",
- " 1.2 | \n",
- " M2 (1,15) | \n",
- " TP1 | \n",
- " x_greater_1 | \n",
- " 1.15 | \n",
- " 2.1 | \n",
- "
\n",
- " \n",
- " 1 | \n",
- " 2 | \n",
- " 1.4 | \n",
- " M4 (3,1) | \n",
- " TP1 | \n",
- " x_greater_1 | \n",
- " 3.10 | \n",
- " 4.1 | \n",
- "
\n",
- " \n",
- " 2 | \n",
- " 3 | \n",
- " 1.9 | \n",
- " M9 (14,3) | \n",
- " TP1 | \n",
- " x_greater_1 | \n",
- " 14.30 | \n",
- " 9.1 | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " 4 | \n",
- " 2.5 | \n",
- " M15 (5,2) | \n",
- " TP1 | \n",
- " x_greater_1 | \n",
- " 5.20 | \n",
- " 15.1 | \n",
- "
\n",
- " \n",
- " 4 | \n",
- " 5 | \n",
- " 2.9 | \n",
- " M19 (1,15) | \n",
- " TP1 | \n",
- " x_greater_1 | \n",
- " 1.15 | \n",
- " 19.1 | \n",
- "
\n",
- " \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- "
\n",
- " \n",
- " 93 | \n",
- " 94 | \n",
- " - | \n",
- " M12 | \n",
- " TP3 | \n",
- " NaN | \n",
- " NaN | \n",
- " 12.3 | \n",
- "
\n",
- " \n",
- " 94 | \n",
- " 95 | \n",
- " - | \n",
- " M16 | \n",
- " TP3 | \n",
- " NaN | \n",
- " NaN | \n",
- " 16.3 | \n",
- "
\n",
- " \n",
- " 95 | \n",
- " 96 | \n",
- " 10.8 | \n",
- " M11 | \n",
- " TP4 | \n",
- " NaN | \n",
- " NaN | \n",
- " 11.4 | \n",
- "
\n",
- " \n",
- " 96 | \n",
- " 97 | \n",
- " - | \n",
- " M12 | \n",
- " TP4 | \n",
- " NaN | \n",
- " NaN | \n",
- " 12.4 | \n",
- "
\n",
- " \n",
- " 97 | \n",
- " 98 | \n",
- " - | \n",
- " M16 | \n",
- " TP4 | \n",
- " NaN | \n",
- " NaN | \n",
- " 16.4 | \n",
- "
\n",
- " \n",
- "
\n",
- "
98 rows × 7 columns
\n",
- "
"
- ],
- "text/plain": [
- " Unnamed: 0 library.hashtag m measurement delta_ef_value_group \\\n",
- "0 1 1.2 M2 (1,15) TP1 x_greater_1 \n",
- "1 2 1.4 M4 (3,1) TP1 x_greater_1 \n",
- "2 3 1.9 M9 (14,3) TP1 x_greater_1 \n",
- "3 4 2.5 M15 (5,2) TP1 x_greater_1 \n",
- "4 5 2.9 M19 (1,15) TP1 x_greater_1 \n",
- ".. ... ... ... ... ... \n",
- "93 94 - M12 TP3 NaN \n",
- "94 95 - M16 TP3 NaN \n",
- "95 96 10.8 M11 TP4 NaN \n",
- "96 97 - M12 TP4 NaN \n",
- "97 98 - M16 TP4 NaN \n",
- "\n",
- " delta_ef_value sample \n",
- "0 1.15 2.1 \n",
- "1 3.10 4.1 \n",
- "2 14.30 9.1 \n",
- "3 5.20 15.1 \n",
- "4 1.15 19.1 \n",
- ".. ... ... \n",
- "93 NaN 12.3 \n",
- "94 NaN 16.3 \n",
- "95 NaN 11.4 \n",
- "96 NaN 12.4 \n",
- "97 NaN 16.4 \n",
- "\n",
- "[98 rows x 7 columns]"
- ]
- },
- "execution_count": 116,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "library_sample_ef_mapping"
- ]
- },
{
"cell_type": "code",
"execution_count": 117,
diff --git a/B/B4_Distribution_Analysis_Comparisons.ipynb b/B/B4_Distribution_Analysis_Comparisons.ipynb
index 733d250..cdb7298 100644
--- a/B/B4_Distribution_Analysis_Comparisons.ipynb
+++ b/B/B4_Distribution_Analysis_Comparisons.ipynb
@@ -2444,325 +2444,6 @@
"unique(data_for_analysis[,c('m_x', 'group_y')]) %>% group_by(group_y) %>% count()"
]
},
- {
- "cell_type": "code",
- "execution_count": 90,
- "id": "0845cd81-92c8-4014-b3ad-f5174d078a97",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "A grouped_df: 6 × 2\n",
- "\n",
- "\tclassification | n |
\n",
- "\t<chr> | <int> |
\n",
- "\n",
- "\n",
- "\tacs_subacute | 4 |
\n",
- "\tacs_w_infection | 5 |
\n",
- "\tacs_w_o_infection | 19 |
\n",
- "\tccs | 16 |
\n",
- "\tkoronarsklerose | 7 |
\n",
- "\tvollstaendiger_ausschluss | 10 |
\n",
- "\n",
- "
\n"
- ],
- "text/latex": [
- "A grouped\\_df: 6 × 2\n",
- "\\begin{tabular}{ll}\n",
- " classification & n\\\\\n",
- " & \\\\\n",
- "\\hline\n",
- "\t acs\\_subacute & 4\\\\\n",
- "\t acs\\_w\\_infection & 5\\\\\n",
- "\t acs\\_w\\_o\\_infection & 19\\\\\n",
- "\t ccs & 16\\\\\n",
- "\t koronarsklerose & 7\\\\\n",
- "\t vollstaendiger\\_ausschluss & 10\\\\\n",
- "\\end{tabular}\n"
- ],
- "text/markdown": [
- "\n",
- "A grouped_df: 6 × 2\n",
- "\n",
- "| classification <chr> | n <int> |\n",
- "|---|---|\n",
- "| acs_subacute | 4 |\n",
- "| acs_w_infection | 5 |\n",
- "| acs_w_o_infection | 19 |\n",
- "| ccs | 16 |\n",
- "| koronarsklerose | 7 |\n",
- "| vollstaendiger_ausschluss | 10 |\n",
- "\n"
- ],
- "text/plain": [
- " classification n \n",
- "1 acs_subacute 4\n",
- "2 acs_w_infection 5\n",
- "3 acs_w_o_infection 19\n",
- "4 ccs 16\n",
- "5 koronarsklerose 7\n",
- "6 vollstaendiger_ausschluss 10"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "unique(data_for_analysis[,c('m_x', 'classification')]) %>% group_by(classification) %>% count()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 91,
- "id": "fa7e8d7d-0087-4cf6-a18b-69d28cbd3fca",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "A grouped_df: 6 × 3\n",
- "\n",
- "\tgroup_y | measurement_x | n |
\n",
- "\t<chr> | <chr> | <int> |
\n",
- "\n",
- "\n",
- "\tacs | TP1 | 22 |
\n",
- "\tacs | TP2 | 24 |
\n",
- "\tacs | TP3 | 23 |
\n",
- "\tacs | TP4 | 17 |
\n",
- "\tccs | TP0 | 16 |
\n",
- "\tno_ccs | TP0 | 17 |
\n",
- "\n",
- "
\n"
- ],
- "text/latex": [
- "A grouped\\_df: 6 × 3\n",
- "\\begin{tabular}{lll}\n",
- " group\\_y & measurement\\_x & n\\\\\n",
- " & & \\\\\n",
- "\\hline\n",
- "\t acs & TP1 & 22\\\\\n",
- "\t acs & TP2 & 24\\\\\n",
- "\t acs & TP3 & 23\\\\\n",
- "\t acs & TP4 & 17\\\\\n",
- "\t ccs & TP0 & 16\\\\\n",
- "\t no\\_ccs & TP0 & 17\\\\\n",
- "\\end{tabular}\n"
- ],
- "text/markdown": [
- "\n",
- "A grouped_df: 6 × 3\n",
- "\n",
- "| group_y <chr> | measurement_x <chr> | n <int> |\n",
- "|---|---|---|\n",
- "| acs | TP1 | 22 |\n",
- "| acs | TP2 | 24 |\n",
- "| acs | TP3 | 23 |\n",
- "| acs | TP4 | 17 |\n",
- "| ccs | TP0 | 16 |\n",
- "| no_ccs | TP0 | 17 |\n",
- "\n"
- ],
- "text/plain": [
- " group_y measurement_x n \n",
- "1 acs TP1 22\n",
- "2 acs TP2 24\n",
- "3 acs TP3 23\n",
- "4 acs TP4 17\n",
- "5 ccs TP0 16\n",
- "6 no_ccs TP0 17"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "unique(data_for_analysis[,c('m_x', 'group_y', 'measurement_x')]) %>% group_by(group_y, measurement_x) %>% count()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 92,
- "id": "2df9277a-f3d4-4596-9241-4aea69bbc2d1",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "61.1475409836066"
- ],
- "text/latex": [
- "61.1475409836066"
- ],
- "text/markdown": [
- "61.1475409836066"
- ],
- "text/plain": [
- "[1] 61.14754"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "mean(unique(data_for_analysis[,c('m_x','age')])$age) # Average Age"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 93,
- "id": "bf31fb81-8e5a-40e6-b44d-914ce550988b",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "31"
- ],
- "text/latex": [
- "31"
- ],
- "text/markdown": [
- "31"
- ],
- "text/plain": [
- "[1] 31"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "min(unique(data_for_analysis[,c('m_x','age')])$age) # Minimum Age"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 94,
- "id": "10b154fb-393f-49c2-847a-fb1e51f0198e",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "81"
- ],
- "text/latex": [
- "81"
- ],
- "text/markdown": [
- "81"
- ],
- "text/plain": [
- "[1] 81"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "max(unique(data_for_analysis[,c('m_x','age')])$age) # Maximum Age"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 95,
- "id": "95471bdf-b98a-4ed0-bd0d-717c38b1e4ba",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAJYCAMAAACJuGjuAAACjlBMVEUAAAABAQECAgIDAwME\nBAQFBQUGBgYHBwcICAgJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERETExMUFBQVFRUWFhYX\nFxcYGBgZGRkaGhobGxscHBwdHR0eHh4gICAiIiIkJCQmJiYnJycoKCgpKSkqKiotLS0uLi4v\nLy8wMDAxMTEyMjIzMzM0NDQ2NjY3Nzc4ODg5OTk8PDw+Pj4/Pz9AQEBBQUFCQkJDQ0NERERF\nRUVGRkZHR0dISEhJSUlKSkpLS0tMTExNTU1OTk5PT09QUFBRUVFSUlJUVFRVVVVWVlZXV1dZ\nWVlaWlpbW1tcXFxdXV1fX19gYGBhYWFjY2NkZGRlZWVmZmZnZ2doaGhqampra2tsbGxtbW1u\nbm5vb29wcHBzc3N1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX2AgICBgYGCgoKDg4OEhISF\nhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+RkZGSkpKUlJSXl5eYmJiampqenp6f\nn5+goKChoaGioqKjo6OkpKSmpqaoqKipqamqqqqrq6usrKyurq6vr6+wsLCysrKzs7O0tLS3\nt7e4uLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjK\nysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbY2NjZ2dnb29vc3Nzd3d3e\n3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u7u7v7+/w\n8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7///8XLocBAAAA\nCXBIWXMAABJ0AAASdAHeZh94AAASg0lEQVR4nO3d/3+W1X3H8ZObL2mrAo6AFBTYSrsm0MBq\nldJqdRSnyQJV2kBpV0OrBura1Notrt3WFgLoWtcQ13V1bnXVbRiVpltcrG4Dy0bBgRAHmFz/\nzUJukrDHzs4J5/A+V67rfj1/uDkP84FcwdcD7nyuO8RkgIDJ+wJQToQFCcKCBGFBgrAgQViQ\nICxIEBYkCAsShAUJwoIEYUGCsCBBWJAgLEgQFiQICxKEBQnCggRhQYKwIEFYkCAsSBAWJAgL\nEoQFCcKCBGFBgrAgQViQICxIEBYkCAsShAUJwoIEYUGCsCBBWJAgLEgQFiQICxKEBQnCggRh\nQYKwIEFYkCAsSBAWJAgLEoQFCcKCBGFBgrAgQViQICxIEBYkCAsShAUJwoIEYUGCsCBBWJAg\nLEgQFiQICxKEBQnCggRhQYKwIEFYkCAsSBAWJAgLEoQFCcKCBGFBgrAgQViQICxIEBYkCAsS\nhAUJwoIEYUGCsCBBWJAgLEgQFiQICxKEBQnCggRhQYKwIEFYkCAsSBAWJBKE9fILKLiXr/z/\nuj6sQwaFd+iK/7frw3rOnJO/D0idM89d8c8hLHgRFiQICxKEBQnCggRhQYKwIJE6rNHBvgP7\n+wZH3VOEVXhpwxruWlrdyi7rGnbNEVbhJQ3rzFpTaWrdtr21sWLWnXUMElbhJQ1rl9lytHo6\n0mZ2OwYJq/CShrVizcjEcWT1SsdgUcO68NJ07/0/++x0J1+6kPdHFSRpWHN3Tp076h2DRQ3r\noOJVAgfz/qiCJA2rYdPUeeNix2BRw8rePDlNmzdPd/LNvD+mMEnDaqvsmzjurdvsGCxsWNO2\ndWveVyCWNKyh+aaps6e3t6ez0SwYcgwSVuGl3WMNNE88cWgecM0RVuGl3rz3d7e3tLR397un\nyh9WR0feVyA2g+4V/uurk54sfVgjI/6ZQps5YQ3VXf45tmsvjwLIJazXD/7wv/7vfz019Sn2\nN81bse8D+UobVs+N777rePbALGPe823X3HdKH9ZbZf8Ak4b1fJ2Zbe583NzYcnOdecYxWP6w\nduzI+wrEkoZ1z6y+kadm//rtw1nWaz7pGCx/WKwbLILDWn7n2MOd5qWL54+6bukQVuElDav+\n4k3oDjP+Gr8vzHYMElbhJQ3rvfeOPXzKvH7x/LvzHIOEVXhJw7p1wS+zXy6Y1zl2/Pdr1joG\nyx8Wm3eL4LC+bxruaDBP1G3+7tduMH/sGCx/WGzeLYLDGt1hzOxHs4cvrtY3nHcMlj+s0ku8\neX/16SNjj395/44n3nGNEVbhzZx7hZcrf1hs3i0IKx6bdwvCise6wYKw4hGWBWHFIywLwopH\nWBaEFY/NuwVhxWPzbkFY8CIsSBBWPti8WxBWPDbvFoQVj3WDBWHFIywLwopHWBaEFY+wLAgr\nHpt3C8KKx+bdgrDgRViQIKx8sHm3IKx4bN4tCCse6wYLwopHWBaEFY+wLAgrHmFZEFY8Nu8W\nhBWPzbsFYcGLsCBBWPlg825BWPHYvFsQVjzWDRaEFY+wLAgrHmFZEFY8wrIgrHhs3i0IKx6b\ndwvCghdhQYKw8sHm3YKw4rF5tyCseKwbLAgrHmFZEFY8wrIgrHiEZUFY8di8W8SENTrYd2B/\n3+Coe6r8YbF5twgPa7hrqRm3rGvYNVf+sEovaVhn1ppKU+u27a2NFbPurGOQsAovaVi7zJaj\n1dORNrPbMVj+sNi8WwSHtWLN5DOLkdUrHYPlD4vNu0VwWHN3Tp076h2D5Q+LdYNFcFgNm6bO\nGxc7Bgmr8JKG1VbZN3HcW7fZMUhYhZc0rKH5pqmzp7e3p7PRLBhyDBJW4aXdYw00m0uaB1xz\n5Q+LzbtFzOa9v7u9paW9u989Vf6w2LxbaO4Vvrbo+knvMacl7wPJzJyw3un7/qRtpf8Tq/SS\nhvXOdAfL/1chm3eL4LDMrX92blqD5Q+LzbtFeFjGNDzwL9MYLH9YrBsswsNq/kTF1G148rxv\nkLAKL21Y92Wv77rBmMWdv3APElbhpQ4ryy78+cfqTN1tP7jgGCSswksf1phXH1xkzBLHYPnD\nYvNuER1Wlp3/3vo6x2D5w2LzbnEVwhrzimOw/GGVXn5huRBW4SUN68Dz0xwsf1hs3i34gtV4\nbN4tai2sN9634qq77rqr/2u+7428f6cuQ1h+h03XH11tnZ1X/ZfsMofz/p26DGH5HTY/HSiA\nnxKWF2EFICw/wgpAWH6EFYCw/AgrAGH5EVYAwvIjrACE5UdYAQjLj7ACEJYfYQUgLD/CCkBY\nfoQVgLD8CCsAYfkRVgDC8iOsAITlR1gBCMuPsAIQlh9hBSAsP8IKQFh+hBWAsPwIKwBh+RFW\nAMLyI6wAhOVHWAEIy4+wAhCWH2EFICw/wgpAWH6EFYCw/AgrAGH5EVYAwvIjrACE5UdYAQjL\nj7ACEJYfYQUgLD/CCkBYfoQVgLD8CCsAYfkRVgDC8iOsAITlN9PCKgjC8iGsIITlQ1hBCMtn\npoX1oXUF8KGaDmt0sO/A/r7BUffUTAuLJ+9XLG1Yw11Lq39oL+sads0RVoAaDuvMWlNpat22\nvbWxYtaddQwSVoAaDmuX2XK0ejrSZnY7BgkrQA2HtWLN5PduH1m90jFIWAFqOKy5O6fOHfWO\nQcIKUMNhNWyaOm9c7BgkrAA1HFZbZd/EcW/dZscgYQWo4bCG5pumzp7e3p7ORrNgyDFIWAFq\nOKxsoHni7kPzgGuOsALUclhZ1t/d3tLS3t3vniKsALUd1v/vP357w6RV5rTkfYQhrAAzJ6y3\nHn5w0m38iXXlCOvQt7918Ixzgr8KA9RwWM/sPpFlxz5y8cn7wqdcg4QVoIbDurNhJBtdZ5Zu\n7Vhv5rqevxNWgBoOa8mGLPuxuf3i6xoO1t3tGCSsADUc1pzWLPua+fn4+Y6FjkHCClDDYTV8\nJMt2X2rm83Mdg4QVoIbD+mT90ewJ85Px87rljkHCClDDYT1tfuvY8MpVg1l2/svmfscgYQWo\n4bCyB801W74wa/YHPrzQLD/umCOsALUcVrbnhuo96Lq7j7rGCCtATYeVnfvhVz//uV37jrin\nCCtAbYc1PYQVgLD8CCsAYfkRVgDC8iOsAITlR1gBCMuPsAIQlh9hBSAsP8IKQFh+hBWAsPwI\nKwBh+RFWAMLyI6wAhOVHWAEIy4+wAhCWH2EFICw/wgpAWH6EFYCw/AgrAGH5EVYAwvIjrACE\n5UdYAQjLj7ACEJbfTAtr0z0FsImwvGZWWKfvaymE+2bSP9xKWJAgLEgQVj5Onsz7CsQIKx/b\nt+d9BWKElY+tW/O+AjHCygdhWRBWPMKyIKx4hGVBWPG+9KW8r0CMsCBBWJAgLEgQVj7YvFsQ\nVjw27xaEFY91gwVhxSMsC8KKR1gWhBWPsCwIKx6bdwvCghdhQYKwIJE6rNHBvgP7+wZH3VPl\nD4vNu0V4WMNdS6vfCHNZ17BrrvxhsXm3CA7rzFpTaWrdtr21sWLWnXUMlj8s1g0WwWHtMlsu\nfcfeI21mt2OQsAovaVgr1oxMHEdWr3QMElbhJQ1r7s6pc0e9Y5CwCi9pWA2bps4bFzsGyx8W\nm3eL4LDaKvsmjnvrNjsGyx9W6SUNa2i+aers6e3t6Ww0C4Ycg4RVeGn3WAPN5pLmAdccYRVe\n6s17f3d7S0t7d797qvxhsXm30NwrPPvYNyb9TunDYvNuoQnrjds3TFplZtK/eqjAusGCVzfE\nIyyLyLCe/cSvXfvBxy64Rgir8JKGtfj+sYcnZo1/WrjJ9coZwiq8pGGZ+7LsV9dWvvyLkz9Y\nYh53DJY/LDbvFlFhfceM3zD8B/Mxx2D5wyq95GF9zvzT+LmxwTFIWIWXPKxPm+prR++e4xgk\nrMJLHtYj5tj4+daFjsHyh8Xm3SI8rEp9/Rzz9Ph5eZNjsPxhsXm3CA7rN8Z9/eKx3+xwDJY/\nLNYNFldj8/6P3S863kpYhcctnXwQlgVhxSMsC8KKx+bdgrDgRViQICxIEFY+2LxbEFY8Nu8W\nhBWPdYMFYcUjLAvCikdYFoQVj7AsCCsem3cLwoIXYUGCsCBBWPlg825BWPHYvFsQVjzWDRaE\nFY+wLAgrHmFZEFY8wrIgrHhs3i0IC16EBQnCggRh5YPNuwVhxWPzbkFY8Vg3WBBWPMKyIKx4\nhGVBWPEIy4Kw4rF5tyAseBEWJAgLEoSVDzbvFoQVj827BWHFY91gQVjxCMuCsOIRlgVhxSMs\nC8KKx+bdgrDgRViQICxIpA5rdLDvwP6+wVH3VPnDYvNuER7WcNdSM25Z17BrrvxhsXm3CA7r\nzFpTaWrdtr21sWLWnXUMlj8s1g0WwWHtMluOVk9H2sxuxyBhFV7SsFasGZk4jqxe6RgkrMJL\nGtbcnVPnjnrHIGEVXtKwGjZNnTcudgyWPyw27xbBYbVV9k0c99ZtdgyWP6zSSxrW0HzT1NnT\n29vT2WgWDDkGCavw0u6xBprNJc0DrjnCKrzUm/f+7vaWlvbufvdU+cNi826huVc4+pMfT+oo\nfVhs3i00Yb36LnOZ05L3MXOwbrCID+szPe63l/+vQsKyiA/LfMb9dsIqvKRh7Z5gGsceHIOE\nVXhJwzL/i2Ow/GGxebcID+vah781zqwbe3AMlj+s0ksaVt+iJX9R/RVq/jlW6aV98v6fd5lP\nn8oIqwak/qxwz3U3/hVhsXm3ilo3vHaz2fEWYbF5t4jbY438Yf0KwmLdYBG7IP3ZbxIWYVlE\nb95HL4y4Bwir8GbOTejLFTWscy9M18aN0x49l/dHFYSwrqanjMBTeX9UQQgLEoQFCcKCBGFB\ngrAgQViQICxIEBYkCAsShAUJwoIEYUGCsCBBWJAgLEgQFiQICxKEBQnCggRhQYKwIEFYkCCs\nPJzY88Uv7jmR91VIEVYOnpy3ZOPGJfOfzPs6lAgrvWdnP3ohyy58ffbf5X0lQoSV3i2X/t2G\nrbfkex1ShJXc8Ky/qR6emfV2vleiRFjJHTWvVA+vmKP5XokSYSX39qxnqoe/nvXf+V6JEmGl\nt/7e6o/3fjTf65AirPSem/OV81l2/itzns/7SoQIKwcHr1/08Y83XH8w7+tQIqw8nHr8oYce\nP5X3VUgRFiQICxKEBQnCggRhQYKwIEFYkCAsSBAWJAgLEoSVh+MPbdjw0PG8r0IqdVijg30H\n9vcNjrqnSh7WI5W6efPqKo/kfR1KacMa7lpa/Y5Wy7qGXXPlDmu/WXsiy06sNQfyvhKhpGGd\nWWsqTa3btrc2Vsy6s47Bcoe18KbqjzcuzPc6pJKGtctsufQq7yNtZrdjsNRhnTJ/UD18w5T4\nlTNJw1qxZvJb9o6sXukYLHVYL5ofVQ8/Mi/meyVKScOau3Pq3FHvGCx1WCfMn1YPf2JK/FX2\nScNq2DR13rjYMVjqsLJ5q6o/rpqX73VIJQ2rrbJv4ri3brNjsNxhdZt7xp4SjNxtHsv7SoSS\nhjU03zR19vT29nQ2mgVDjsFyh5VtN3NuummO+Wze16GUdo810DzxrdmbB1xzJQ8rO9zy/ve3\nHM77KqRSb977u9tbWtq7+y1vOnNy0jdLHlYNmDn3Cocq5jJnJO8DycycsLKfvTBpjzmneR9I\nJZ+wTp52v/05wiq6tGG9tu2WncezQx8wdTcPuuYIq/CShnX8hrFnT03HFpsls8x733QMElbh\nJQ3rYfOpv/09c/vyn2en7zJfdQwSVuElDeuDiy5koyvM98aOv3r3WscgYRVe0rAW3DH20GqO\nXTx/eIFj8JBB4R264j6Cw3pXy9jDZ6s//Z7ZrsmXX0DBvXzlfQSHddP6sYeOa8bP612vbkBN\nCg7rtmVT5xWu51ioScFh/b75t4njS+aBq3MxKI/gsN55e/LLvv7+0X++OheD8tB/wSpqEmFB\ngrAgQViQICxIEBYkCAsShAUJwoIEYUGCsCBBWJAgLEgQFiQICxKEBQnCggRhQYKwIEFYkCAs\nSBAWJAgLEoQFCcKCBGFBgrAgQViQICxIEBYkCAsShAUJwoIEYUGCsCBBWJAgLEgQFiQICxKE\nBQnCggRhQYKwIEFYkCAsSBAWJAgLEoQFCcKCBGFBgrAgQViQICxIEBYkCAsShAUJwoIEYUGC\nsCBBWJAgLEgQFiQICxKEBQnCggRhQYKwIEFYkCAsSBAWJAgLEoQFCcKCBGFBgrAgQViQICxI\nEBYkCAsShAUJwoIEYUGCsCBBWJAgLEgQFiQICxKEBQnCggRhQYKwIEFYkCAsSBAWJAgLEoQF\nCcKCBGFBgrAgQViQICxIEBYkCAsShAUJwoIEYUGCsCBBWJAgLEgQFiQICxKEBQnCggRhQYKw\nIEFYkCAsSPwPSIe5Wqalu00AAAAASUVORK5CYII=",
- "text/plain": [
- "plot without title"
- ]
- },
- "metadata": {
- "image/png": {
- "height": 300,
- "width": 300
- }
- },
- "output_type": "display_data"
- }
- ],
- "source": [
- "options(repr.plot.width=5, repr.plot.height=5)\n",
- "boxplot(unique(data_for_analysis[,c('m_x','age')])$age) "
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 96,
- "id": "b9c9abd9-fddc-4825-afe3-0571ebdb43f4",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "A grouped_df: 2 × 2\n",
- "\n",
- "\tsex | n |
\n",
- "\t<chr> | <int> |
\n",
- "\n",
- "\n",
- "\tf | 14 |
\n",
- "\tm | 47 |
\n",
- "\n",
- "
\n"
- ],
- "text/latex": [
- "A grouped\\_df: 2 × 2\n",
- "\\begin{tabular}{ll}\n",
- " sex & n\\\\\n",
- " & \\\\\n",
- "\\hline\n",
- "\t f & 14\\\\\n",
- "\t m & 47\\\\\n",
- "\\end{tabular}\n"
- ],
- "text/markdown": [
- "\n",
- "A grouped_df: 2 × 2\n",
- "\n",
- "| sex <chr> | n <int> |\n",
- "|---|---|\n",
- "| f | 14 |\n",
- "| m | 47 |\n",
- "\n"
- ],
- "text/plain": [
- " sex n \n",
- "1 f 14\n",
- "2 m 47"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "unique(data_for_analysis[,c('m_x', 'sex')]) %>% group_by(sex) %>% count() # 14 female, 47 male"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "2bd9ff5d-1417-4d16-8809-27dbacc7df88",
- "metadata": {},
- "outputs": [],
- "source": []
- },
{
"cell_type": "markdown",
"id": "064943a9-efe1-422d-b18b-95aff00b5e2d",
diff --git a/E/E3_2_MOFA_w_o_clinical.ipynb b/E/E3_2_MOFA_w_o_clinical.ipynb
index 92558ac..a79109e 100644
--- a/E/E3_2_MOFA_w_o_clinical.ipynb
+++ b/E/E3_2_MOFA_w_o_clinical.ipynb
@@ -4389,73 +4389,6 @@
"merged_data_long = melt(merged_data)"
]
},
- {
- "cell_type": "code",
- "execution_count": 186,
- "id": "39284ece-9de3-4d2e-96af-21f36b51d1e3",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "A data.frame: 2 × 25\n",
- "\n",
- "\t | sample_id | sample | measurement | library | id.y | name | read | pattern | sequence | feature_type | ⋯ | delta_ef_value_group | delta_ef_value | delta_ef_value_class | class | measurement2 | measurement_class | delta_ef_value_class_summarized | tp_outcome | variable | value |
\n",
- "\t | <chr> | <chr> | <chr> | <chr> | <chr> | <chr> | <chr> | <chr> | <chr> | <chr> | ⋯ | <chr> | <chr> | <chr> | <chr> | <chr> | <chr> | <chr> | <chr> | <fct> | <dbl> |
\n",
- "\n",
- "\n",
- "\t1 | k1 | K1 | TP0 | L13 | HTO_B0251 | No-CCS-1 | R2 | 5PNNNNNNNNNN(BC) | GTCAACTCTTTAGCG | Antibody Capture | ⋯ | NA | NA | NA | no_ccs | TP0_no_ccs | TP0_vollstaendiger_ausschluss | NA | TP0_NA | Factor1 | 0.2399255 |
\n",
- "\t2 | k10 | K10 | TP0 | L11 | HTO_B0256 | Ch-CCS-10 | R2 | 5PNNNNNNNNNN(BC) | GGTTGCCAGATGTCA | Antibody Capture | ⋯ | NA | NA | NA | ccs | TP0_ccs | TP0_ccs | NA | TP0_NA | Factor1 | 0.9120340 |
\n",
- "\n",
- "
\n"
- ],
- "text/latex": [
- "A data.frame: 2 × 25\n",
- "\\begin{tabular}{r|lllllllllllllllllllll}\n",
- " & sample\\_id & sample & measurement & library & id.y & name & read & pattern & sequence & feature\\_type & ⋯ & delta\\_ef\\_value\\_group & delta\\_ef\\_value & delta\\_ef\\_value\\_class & class & measurement2 & measurement\\_class & delta\\_ef\\_value\\_class\\_summarized & tp\\_outcome & variable & value\\\\\n",
- " & & & & & & & & & & & ⋯ & & & & & & & & & & \\\\\n",
- "\\hline\n",
- "\t1 & k1 & K1 & TP0 & L13 & HTO\\_B0251 & No-CCS-1 & R2 & 5PNNNNNNNNNN(BC) & GTCAACTCTTTAGCG & Antibody Capture & ⋯ & NA & NA & NA & no\\_ccs & TP0\\_no\\_ccs & TP0\\_vollstaendiger\\_ausschluss & NA & TP0\\_NA & Factor1 & 0.2399255\\\\\n",
- "\t2 & k10 & K10 & TP0 & L11 & HTO\\_B0256 & Ch-CCS-10 & R2 & 5PNNNNNNNNNN(BC) & GGTTGCCAGATGTCA & Antibody Capture & ⋯ & NA & NA & NA & ccs & TP0\\_ccs & TP0\\_ccs & NA & TP0\\_NA & Factor1 & 0.9120340\\\\\n",
- "\\end{tabular}\n"
- ],
- "text/markdown": [
- "\n",
- "A data.frame: 2 × 25\n",
- "\n",
- "| | sample_id <chr> | sample <chr> | measurement <chr> | library <chr> | id.y <chr> | name <chr> | read <chr> | pattern <chr> | sequence <chr> | feature_type <chr> | ⋯ ⋯ | delta_ef_value_group <chr> | delta_ef_value <chr> | delta_ef_value_class <chr> | class <chr> | measurement2 <chr> | measurement_class <chr> | delta_ef_value_class_summarized <chr> | tp_outcome <chr> | variable <fct> | value <dbl> |\n",
- "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n",
- "| 1 | k1 | K1 | TP0 | L13 | HTO_B0251 | No-CCS-1 | R2 | 5PNNNNNNNNNN(BC) | GTCAACTCTTTAGCG | Antibody Capture | ⋯ | NA | NA | NA | no_ccs | TP0_no_ccs | TP0_vollstaendiger_ausschluss | NA | TP0_NA | Factor1 | 0.2399255 |\n",
- "| 2 | k10 | K10 | TP0 | L11 | HTO_B0256 | Ch-CCS-10 | R2 | 5PNNNNNNNNNN(BC) | GGTTGCCAGATGTCA | Antibody Capture | ⋯ | NA | NA | NA | ccs | TP0_ccs | TP0_ccs | NA | TP0_NA | Factor1 | 0.9120340 |\n",
- "\n"
- ],
- "text/plain": [
- " sample_id sample measurement library id.y name read\n",
- "1 k1 K1 TP0 L13 HTO_B0251 No-CCS-1 R2 \n",
- "2 k10 K10 TP0 L11 HTO_B0256 Ch-CCS-10 R2 \n",
- " pattern sequence feature_type ⋯ delta_ef_value_group\n",
- "1 5PNNNNNNNNNN(BC) GTCAACTCTTTAGCG Antibody Capture ⋯ NA \n",
- "2 5PNNNNNNNNNN(BC) GGTTGCCAGATGTCA Antibody Capture ⋯ NA \n",
- " delta_ef_value delta_ef_value_class class measurement2\n",
- "1 NA NA no_ccs TP0_no_ccs \n",
- "2 NA NA ccs TP0_ccs \n",
- " measurement_class delta_ef_value_class_summarized tp_outcome\n",
- "1 TP0_vollstaendiger_ausschluss NA TP0_NA \n",
- "2 TP0_ccs NA TP0_NA \n",
- " variable value \n",
- "1 Factor1 0.2399255\n",
- "2 Factor1 0.9120340"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "head(merged_data_long,2)"
- ]
- },
{
"cell_type": "code",
"execution_count": 187,
diff --git a/E/E3_Integration_MOFA.ipynb b/E/E3_Integration_MOFA.ipynb
index c7a23bf..18f8aa9 100644
--- a/E/E3_Integration_MOFA.ipynb
+++ b/E/E3_Integration_MOFA.ipynb
@@ -2967,47 +2967,6 @@
"outfile = file.path( paste0(result_path, '/E-Analysis/', model_name) )"
]
},
- {
- "cell_type": "code",
- "execution_count": 119,
- "id": "5d926cea-2a3f-4925-9fcc-781299e37dd0",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "'/groups/umcg-franke-scrna/tmp01/users/umcg-closert/stemi/data/results//E-Analysis/MOFA_MODELV_FINAL_INTEGRATED-FALSE.hdf5'"
- ],
- "text/latex": [
- "'/groups/umcg-franke-scrna/tmp01/users/umcg-closert/stemi/data/results//E-Analysis/MOFA\\_MODELV\\_FINAL\\_INTEGRATED-FALSE.hdf5'"
- ],
- "text/markdown": [
- "'/groups/umcg-franke-scrna/tmp01/users/umcg-closert/stemi/data/results//E-Analysis/MOFA_MODELV_FINAL_INTEGRATED-FALSE.hdf5'"
- ],
- "text/plain": [
- "[1] \"/groups/umcg-franke-scrna/tmp01/users/umcg-closert/stemi/data/results//E-Analysis/MOFA_MODELV_FINAL_INTEGRATED-FALSE.hdf5\""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "outfile"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 120,
- "id": "2a8a5645-3e04-403e-8fd8-565dec359e27",
- "metadata": {
- "tags": []
- },
- "outputs": [],
- "source": [
- "#outfile"
- ]
- },
{
"cell_type": "code",
"execution_count": 121,
@@ -4398,70 +4357,6 @@
"unique(sample_data$tp_outcome)"
]
},
- {
- "cell_type": "code",
- "execution_count": 162,
- "id": "13323592-53e4-498a-83c4-82618fbe813f",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "A data.frame: 2 × 36\n",
- "\n",
- "\t | X.1 | sample_id | sample | id | measurement | library | id.y | name | read | pattern | ⋯ | CK_MB | Troponin | CRP | clinical_data | CK_raw | class | measurement2 | measurement_class | delta_ef_value_class_summarized | tp_outcome |
\n",
- "\t | <int> | <chr> | <chr> | <dbl> | <chr> | <chr> | <chr> | <chr> | <chr> | <chr> | ⋯ | <dbl> | <dbl> | <dbl> | <int> | <int> | <chr> | <chr> | <chr> | <chr> | <chr> |
\n",
- "\n",
- "\n",
- "\t1 | 1 | k1 | K1 | 1 | TP0 | L13 | HTO_B0251 | No-CCS-1 | R2 | 5PNNNNNNNNNN(BC) | ⋯ | NA | 0.01863417 | 0.4854268 | 1 | 43 | no_ccs | TP0_no_ccs | TP0_vollstaendiger_ausschluss | NA | TP0_NA |
\n",
- "\t2 | 2 | k10 | K10 | 10 | TP0 | L11 | HTO_B0256 | Ch-CCS-10 | R2 | 5PNNNNNNNNNN(BC) | ⋯ | NA | NA | 0.2630344 | 1 | NA | ccs | TP0_ccs | TP0_ccs | NA | TP0_NA |
\n",
- "\n",
- "
\n"
- ],
- "text/latex": [
- "A data.frame: 2 × 36\n",
- "\\begin{tabular}{r|lllllllllllllllllllll}\n",
- " & X.1 & sample\\_id & sample & id & measurement & library & id.y & name & read & pattern & ⋯ & CK\\_MB & Troponin & CRP & clinical\\_data & CK\\_raw & class & measurement2 & measurement\\_class & delta\\_ef\\_value\\_class\\_summarized & tp\\_outcome\\\\\n",
- " & & & & & & & & & & & ⋯ & & & & & & & & & & \\\\\n",
- "\\hline\n",
- "\t1 & 1 & k1 & K1 & 1 & TP0 & L13 & HTO\\_B0251 & No-CCS-1 & R2 & 5PNNNNNNNNNN(BC) & ⋯ & NA & 0.01863417 & 0.4854268 & 1 & 43 & no\\_ccs & TP0\\_no\\_ccs & TP0\\_vollstaendiger\\_ausschluss & NA & TP0\\_NA\\\\\n",
- "\t2 & 2 & k10 & K10 & 10 & TP0 & L11 & HTO\\_B0256 & Ch-CCS-10 & R2 & 5PNNNNNNNNNN(BC) & ⋯ & NA & NA & 0.2630344 & 1 & NA & ccs & TP0\\_ccs & TP0\\_ccs & NA & TP0\\_NA\\\\\n",
- "\\end{tabular}\n"
- ],
- "text/markdown": [
- "\n",
- "A data.frame: 2 × 36\n",
- "\n",
- "| | X.1 <int> | sample_id <chr> | sample <chr> | id <dbl> | measurement <chr> | library <chr> | id.y <chr> | name <chr> | read <chr> | pattern <chr> | ⋯ ⋯ | CK_MB <dbl> | Troponin <dbl> | CRP <dbl> | clinical_data <int> | CK_raw <int> | class <chr> | measurement2 <chr> | measurement_class <chr> | delta_ef_value_class_summarized <chr> | tp_outcome <chr> |\n",
- "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n",
- "| 1 | 1 | k1 | K1 | 1 | TP0 | L13 | HTO_B0251 | No-CCS-1 | R2 | 5PNNNNNNNNNN(BC) | ⋯ | NA | 0.01863417 | 0.4854268 | 1 | 43 | no_ccs | TP0_no_ccs | TP0_vollstaendiger_ausschluss | NA | TP0_NA |\n",
- "| 2 | 2 | k10 | K10 | 10 | TP0 | L11 | HTO_B0256 | Ch-CCS-10 | R2 | 5PNNNNNNNNNN(BC) | ⋯ | NA | NA | 0.2630344 | 1 | NA | ccs | TP0_ccs | TP0_ccs | NA | TP0_NA |\n",
- "\n"
- ],
- "text/plain": [
- " X.1 sample_id sample id measurement library id.y name read\n",
- "1 1 k1 K1 1 TP0 L13 HTO_B0251 No-CCS-1 R2 \n",
- "2 2 k10 K10 10 TP0 L11 HTO_B0256 Ch-CCS-10 R2 \n",
- " pattern ⋯ CK_MB Troponin CRP clinical_data CK_raw class \n",
- "1 5PNNNNNNNNNN(BC) ⋯ NA 0.01863417 0.4854268 1 43 no_ccs\n",
- "2 5PNNNNNNNNNN(BC) ⋯ NA NA 0.2630344 1 NA ccs \n",
- " measurement2 measurement_class delta_ef_value_class_summarized\n",
- "1 TP0_no_ccs TP0_vollstaendiger_ausschluss NA \n",
- "2 TP0_ccs TP0_ccs NA \n",
- " tp_outcome\n",
- "1 TP0_NA \n",
- "2 TP0_NA "
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "head(sample_data,2)"
- ]
- },
{
"cell_type": "markdown",
"id": "705fd53f-47f4-4b44-9436-f88023fd40c1",
diff --git a/E/E4_MOFA_Factor_Amount_Test.ipynb b/E/E4_MOFA_Factor_Amount_Test.ipynb
index 73efb99..abfd80d 100644
--- a/E/E4_MOFA_Factor_Amount_Test.ipynb
+++ b/E/E4_MOFA_Factor_Amount_Test.ipynb
@@ -1476,61 +1476,6 @@
"final_data_long$X = NULL"
]
},
- {
- "cell_type": "code",
- "execution_count": 50,
- "id": "ab15d009-6494-41d4-b740-5a374108cf15",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "A data.frame: 2 × 4\n",
- "\n",
- "\t | sample_id | variable | value | type |
\n",
- "\t | <chr> | <chr> | <dbl> | <chr> |
\n",
- "\n",
- "\n",
- "\t1 | k1 | CK | -2.397022 | clinical_data |
\n",
- "\t2 | k10 | CK | NA | clinical_data |
\n",
- "\n",
- "
\n"
- ],
- "text/latex": [
- "A data.frame: 2 × 4\n",
- "\\begin{tabular}{r|llll}\n",
- " & sample\\_id & variable & value & type\\\\\n",
- " & & & & \\\\\n",
- "\\hline\n",
- "\t1 & k1 & CK & -2.397022 & clinical\\_data\\\\\n",
- "\t2 & k10 & CK & NA & clinical\\_data\\\\\n",
- "\\end{tabular}\n"
- ],
- "text/markdown": [
- "\n",
- "A data.frame: 2 × 4\n",
- "\n",
- "| | sample_id <chr> | variable <chr> | value <dbl> | type <chr> |\n",
- "|---|---|---|---|---|\n",
- "| 1 | k1 | CK | -2.397022 | clinical_data |\n",
- "| 2 | k10 | CK | NA | clinical_data |\n",
- "\n"
- ],
- "text/plain": [
- " sample_id variable value type \n",
- "1 k1 CK -2.397022 clinical_data\n",
- "2 k10 CK NA clinical_data"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "head(final_data_long,2)"
- ]
- },
{
"cell_type": "code",
"execution_count": 51,
@@ -2084,82 +2029,6 @@
"names(data_list)"
]
},
- {
- "cell_type": "code",
- "execution_count": 69,
- "id": "6e236407-9843-4293-b413-2ca5f3aa1609",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "A matrix: 4 × 128 of type dbl\n",
- "\n",
- "\t | k1 | k10 | k11 | k12 | k13 | k14 | k15 | k16 | k17 | k18 | ⋯ | m7.2 | m7.3 | m7.4 | m8.1 | m8.2 | m8.3 | m8.4 | m9.1 | m9.2 | m9.3 |
\n",
- "\n",
- "\n",
- "\tCK | -2.3970221 | NA | -1.443924 | -0.8775918 | -1.5053606 | -0.3268231 | -0.6941258 | -1.648873 | -1.335178 | -0.9402147 | ⋯ | 1.2402687 | 0.4383163 | -0.6941258 | -0.5921965 | -0.9897138 | -1.078094 | NA | 0.8775918 | 1.0417650 | 0.05181301 |
\n",
- "\tCK_MB | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | ⋯ | 0.9766002 | -0.5602008 | NA | NA | NA | NA | NA | 0.5204647 | 0.6853063 | -0.50090447 |
\n",
- "\tCRP | -0.3186394 | -0.8871466 | -1.574445 | NA | -0.3186394 | 0.2683089 | -1.5744450 | NA | -1.574445 | NA | ⋯ | NA | 0.9051525 | 0.3827258 | 0.7050659 | 1.2760918 | 1.663793 | 1.426077 | -0.5024022 | NA | 0.38272581 |
\n",
- "\tTroponin | -1.2864792 | NA | -1.286479 | -1.2864792 | -1.2864792 | -0.8172368 | -1.2864792 | -1.286479 | -1.286479 | -1.2864792 | ⋯ | 0.6744898 | 0.4585578 | NA | -0.6211776 | -0.5951785 | NA | NA | -0.5194481 | 0.6211776 | 0.21779838 |
\n",
- "\n",
- "
\n"
- ],
- "text/latex": [
- "A matrix: 4 × 128 of type dbl\n",
- "\\begin{tabular}{r|lllllllllllllllllllll}\n",
- " & k1 & k10 & k11 & k12 & k13 & k14 & k15 & k16 & k17 & k18 & ⋯ & m7.2 & m7.3 & m7.4 & m8.1 & m8.2 & m8.3 & m8.4 & m9.1 & m9.2 & m9.3\\\\\n",
- "\\hline\n",
- "\tCK & -2.3970221 & NA & -1.443924 & -0.8775918 & -1.5053606 & -0.3268231 & -0.6941258 & -1.648873 & -1.335178 & -0.9402147 & ⋯ & 1.2402687 & 0.4383163 & -0.6941258 & -0.5921965 & -0.9897138 & -1.078094 & NA & 0.8775918 & 1.0417650 & 0.05181301\\\\\n",
- "\tCK\\_MB & NA & NA & NA & NA & NA & NA & NA & NA & NA & NA & ⋯ & 0.9766002 & -0.5602008 & NA & NA & NA & NA & NA & 0.5204647 & 0.6853063 & -0.50090447\\\\\n",
- "\tCRP & -0.3186394 & -0.8871466 & -1.574445 & NA & -0.3186394 & 0.2683089 & -1.5744450 & NA & -1.574445 & NA & ⋯ & NA & 0.9051525 & 0.3827258 & 0.7050659 & 1.2760918 & 1.663793 & 1.426077 & -0.5024022 & NA & 0.38272581\\\\\n",
- "\tTroponin & -1.2864792 & NA & -1.286479 & -1.2864792 & -1.2864792 & -0.8172368 & -1.2864792 & -1.286479 & -1.286479 & -1.2864792 & ⋯ & 0.6744898 & 0.4585578 & NA & -0.6211776 & -0.5951785 & NA & NA & -0.5194481 & 0.6211776 & 0.21779838\\\\\n",
- "\\end{tabular}\n"
- ],
- "text/markdown": [
- "\n",
- "A matrix: 4 × 128 of type dbl\n",
- "\n",
- "| | k1 | k10 | k11 | k12 | k13 | k14 | k15 | k16 | k17 | k18 | ⋯ | m7.2 | m7.3 | m7.4 | m8.1 | m8.2 | m8.3 | m8.4 | m9.1 | m9.2 | m9.3 |\n",
- "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n",
- "| CK | -2.3970221 | NA | -1.443924 | -0.8775918 | -1.5053606 | -0.3268231 | -0.6941258 | -1.648873 | -1.335178 | -0.9402147 | ⋯ | 1.2402687 | 0.4383163 | -0.6941258 | -0.5921965 | -0.9897138 | -1.078094 | NA | 0.8775918 | 1.0417650 | 0.05181301 |\n",
- "| CK_MB | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | ⋯ | 0.9766002 | -0.5602008 | NA | NA | NA | NA | NA | 0.5204647 | 0.6853063 | -0.50090447 |\n",
- "| CRP | -0.3186394 | -0.8871466 | -1.574445 | NA | -0.3186394 | 0.2683089 | -1.5744450 | NA | -1.574445 | NA | ⋯ | NA | 0.9051525 | 0.3827258 | 0.7050659 | 1.2760918 | 1.663793 | 1.426077 | -0.5024022 | NA | 0.38272581 |\n",
- "| Troponin | -1.2864792 | NA | -1.286479 | -1.2864792 | -1.2864792 | -0.8172368 | -1.2864792 | -1.286479 | -1.286479 | -1.2864792 | ⋯ | 0.6744898 | 0.4585578 | NA | -0.6211776 | -0.5951785 | NA | NA | -0.5194481 | 0.6211776 | 0.21779838 |\n",
- "\n"
- ],
- "text/plain": [
- " k1 k10 k11 k12 k13 k14 \n",
- "CK -2.3970221 NA -1.443924 -0.8775918 -1.5053606 -0.3268231\n",
- "CK_MB NA NA NA NA NA NA\n",
- "CRP -0.3186394 -0.8871466 -1.574445 NA -0.3186394 0.2683089\n",
- "Troponin -1.2864792 NA -1.286479 -1.2864792 -1.2864792 -0.8172368\n",
- " k15 k16 k17 k18 ⋯ m7.2 m7.3 \n",
- "CK -0.6941258 -1.648873 -1.335178 -0.9402147 ⋯ 1.2402687 0.4383163\n",
- "CK_MB NA NA NA NA ⋯ 0.9766002 -0.5602008\n",
- "CRP -1.5744450 NA -1.574445 NA ⋯ NA 0.9051525\n",
- "Troponin -1.2864792 -1.286479 -1.286479 -1.2864792 ⋯ 0.6744898 0.4585578\n",
- " m7.4 m8.1 m8.2 m8.3 m8.4 m9.1 \n",
- "CK -0.6941258 -0.5921965 -0.9897138 -1.078094 NA 0.8775918\n",
- "CK_MB NA NA NA NA NA 0.5204647\n",
- "CRP 0.3827258 0.7050659 1.2760918 1.663793 1.426077 -0.5024022\n",
- "Troponin NA -0.6211776 -0.5951785 NA NA -0.5194481\n",
- " m9.2 m9.3 \n",
- "CK 1.0417650 0.05181301\n",
- "CK_MB 0.6853063 -0.50090447\n",
- "CRP NA 0.38272581\n",
- "Troponin 0.6211776 0.21779838"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "head(data_list[[1]])"
- ]
- },
{
"cell_type": "code",
"execution_count": 70,
diff --git a/E/E6_Pathway_Enrichment_MOFA_approach.ipynb b/E/E6_Pathway_Enrichment_MOFA_approach.ipynb
index 6ee20ab..19d3364 100644
--- a/E/E6_Pathway_Enrichment_MOFA_approach.ipynb
+++ b/E/E6_Pathway_Enrichment_MOFA_approach.ipynb
@@ -1458,61 +1458,6 @@
"print(file.info(path)$mtime)"
]
},
- {
- "cell_type": "code",
- "execution_count": 14,
- "id": "c8a67c22-c40e-42e6-87d7-8f9a34167c38",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "A data.frame: 2 × 5\n",
- "\n",
- "\t | X | sample_id | variable | value | type |
\n",
- "\t | <int> | <chr> | <chr> | <dbl> | <chr> |
\n",
- "\n",
- "\n",
- "\t1 | 1 | k1 | CK | -2.397022 | clinical_data |
\n",
- "\t2 | 2 | k10 | CK | NA | clinical_data |
\n",
- "\n",
- "
\n"
- ],
- "text/latex": [
- "A data.frame: 2 × 5\n",
- "\\begin{tabular}{r|lllll}\n",
- " & X & sample\\_id & variable & value & type\\\\\n",
- " & & & & & \\\\\n",
- "\\hline\n",
- "\t1 & 1 & k1 & CK & -2.397022 & clinical\\_data\\\\\n",
- "\t2 & 2 & k10 & CK & NA & clinical\\_data\\\\\n",
- "\\end{tabular}\n"
- ],
- "text/markdown": [
- "\n",
- "A data.frame: 2 × 5\n",
- "\n",
- "| | X <int> | sample_id <chr> | variable <chr> | value <dbl> | type <chr> |\n",
- "|---|---|---|---|---|---|\n",
- "| 1 | 1 | k1 | CK | -2.397022 | clinical_data |\n",
- "| 2 | 2 | k10 | CK | NA | clinical_data |\n",
- "\n"
- ],
- "text/plain": [
- " X sample_id variable value type \n",
- "1 1 k1 CK -2.397022 clinical_data\n",
- "2 2 k10 CK NA clinical_data"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "head(data_long,2)"
- ]
- },
{
"cell_type": "code",
"execution_count": 15,
@@ -1604,57 +1549,6 @@
"unique(data_long$type[data_long$sample_id == 'm.20.1'])"
]
},
- {
- "cell_type": "code",
- "execution_count": 19,
- "id": "159c8d22-0040-4ef3-84ca-11ef58c91756",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "A data.frame: 1 × 4\n",
- "\n",
- "\t | sample_id | variable | value | type |
\n",
- "\t | <chr> | <chr> | <dbl> | <chr> |
\n",
- "\n",
- "\n",
- "\t117 | m6.4 | CK | -1.735543 | clinical_data |
\n",
- "\n",
- "
\n"
- ],
- "text/latex": [
- "A data.frame: 1 × 4\n",
- "\\begin{tabular}{r|llll}\n",
- " & sample\\_id & variable & value & type\\\\\n",
- " & & & & \\\\\n",
- "\\hline\n",
- "\t117 & m6.4 & CK & -1.735543 & clinical\\_data\\\\\n",
- "\\end{tabular}\n"
- ],
- "text/markdown": [
- "\n",
- "A data.frame: 1 × 4\n",
- "\n",
- "| | sample_id <chr> | variable <chr> | value <dbl> | type <chr> |\n",
- "|---|---|---|---|---|\n",
- "| 117 | m6.4 | CK | -1.735543 | clinical_data |\n",
- "\n"
- ],
- "text/plain": [
- " sample_id variable value type \n",
- "117 m6.4 CK -1.735543 clinical_data"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "data_long[(data_long$sample_id == 'm6.4') & (data_long$variable == 'CK'),]"
- ]
- },
{
"cell_type": "markdown",
"id": "d76baf68-703a-40b2-8c70-bd80a5fdae6f",
@@ -1675,70 +1569,6 @@
"sample_data = read.csv(paste0(result_path, '/00_Data_Overview/Merged_Sample_Meta_Data.csv'))"
]
},
- {
- "cell_type": "code",
- "execution_count": 21,
- "id": "b152ff31-adf6-4e55-a955-6ca4dcd650ab",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "A data.frame: 2 × 30\n",
- "\n",
- "\t | X.1 | sample_id | sample | id | measurement | library | id.y | name | read | pattern | ⋯ | meta_data | delta_ef_value_group | delta_ef_value | delta_ef_value_class | ef_classification_data | CK | CK_MB | Troponin | CRP | clinical_data |
\n",
- "\t | <int> | <chr> | <chr> | <dbl> | <chr> | <chr> | <chr> | <chr> | <chr> | <chr> | ⋯ | <int> | <chr> | <dbl> | <chr> | <int> | <int> | <chr> | <dbl> | <chr> | <int> |
\n",
- "\n",
- "\n",
- "\t136 | 136 | m6.4 | M6 | 6.4 | TP4 | L14 | HTO_B0259 | 6.4 | R2 | 5PNNNNNNNNNN(BC) | ⋯ | 1 | x_smaller_1 | 0.875 | intermediate | 1 | 59 | | 0.458 | 1.3 | 1 |
\n",
- "\t137 | 137 | m6.4 | M6 | 6.4 | TP4 | L10 | HTO_B0255 | 6.4 | R2 | 5PNNNNNNNNNN(BC) | ⋯ | 1 | x_smaller_1 | 0.875 | intermediate | 1 | 59 | | 0.458 | 1.3 | 1 |
\n",
- "\n",
- "
\n"
- ],
- "text/latex": [
- "A data.frame: 2 × 30\n",
- "\\begin{tabular}{r|lllllllllllllllllllll}\n",
- " & X.1 & sample\\_id & sample & id & measurement & library & id.y & name & read & pattern & ⋯ & meta\\_data & delta\\_ef\\_value\\_group & delta\\_ef\\_value & delta\\_ef\\_value\\_class & ef\\_classification\\_data & CK & CK\\_MB & Troponin & CRP & clinical\\_data\\\\\n",
- " & & & & & & & & & & & ⋯ & & & & & & & & & & \\\\\n",
- "\\hline\n",
- "\t136 & 136 & m6.4 & M6 & 6.4 & TP4 & L14 & HTO\\_B0259 & 6.4 & R2 & 5PNNNNNNNNNN(BC) & ⋯ & 1 & x\\_smaller\\_1 & 0.875 & intermediate & 1 & 59 & & 0.458 & 1.3 & 1\\\\\n",
- "\t137 & 137 & m6.4 & M6 & 6.4 & TP4 & L10 & HTO\\_B0255 & 6.4 & R2 & 5PNNNNNNNNNN(BC) & ⋯ & 1 & x\\_smaller\\_1 & 0.875 & intermediate & 1 & 59 & & 0.458 & 1.3 & 1\\\\\n",
- "\\end{tabular}\n"
- ],
- "text/markdown": [
- "\n",
- "A data.frame: 2 × 30\n",
- "\n",
- "| | X.1 <int> | sample_id <chr> | sample <chr> | id <dbl> | measurement <chr> | library <chr> | id.y <chr> | name <chr> | read <chr> | pattern <chr> | ⋯ ⋯ | meta_data <int> | delta_ef_value_group <chr> | delta_ef_value <dbl> | delta_ef_value_class <chr> | ef_classification_data <int> | CK <int> | CK_MB <chr> | Troponin <dbl> | CRP <chr> | clinical_data <int> |\n",
- "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n",
- "| 136 | 136 | m6.4 | M6 | 6.4 | TP4 | L14 | HTO_B0259 | 6.4 | R2 | 5PNNNNNNNNNN(BC) | ⋯ | 1 | x_smaller_1 | 0.875 | intermediate | 1 | 59 | | 0.458 | 1.3 | 1 |\n",
- "| 137 | 137 | m6.4 | M6 | 6.4 | TP4 | L10 | HTO_B0255 | 6.4 | R2 | 5PNNNNNNNNNN(BC) | ⋯ | 1 | x_smaller_1 | 0.875 | intermediate | 1 | 59 | | 0.458 | 1.3 | 1 |\n",
- "\n"
- ],
- "text/plain": [
- " X.1 sample_id sample id measurement library id.y name read\n",
- "136 136 m6.4 M6 6.4 TP4 L14 HTO_B0259 6.4 R2 \n",
- "137 137 m6.4 M6 6.4 TP4 L10 HTO_B0255 6.4 R2 \n",
- " pattern ⋯ meta_data delta_ef_value_group delta_ef_value\n",
- "136 5PNNNNNNNNNN(BC) ⋯ 1 x_smaller_1 0.875 \n",
- "137 5PNNNNNNNNNN(BC) ⋯ 1 x_smaller_1 0.875 \n",
- " delta_ef_value_class ef_classification_data CK CK_MB Troponin CRP\n",
- "136 intermediate 1 59 0.458 1.3\n",
- "137 intermediate 1 59 0.458 1.3\n",
- " clinical_data\n",
- "136 1 \n",
- "137 1 "
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "sample_data[(sample_data$sample_id == 'm6.4'),] "
- ]
- },
{
"cell_type": "code",
"execution_count": 22,
@@ -1827,120 +1657,6 @@
"sample_data$sample_id[(sample_data$sample_id == 'm6.1') & (sample_data$library %in% c('L3'))] = 'm6.12'"
]
},
- {
- "cell_type": "code",
- "execution_count": 29,
- "id": "463c8ebf-5e07-4ab2-a201-ee477b40d225",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "A data.frame: 1 × 30\n",
- "\n",
- "\t | X.1 | sample_id | sample | id | measurement | library | id.y | name | read | pattern | ⋯ | meta_data | delta_ef_value_group | delta_ef_value | delta_ef_value_class | ef_classification_data | CK | CK_MB | Troponin | CRP | clinical_data |
\n",
- "\t | <int> | <chr> | <chr> | <dbl> | <chr> | <chr> | <chr> | <chr> | <chr> | <chr> | ⋯ | <int> | <chr> | <dbl> | <chr> | <int> | <dbl> | <dbl> | <dbl> | <dbl> | <int> |
\n",
- "\n",
- "\n",
- "\t136 | 136 | m6.4 | M6 | 6.4 | TP4 | L14 | HTO_B0259 | 6.4 | R2 | 5PNNNNNNNNNN(BC) | ⋯ | 1 | x_smaller_1 | 0.875 | intermediate | 1 | 5.906891 | NA | 0.5439907 | 1.201634 | 1 |
\n",
- "\n",
- "
\n"
- ],
- "text/latex": [
- "A data.frame: 1 × 30\n",
- "\\begin{tabular}{r|lllllllllllllllllllll}\n",
- " & X.1 & sample\\_id & sample & id & measurement & library & id.y & name & read & pattern & ⋯ & meta\\_data & delta\\_ef\\_value\\_group & delta\\_ef\\_value & delta\\_ef\\_value\\_class & ef\\_classification\\_data & CK & CK\\_MB & Troponin & CRP & clinical\\_data\\\\\n",
- " & & & & & & & & & & & ⋯ & & & & & & & & & & \\\\\n",
- "\\hline\n",
- "\t136 & 136 & m6.4 & M6 & 6.4 & TP4 & L14 & HTO\\_B0259 & 6.4 & R2 & 5PNNNNNNNNNN(BC) & ⋯ & 1 & x\\_smaller\\_1 & 0.875 & intermediate & 1 & 5.906891 & NA & 0.5439907 & 1.201634 & 1\\\\\n",
- "\\end{tabular}\n"
- ],
- "text/markdown": [
- "\n",
- "A data.frame: 1 × 30\n",
- "\n",
- "| | X.1 <int> | sample_id <chr> | sample <chr> | id <dbl> | measurement <chr> | library <chr> | id.y <chr> | name <chr> | read <chr> | pattern <chr> | ⋯ ⋯ | meta_data <int> | delta_ef_value_group <chr> | delta_ef_value <dbl> | delta_ef_value_class <chr> | ef_classification_data <int> | CK <dbl> | CK_MB <dbl> | Troponin <dbl> | CRP <dbl> | clinical_data <int> |\n",
- "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n",
- "| 136 | 136 | m6.4 | M6 | 6.4 | TP4 | L14 | HTO_B0259 | 6.4 | R2 | 5PNNNNNNNNNN(BC) | ⋯ | 1 | x_smaller_1 | 0.875 | intermediate | 1 | 5.906891 | NA | 0.5439907 | 1.201634 | 1 |\n",
- "\n"
- ],
- "text/plain": [
- " X.1 sample_id sample id measurement library id.y name read\n",
- "136 136 m6.4 M6 6.4 TP4 L14 HTO_B0259 6.4 R2 \n",
- " pattern ⋯ meta_data delta_ef_value_group delta_ef_value\n",
- "136 5PNNNNNNNNNN(BC) ⋯ 1 x_smaller_1 0.875 \n",
- " delta_ef_value_class ef_classification_data CK CK_MB Troponin \n",
- "136 intermediate 1 5.906891 NA 0.5439907\n",
- " CRP clinical_data\n",
- "136 1.201634 1 "
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "sample_data[(sample_data$sample_id == 'm6.4'),] "
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 30,
- "id": "e8ba3d42-0fec-4dde-8863-bc350d846798",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "A data.frame: 1 × 30\n",
- "\n",
- "\t | X.1 | sample_id | sample | id | measurement | library | id.y | name | read | pattern | ⋯ | meta_data | delta_ef_value_group | delta_ef_value | delta_ef_value_class | ef_classification_data | CK | CK_MB | Troponin | CRP | clinical_data |
\n",
- "\t | <int> | <chr> | <chr> | <dbl> | <chr> | <chr> | <chr> | <chr> | <chr> | <chr> | ⋯ | <int> | <chr> | <dbl> | <chr> | <int> | <dbl> | <dbl> | <dbl> | <dbl> | <int> |
\n",
- "\n",
- "\n",
- "\t137 | 137 | m6.42 | M6 | 6.4 | TP4 | L10 | HTO_B0255 | 6.4 | R2 | 5PNNNNNNNNNN(BC) | ⋯ | 1 | x_smaller_1 | 0.875 | intermediate | 1 | 5.906891 | NA | 0.5439907 | 1.201634 | 1 |
\n",
- "\n",
- "
\n"
- ],
- "text/latex": [
- "A data.frame: 1 × 30\n",
- "\\begin{tabular}{r|lllllllllllllllllllll}\n",
- " & X.1 & sample\\_id & sample & id & measurement & library & id.y & name & read & pattern & ⋯ & meta\\_data & delta\\_ef\\_value\\_group & delta\\_ef\\_value & delta\\_ef\\_value\\_class & ef\\_classification\\_data & CK & CK\\_MB & Troponin & CRP & clinical\\_data\\\\\n",
- " & & & & & & & & & & & ⋯ & & & & & & & & & & \\\\\n",
- "\\hline\n",
- "\t137 & 137 & m6.42 & M6 & 6.4 & TP4 & L10 & HTO\\_B0255 & 6.4 & R2 & 5PNNNNNNNNNN(BC) & ⋯ & 1 & x\\_smaller\\_1 & 0.875 & intermediate & 1 & 5.906891 & NA & 0.5439907 & 1.201634 & 1\\\\\n",
- "\\end{tabular}\n"
- ],
- "text/markdown": [
- "\n",
- "A data.frame: 1 × 30\n",
- "\n",
- "| | X.1 <int> | sample_id <chr> | sample <chr> | id <dbl> | measurement <chr> | library <chr> | id.y <chr> | name <chr> | read <chr> | pattern <chr> | ⋯ ⋯ | meta_data <int> | delta_ef_value_group <chr> | delta_ef_value <dbl> | delta_ef_value_class <chr> | ef_classification_data <int> | CK <dbl> | CK_MB <dbl> | Troponin <dbl> | CRP <dbl> | clinical_data <int> |\n",
- "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n",
- "| 137 | 137 | m6.42 | M6 | 6.4 | TP4 | L10 | HTO_B0255 | 6.4 | R2 | 5PNNNNNNNNNN(BC) | ⋯ | 1 | x_smaller_1 | 0.875 | intermediate | 1 | 5.906891 | NA | 0.5439907 | 1.201634 | 1 |\n",
- "\n"
- ],
- "text/plain": [
- " X.1 sample_id sample id measurement library id.y name read\n",
- "137 137 m6.42 M6 6.4 TP4 L10 HTO_B0255 6.4 R2 \n",
- " pattern ⋯ meta_data delta_ef_value_group delta_ef_value\n",
- "137 5PNNNNNNNNNN(BC) ⋯ 1 x_smaller_1 0.875 \n",
- " delta_ef_value_class ef_classification_data CK CK_MB Troponin \n",
- "137 intermediate 1 5.906891 NA 0.5439907\n",
- " CRP clinical_data\n",
- "137 1.201634 1 "
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "sample_data[(sample_data$sample_id == 'm6.42'),] "
- ]
- },
{
"cell_type": "markdown",
"id": "4ea9f63b-5dfa-4bea-bf17-9ac925af05da",
@@ -3926,6 +3642,7 @@
"execution_count": 118,
"id": "3f9fb18c-02f2-4bc5-b37f-85142e3b708c",
"metadata": {
+ "scrolled": true,
"tags": []
},
"outputs": [
@@ -3982,85 +3699,6 @@
"head(model@samples_metadata, n=3)"
]
},
- {
- "cell_type": "code",
- "execution_count": 119,
- "id": "ed22160c-1e70-4d21-b53c-02cbff6b0419",
- "metadata": {},
- "outputs": [],
- "source": [
- "#sample_data$sample_id[(sample_data$sample_id == 'm13.2') & (sample_data$library =='L6')] = 'm13.22' #13.2-L5, 13.2-L6\t, 6.4-L10, 6.4-L14\t\n",
- "#sample_data$sample_id[(sample_data$sample_id == 'm6.4') & (sample_data$library == 'L14')] = 'm6.42'\n",
- "#sample_data$sample_id[(sample_data$sample_id == 'm6.1') & (sample_data$library == 'L3')] = 'm6.12'"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 120,
- "id": "03bab8fb-9aef-4b47-a90a-e428d2d0861a",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "A data.frame: 1 × 30\n",
- "\n",
- "\t | X.1 | sample_id | sample | id | measurement | library | id.y | name | read | pattern | ⋯ | meta_data | delta_ef_value_group | delta_ef_value | delta_ef_value_class | ef_classification_data | CK | CK_MB | Troponin | CRP | clinical_data |
\n",
- "\t | <int> | <chr> | <chr> | <dbl> | <chr> | <chr> | <chr> | <chr> | <chr> | <chr> | ⋯ | <int> | <chr> | <dbl> | <chr> | <int> | <dbl> | <dbl> | <dbl> | <dbl> | <int> |
\n",
- "\n",
- "\n",
- "\t136 | 136 | m6.4 | M6 | 6.4 | TP4 | L14 | HTO_B0259 | 6.4 | R2 | 5PNNNNNNNNNN(BC) | ⋯ | 1 | x_smaller_1 | 0.875 | intermediate | 1 | 5.906891 | NA | 0.5439907 | 1.201634 | 1 |
\n",
- "\n",
- "
\n"
- ],
- "text/latex": [
- "A data.frame: 1 × 30\n",
- "\\begin{tabular}{r|lllllllllllllllllllll}\n",
- " & X.1 & sample\\_id & sample & id & measurement & library & id.y & name & read & pattern & ⋯ & meta\\_data & delta\\_ef\\_value\\_group & delta\\_ef\\_value & delta\\_ef\\_value\\_class & ef\\_classification\\_data & CK & CK\\_MB & Troponin & CRP & clinical\\_data\\\\\n",
- " & & & & & & & & & & & ⋯ & & & & & & & & & & \\\\\n",
- "\\hline\n",
- "\t136 & 136 & m6.4 & M6 & 6.4 & TP4 & L14 & HTO\\_B0259 & 6.4 & R2 & 5PNNNNNNNNNN(BC) & ⋯ & 1 & x\\_smaller\\_1 & 0.875 & intermediate & 1 & 5.906891 & NA & 0.5439907 & 1.201634 & 1\\\\\n",
- "\\end{tabular}\n"
- ],
- "text/markdown": [
- "\n",
- "A data.frame: 1 × 30\n",
- "\n",
- "| | X.1 <int> | sample_id <chr> | sample <chr> | id <dbl> | measurement <chr> | library <chr> | id.y <chr> | name <chr> | read <chr> | pattern <chr> | ⋯ ⋯ | meta_data <int> | delta_ef_value_group <chr> | delta_ef_value <dbl> | delta_ef_value_class <chr> | ef_classification_data <int> | CK <dbl> | CK_MB <dbl> | Troponin <dbl> | CRP <dbl> | clinical_data <int> |\n",
- "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n",
- "| 136 | 136 | m6.4 | M6 | 6.4 | TP4 | L14 | HTO_B0259 | 6.4 | R2 | 5PNNNNNNNNNN(BC) | ⋯ | 1 | x_smaller_1 | 0.875 | intermediate | 1 | 5.906891 | NA | 0.5439907 | 1.201634 | 1 |\n",
- "\n"
- ],
- "text/plain": [
- " X.1 sample_id sample id measurement library id.y name read\n",
- "136 136 m6.4 M6 6.4 TP4 L14 HTO_B0259 6.4 R2 \n",
- " pattern ⋯ meta_data delta_ef_value_group delta_ef_value\n",
- "136 5PNNNNNNNNNN(BC) ⋯ 1 x_smaller_1 0.875 \n",
- " delta_ef_value_class ef_classification_data CK CK_MB Troponin \n",
- "136 intermediate 1 5.906891 NA 0.5439907\n",
- " CRP clinical_data\n",
- "136 1.201634 1 "
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "head(sample_data[sample_data$sample_id == 'm6.4',])"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 121,
- "id": "ebffb606-13d8-4769-aaf1-5d9d2bcb3106",
- "metadata": {},
- "outputs": [],
- "source": [
- "#ample_data"
- ]
- },
{
"cell_type": "code",
"execution_count": 122,
@@ -4119,16 +3757,6 @@
"length(unique(sample_data$sample_id))"
]
},
- {
- "cell_type": "code",
- "execution_count": 124,
- "id": "62c3cc03-e583-48fb-b673-060243908177",
- "metadata": {},
- "outputs": [],
- "source": [
- "#head( sample_data)"
- ]
- },
{
"cell_type": "code",
"execution_count": 125,
@@ -4139,67 +3767,6 @@
"model@samples_metadata = merge(model@samples_metadata, sample_data, by.x = 'sample', by.y = 'sample_id')"
]
},
- {
- "cell_type": "code",
- "execution_count": 126,
- "id": "1d98d3a0-b7b2-4dd7-976f-c5187e9c2b6b",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "A data.frame: 2 × 31\n",
- "\n",
- "\t | sample | group.x | X.1 | sample.y | id | measurement | library | id.y | name | read | ⋯ | meta_data | delta_ef_value_group | delta_ef_value | delta_ef_value_class | ef_classification_data | CK | CK_MB | Troponin | CRP | clinical_data |
\n",
- "\t | <chr> | <fct> | <int> | <chr> | <dbl> | <chr> | <chr> | <chr> | <chr> | <chr> | ⋯ | <int> | <chr> | <dbl> | <chr> | <int> | <dbl> | <dbl> | <dbl> | <dbl> | <int> |
\n",
- "\n",
- "\n",
- "\t1 | k1 | group1 | 1 | K1 | 1 | TP0 | L13 | HTO_B0251 | No-CCS-1 | R2 | ⋯ | 1 | NA | NA | NA | 0 | 5.459432 | NA | 0.01863417 | 0.4854268 | 1 |
\n",
- "\t2 | k10 | group1 | 2 | K10 | 10 | TP0 | L11 | HTO_B0256 | Ch-CCS-10 | R2 | ⋯ | 1 | NA | NA | NA | 0 | NA | NA | NA | 0.2630344 | 1 |
\n",
- "\n",
- "
\n"
- ],
- "text/latex": [
- "A data.frame: 2 × 31\n",
- "\\begin{tabular}{r|lllllllllllllllllllll}\n",
- " & sample & group.x & X.1 & sample.y & id & measurement & library & id.y & name & read & ⋯ & meta\\_data & delta\\_ef\\_value\\_group & delta\\_ef\\_value & delta\\_ef\\_value\\_class & ef\\_classification\\_data & CK & CK\\_MB & Troponin & CRP & clinical\\_data\\\\\n",
- " & & & & & & & & & & & ⋯ & & & & & & & & & & \\\\\n",
- "\\hline\n",
- "\t1 & k1 & group1 & 1 & K1 & 1 & TP0 & L13 & HTO\\_B0251 & No-CCS-1 & R2 & ⋯ & 1 & NA & NA & NA & 0 & 5.459432 & NA & 0.01863417 & 0.4854268 & 1\\\\\n",
- "\t2 & k10 & group1 & 2 & K10 & 10 & TP0 & L11 & HTO\\_B0256 & Ch-CCS-10 & R2 & ⋯ & 1 & NA & NA & NA & 0 & NA & NA & NA & 0.2630344 & 1\\\\\n",
- "\\end{tabular}\n"
- ],
- "text/markdown": [
- "\n",
- "A data.frame: 2 × 31\n",
- "\n",
- "| | sample <chr> | group.x <fct> | X.1 <int> | sample.y <chr> | id <dbl> | measurement <chr> | library <chr> | id.y <chr> | name <chr> | read <chr> | ⋯ ⋯ | meta_data <int> | delta_ef_value_group <chr> | delta_ef_value <dbl> | delta_ef_value_class <chr> | ef_classification_data <int> | CK <dbl> | CK_MB <dbl> | Troponin <dbl> | CRP <dbl> | clinical_data <int> |\n",
- "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n",
- "| 1 | k1 | group1 | 1 | K1 | 1 | TP0 | L13 | HTO_B0251 | No-CCS-1 | R2 | ⋯ | 1 | NA | NA | NA | 0 | 5.459432 | NA | 0.01863417 | 0.4854268 | 1 |\n",
- "| 2 | k10 | group1 | 2 | K10 | 10 | TP0 | L11 | HTO_B0256 | Ch-CCS-10 | R2 | ⋯ | 1 | NA | NA | NA | 0 | NA | NA | NA | 0.2630344 | 1 |\n",
- "\n"
- ],
- "text/plain": [
- " sample group.x X.1 sample.y id measurement library id.y name read ⋯\n",
- "1 k1 group1 1 K1 1 TP0 L13 HTO_B0251 No-CCS-1 R2 ⋯\n",
- "2 k10 group1 2 K10 10 TP0 L11 HTO_B0256 Ch-CCS-10 R2 ⋯\n",
- " meta_data delta_ef_value_group delta_ef_value delta_ef_value_class\n",
- "1 1 NA NA NA \n",
- "2 1 NA NA NA \n",
- " ef_classification_data CK CK_MB Troponin CRP clinical_data\n",
- "1 0 5.459432 NA 0.01863417 0.4854268 1 \n",
- "2 0 NA NA NA 0.2630344 1 "
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "head(model@samples_metadata,2)"
- ]
- },
{
"cell_type": "code",
"execution_count": 127,
@@ -4371,82 +3938,6 @@
"weights = get_weights(model, views = \"all\", factors = \"all\")"
]
},
- {
- "cell_type": "code",
- "execution_count": 135,
- "id": "8ae27478-52db-4f4a-afa6-253c4775842c",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "A matrix: 4 × 128 of type dbl\n",
- "\n",
- "\t | k1 | k10 | k11 | k12 | k13 | k14 | k15 | k16 | k17 | k18 | ⋯ | m7.2 | m7.3 | m7.4 | m8.1 | m8.2 | m8.3 | m8.4 | m9.1 | m9.2 | m9.3 |
\n",
- "\n",
- "\n",
- "\tCK | -2.540364 | NA | -1.530271 | -0.9300719 | -1.595381 | -0.3463673 | -0.7356347 | -1.747476 | -1.415022 | -0.9964397 | ⋯ | 1.314437 | 0.4645275 | -0.7356347 | -0.6276100 | -1.0488988 | -1.142564 | NA | 0.9300718 | 1.1040625 | 0.05491135 |
\n",
- "\tCK_MB | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | ⋯ | 1.034993 | -0.5937088 | NA | NA | NA | NA | NA | 0.5515806 | 0.7262797 | -0.53086653 |
\n",
- "\tCRP | -0.338300 | -0.940804 | -1.669203 | NA | -0.338300 | 0.2837479 | -1.6692029 | NA | -1.669203 | NA | ⋯ | NA | 0.9586747 | 0.4050069 | 0.7466229 | 1.3517962 | 1.762682 | 1.51075 | -0.5330519 | NA | 0.40500689 |
\n",
- "\tTroponin | -1.364494 | NA | -1.364494 | -1.3644941 | -1.364494 | -0.8671909 | -1.3644941 | -1.364494 | -1.364494 | -1.3644941 | ⋯ | 0.713741 | 0.4848964 | NA | -0.6594074 | -0.6318535 | NA | NA | -0.5515944 | 0.6572408 | 0.22973948 |
\n",
- "\n",
- "
\n"
- ],
- "text/latex": [
- "A matrix: 4 × 128 of type dbl\n",
- "\\begin{tabular}{r|lllllllllllllllllllll}\n",
- " & k1 & k10 & k11 & k12 & k13 & k14 & k15 & k16 & k17 & k18 & ⋯ & m7.2 & m7.3 & m7.4 & m8.1 & m8.2 & m8.3 & m8.4 & m9.1 & m9.2 & m9.3\\\\\n",
- "\\hline\n",
- "\tCK & -2.540364 & NA & -1.530271 & -0.9300719 & -1.595381 & -0.3463673 & -0.7356347 & -1.747476 & -1.415022 & -0.9964397 & ⋯ & 1.314437 & 0.4645275 & -0.7356347 & -0.6276100 & -1.0488988 & -1.142564 & NA & 0.9300718 & 1.1040625 & 0.05491135\\\\\n",
- "\tCK\\_MB & NA & NA & NA & NA & NA & NA & NA & NA & NA & NA & ⋯ & 1.034993 & -0.5937088 & NA & NA & NA & NA & NA & 0.5515806 & 0.7262797 & -0.53086653\\\\\n",
- "\tCRP & -0.338300 & -0.940804 & -1.669203 & NA & -0.338300 & 0.2837479 & -1.6692029 & NA & -1.669203 & NA & ⋯ & NA & 0.9586747 & 0.4050069 & 0.7466229 & 1.3517962 & 1.762682 & 1.51075 & -0.5330519 & NA & 0.40500689\\\\\n",
- "\tTroponin & -1.364494 & NA & -1.364494 & -1.3644941 & -1.364494 & -0.8671909 & -1.3644941 & -1.364494 & -1.364494 & -1.3644941 & ⋯ & 0.713741 & 0.4848964 & NA & -0.6594074 & -0.6318535 & NA & NA & -0.5515944 & 0.6572408 & 0.22973948\\\\\n",
- "\\end{tabular}\n"
- ],
- "text/markdown": [
- "\n",
- "A matrix: 4 × 128 of type dbl\n",
- "\n",
- "| | k1 | k10 | k11 | k12 | k13 | k14 | k15 | k16 | k17 | k18 | ⋯ | m7.2 | m7.3 | m7.4 | m8.1 | m8.2 | m8.3 | m8.4 | m9.1 | m9.2 | m9.3 |\n",
- "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n",
- "| CK | -2.540364 | NA | -1.530271 | -0.9300719 | -1.595381 | -0.3463673 | -0.7356347 | -1.747476 | -1.415022 | -0.9964397 | ⋯ | 1.314437 | 0.4645275 | -0.7356347 | -0.6276100 | -1.0488988 | -1.142564 | NA | 0.9300718 | 1.1040625 | 0.05491135 |\n",
- "| CK_MB | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | ⋯ | 1.034993 | -0.5937088 | NA | NA | NA | NA | NA | 0.5515806 | 0.7262797 | -0.53086653 |\n",
- "| CRP | -0.338300 | -0.940804 | -1.669203 | NA | -0.338300 | 0.2837479 | -1.6692029 | NA | -1.669203 | NA | ⋯ | NA | 0.9586747 | 0.4050069 | 0.7466229 | 1.3517962 | 1.762682 | 1.51075 | -0.5330519 | NA | 0.40500689 |\n",
- "| Troponin | -1.364494 | NA | -1.364494 | -1.3644941 | -1.364494 | -0.8671909 | -1.3644941 | -1.364494 | -1.364494 | -1.3644941 | ⋯ | 0.713741 | 0.4848964 | NA | -0.6594074 | -0.6318535 | NA | NA | -0.5515944 | 0.6572408 | 0.22973948 |\n",
- "\n"
- ],
- "text/plain": [
- " k1 k10 k11 k12 k13 k14 \n",
- "CK -2.540364 NA -1.530271 -0.9300719 -1.595381 -0.3463673\n",
- "CK_MB NA NA NA NA NA NA\n",
- "CRP -0.338300 -0.940804 -1.669203 NA -0.338300 0.2837479\n",
- "Troponin -1.364494 NA -1.364494 -1.3644941 -1.364494 -0.8671909\n",
- " k15 k16 k17 k18 ⋯ m7.2 m7.3 \n",
- "CK -0.7356347 -1.747476 -1.415022 -0.9964397 ⋯ 1.314437 0.4645275\n",
- "CK_MB NA NA NA NA ⋯ 1.034993 -0.5937088\n",
- "CRP -1.6692029 NA -1.669203 NA ⋯ NA 0.9586747\n",
- "Troponin -1.3644941 -1.364494 -1.364494 -1.3644941 ⋯ 0.713741 0.4848964\n",
- " m7.4 m8.1 m8.2 m8.3 m8.4 m9.1 \n",
- "CK -0.7356347 -0.6276100 -1.0488988 -1.142564 NA 0.9300718\n",
- "CK_MB NA NA NA NA NA 0.5515806\n",
- "CRP 0.4050069 0.7466229 1.3517962 1.762682 1.51075 -0.5330519\n",
- "Troponin NA -0.6594074 -0.6318535 NA NA -0.5515944\n",
- " m9.2 m9.3 \n",
- "CK 1.1040625 0.05491135\n",
- "CK_MB 0.7262797 -0.53086653\n",
- "CRP NA 0.40500689\n",
- "Troponin 0.6572408 0.22973948"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "head(get_data(model)[[1]][[1]])"
- ]
- },
{
"cell_type": "code",
"execution_count": 136,
@@ -4761,72 +4252,6 @@
"nrow(factors)"
]
},
- {
- "cell_type": "code",
- "execution_count": 143,
- "id": "ac117f20-03b7-40a1-bd46-9627682d0e01",
- "metadata": {
- "tags": []
- },
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "A data.frame: 2 × 30\n",
- "\n",
- "\t | X.1 | sample_id | sample | id | measurement | library | id.y | name | read | pattern | ⋯ | meta_data | delta_ef_value_group | delta_ef_value | delta_ef_value_class | ef_classification_data | CK | CK_MB | Troponin | CRP | clinical_data |
\n",
- "\t | <int> | <chr> | <chr> | <dbl> | <chr> | <chr> | <chr> | <chr> | <chr> | <chr> | ⋯ | <int> | <chr> | <dbl> | <chr> | <int> | <dbl> | <dbl> | <dbl> | <dbl> | <int> |
\n",
- "\n",
- "\n",
- "\t1 | 1 | k1 | K1 | 1 | TP0 | L13 | HTO_B0251 | No-CCS-1 | R2 | 5PNNNNNNNNNN(BC) | ⋯ | 1 | NA | NA | NA | 0 | 5.459432 | NA | 0.01863417 | 0.4854268 | 1 |
\n",
- "\t2 | 2 | k10 | K10 | 10 | TP0 | L11 | HTO_B0256 | Ch-CCS-10 | R2 | 5PNNNNNNNNNN(BC) | ⋯ | 1 | NA | NA | NA | 0 | NA | NA | NA | 0.2630344 | 1 |
\n",
- "\n",
- "
\n"
- ],
- "text/latex": [
- "A data.frame: 2 × 30\n",
- "\\begin{tabular}{r|lllllllllllllllllllll}\n",
- " & X.1 & sample\\_id & sample & id & measurement & library & id.y & name & read & pattern & ⋯ & meta\\_data & delta\\_ef\\_value\\_group & delta\\_ef\\_value & delta\\_ef\\_value\\_class & ef\\_classification\\_data & CK & CK\\_MB & Troponin & CRP & clinical\\_data\\\\\n",
- " & & & & & & & & & & & ⋯ & & & & & & & & & & \\\\\n",
- "\\hline\n",
- "\t1 & 1 & k1 & K1 & 1 & TP0 & L13 & HTO\\_B0251 & No-CCS-1 & R2 & 5PNNNNNNNNNN(BC) & ⋯ & 1 & NA & NA & NA & 0 & 5.459432 & NA & 0.01863417 & 0.4854268 & 1\\\\\n",
- "\t2 & 2 & k10 & K10 & 10 & TP0 & L11 & HTO\\_B0256 & Ch-CCS-10 & R2 & 5PNNNNNNNNNN(BC) & ⋯ & 1 & NA & NA & NA & 0 & NA & NA & NA & 0.2630344 & 1\\\\\n",
- "\\end{tabular}\n"
- ],
- "text/markdown": [
- "\n",
- "A data.frame: 2 × 30\n",
- "\n",
- "| | X.1 <int> | sample_id <chr> | sample <chr> | id <dbl> | measurement <chr> | library <chr> | id.y <chr> | name <chr> | read <chr> | pattern <chr> | ⋯ ⋯ | meta_data <int> | delta_ef_value_group <chr> | delta_ef_value <dbl> | delta_ef_value_class <chr> | ef_classification_data <int> | CK <dbl> | CK_MB <dbl> | Troponin <dbl> | CRP <dbl> | clinical_data <int> |\n",
- "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n",
- "| 1 | 1 | k1 | K1 | 1 | TP0 | L13 | HTO_B0251 | No-CCS-1 | R2 | 5PNNNNNNNNNN(BC) | ⋯ | 1 | NA | NA | NA | 0 | 5.459432 | NA | 0.01863417 | 0.4854268 | 1 |\n",
- "| 2 | 2 | k10 | K10 | 10 | TP0 | L11 | HTO_B0256 | Ch-CCS-10 | R2 | 5PNNNNNNNNNN(BC) | ⋯ | 1 | NA | NA | NA | 0 | NA | NA | NA | 0.2630344 | 1 |\n",
- "\n"
- ],
- "text/plain": [
- " X.1 sample_id sample id measurement library id.y name read\n",
- "1 1 k1 K1 1 TP0 L13 HTO_B0251 No-CCS-1 R2 \n",
- "2 2 k10 K10 10 TP0 L11 HTO_B0256 Ch-CCS-10 R2 \n",
- " pattern ⋯ meta_data delta_ef_value_group delta_ef_value\n",
- "1 5PNNNNNNNNNN(BC) ⋯ 1 NA NA \n",
- "2 5PNNNNNNNNNN(BC) ⋯ 1 NA NA \n",
- " delta_ef_value_class ef_classification_data CK CK_MB Troponin \n",
- "1 NA 0 5.459432 NA 0.01863417\n",
- "2 NA 0 NA NA NA\n",
- " CRP clinical_data\n",
- "1 0.4854268 1 \n",
- "2 0.2630344 1 "
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "head(sample_data,2)"
- ]
- },
{
"cell_type": "code",
"execution_count": 144,
@@ -4885,63 +4310,6 @@
"length(unique(sample_data$sample_id))"
]
},
- {
- "cell_type": "code",
- "execution_count": 146,
- "id": "469802b3-5449-423f-9724-9d94132bc1ef",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "A data.frame: 1 × 30\n",
- "\n",
- "\t | X.1 | sample_id | sample | id | measurement | library | id.y | name | read | pattern | ⋯ | meta_data | delta_ef_value_group | delta_ef_value | delta_ef_value_class | ef_classification_data | CK | CK_MB | Troponin | CRP | clinical_data |
\n",
- "\t | <int> | <chr> | <chr> | <dbl> | <chr> | <chr> | <chr> | <chr> | <chr> | <chr> | ⋯ | <int> | <chr> | <dbl> | <chr> | <int> | <dbl> | <dbl> | <dbl> | <dbl> | <int> |
\n",
- "\n",
- "\n",
- "\t137 | 137 | m6.42 | M6 | 6.4 | TP4 | L10 | HTO_B0255 | 6.4 | R2 | 5PNNNNNNNNNN(BC) | ⋯ | 1 | x_smaller_1 | 0.875 | intermediate | 1 | 5.906891 | NA | 0.5439907 | 1.201634 | 1 |
\n",
- "\n",
- "
\n"
- ],
- "text/latex": [
- "A data.frame: 1 × 30\n",
- "\\begin{tabular}{r|lllllllllllllllllllll}\n",
- " & X.1 & sample\\_id & sample & id & measurement & library & id.y & name & read & pattern & ⋯ & meta\\_data & delta\\_ef\\_value\\_group & delta\\_ef\\_value & delta\\_ef\\_value\\_class & ef\\_classification\\_data & CK & CK\\_MB & Troponin & CRP & clinical\\_data\\\\\n",
- " & & & & & & & & & & & ⋯ & & & & & & & & & & \\\\\n",
- "\\hline\n",
- "\t137 & 137 & m6.42 & M6 & 6.4 & TP4 & L10 & HTO\\_B0255 & 6.4 & R2 & 5PNNNNNNNNNN(BC) & ⋯ & 1 & x\\_smaller\\_1 & 0.875 & intermediate & 1 & 5.906891 & NA & 0.5439907 & 1.201634 & 1\\\\\n",
- "\\end{tabular}\n"
- ],
- "text/markdown": [
- "\n",
- "A data.frame: 1 × 30\n",
- "\n",
- "| | X.1 <int> | sample_id <chr> | sample <chr> | id <dbl> | measurement <chr> | library <chr> | id.y <chr> | name <chr> | read <chr> | pattern <chr> | ⋯ ⋯ | meta_data <int> | delta_ef_value_group <chr> | delta_ef_value <dbl> | delta_ef_value_class <chr> | ef_classification_data <int> | CK <dbl> | CK_MB <dbl> | Troponin <dbl> | CRP <dbl> | clinical_data <int> |\n",
- "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n",
- "| 137 | 137 | m6.42 | M6 | 6.4 | TP4 | L10 | HTO_B0255 | 6.4 | R2 | 5PNNNNNNNNNN(BC) | ⋯ | 1 | x_smaller_1 | 0.875 | intermediate | 1 | 5.906891 | NA | 0.5439907 | 1.201634 | 1 |\n",
- "\n"
- ],
- "text/plain": [
- " X.1 sample_id sample id measurement library id.y name read\n",
- "137 137 m6.42 M6 6.4 TP4 L10 HTO_B0255 6.4 R2 \n",
- " pattern ⋯ meta_data delta_ef_value_group delta_ef_value\n",
- "137 5PNNNNNNNNNN(BC) ⋯ 1 x_smaller_1 0.875 \n",
- " delta_ef_value_class ef_classification_data CK CK_MB Troponin \n",
- "137 intermediate 1 5.906891 NA 0.5439907\n",
- " CRP clinical_data\n",
- "137 1.201634 1 "
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "sample_data[sample_data$sample_id == 'm6.42',]"
- ]
- },
{
"cell_type": "code",
"execution_count": 147,
@@ -4978,70 +4346,6 @@
"merged_data = merge(factors_merge, sample_data, by.x = 'sample_id', by.y = 'sample_id')"
]
},
- {
- "cell_type": "code",
- "execution_count": 151,
- "id": "70df6e35-5e21-4565-9a5b-e39f3e82c43a",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "A data.frame: 2 × 50\n",
- "\n",
- "\t | sample_id | Factor1 | Factor2 | Factor3 | Factor4 | Factor5 | Factor6 | Factor7 | Factor8 | Factor9 | ⋯ | meta_data | delta_ef_value_group | delta_ef_value | delta_ef_value_class | ef_classification_data | CK | CK_MB | Troponin | CRP | clinical_data |
\n",
- "\t | <chr> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | <dbl> | ⋯ | <int> | <chr> | <dbl> | <chr> | <int> | <dbl> | <dbl> | <dbl> | <dbl> | <int> |
\n",
- "\n",
- "\n",
- "\t1 | k1 | 0.4811325 | -0.2731317 | 1.4988169 | -0.4135678 | 1.5052706 | -0.92308998 | -0.3904185 | -0.1944797 | 0.16486799 | ⋯ | 1 | NA | NA | NA | 0 | 5.459432 | NA | 0.01863417 | 0.4854268 | 1 |
\n",
- "\t2 | k10 | 0.8920603 | -0.7547770 | 0.3501023 | -0.1524478 | 0.4074517 | -0.04596939 | 0.6276925 | -1.1656937 | -0.05003504 | ⋯ | 1 | NA | NA | NA | 0 | NA | NA | NA | 0.2630344 | 1 |
\n",
- "\n",
- "
\n"
- ],
- "text/latex": [
- "A data.frame: 2 × 50\n",
- "\\begin{tabular}{r|lllllllllllllllllllll}\n",
- " & sample\\_id & Factor1 & Factor2 & Factor3 & Factor4 & Factor5 & Factor6 & Factor7 & Factor8 & Factor9 & ⋯ & meta\\_data & delta\\_ef\\_value\\_group & delta\\_ef\\_value & delta\\_ef\\_value\\_class & ef\\_classification\\_data & CK & CK\\_MB & Troponin & CRP & clinical\\_data\\\\\n",
- " & & & & & & & & & & & ⋯ & & & & & & & & & & \\\\\n",
- "\\hline\n",
- "\t1 & k1 & 0.4811325 & -0.2731317 & 1.4988169 & -0.4135678 & 1.5052706 & -0.92308998 & -0.3904185 & -0.1944797 & 0.16486799 & ⋯ & 1 & NA & NA & NA & 0 & 5.459432 & NA & 0.01863417 & 0.4854268 & 1\\\\\n",
- "\t2 & k10 & 0.8920603 & -0.7547770 & 0.3501023 & -0.1524478 & 0.4074517 & -0.04596939 & 0.6276925 & -1.1656937 & -0.05003504 & ⋯ & 1 & NA & NA & NA & 0 & NA & NA & NA & 0.2630344 & 1\\\\\n",
- "\\end{tabular}\n"
- ],
- "text/markdown": [
- "\n",
- "A data.frame: 2 × 50\n",
- "\n",
- "| | sample_id <chr> | Factor1 <dbl> | Factor2 <dbl> | Factor3 <dbl> | Factor4 <dbl> | Factor5 <dbl> | Factor6 <dbl> | Factor7 <dbl> | Factor8 <dbl> | Factor9 <dbl> | ⋯ ⋯ | meta_data <int> | delta_ef_value_group <chr> | delta_ef_value <dbl> | delta_ef_value_class <chr> | ef_classification_data <int> | CK <dbl> | CK_MB <dbl> | Troponin <dbl> | CRP <dbl> | clinical_data <int> |\n",
- "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n",
- "| 1 | k1 | 0.4811325 | -0.2731317 | 1.4988169 | -0.4135678 | 1.5052706 | -0.92308998 | -0.3904185 | -0.1944797 | 0.16486799 | ⋯ | 1 | NA | NA | NA | 0 | 5.459432 | NA | 0.01863417 | 0.4854268 | 1 |\n",
- "| 2 | k10 | 0.8920603 | -0.7547770 | 0.3501023 | -0.1524478 | 0.4074517 | -0.04596939 | 0.6276925 | -1.1656937 | -0.05003504 | ⋯ | 1 | NA | NA | NA | 0 | NA | NA | NA | 0.2630344 | 1 |\n",
- "\n"
- ],
- "text/plain": [
- " sample_id Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 \n",
- "1 k1 0.4811325 -0.2731317 1.4988169 -0.4135678 1.5052706 -0.92308998\n",
- "2 k10 0.8920603 -0.7547770 0.3501023 -0.1524478 0.4074517 -0.04596939\n",
- " Factor7 Factor8 Factor9 ⋯ meta_data delta_ef_value_group\n",
- "1 -0.3904185 -0.1944797 0.16486799 ⋯ 1 NA \n",
- "2 0.6276925 -1.1656937 -0.05003504 ⋯ 1 NA \n",
- " delta_ef_value delta_ef_value_class ef_classification_data CK CK_MB\n",
- "1 NA NA 0 5.459432 NA \n",
- "2 NA NA 0 NA NA \n",
- " Troponin CRP clinical_data\n",
- "1 0.01863417 0.4854268 1 \n",
- "2 NA 0.2630344 1 "
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "head(merged_data,2)"
- ]
- },
{
"cell_type": "code",
"execution_count": 152,
@@ -7306,34 +6610,6 @@
"slotNames(model)"
]
},
- {
- "cell_type": "code",
- "execution_count": 222,
- "id": "56de30b3-1a92-483f-8c40-ab267a2295a1",
- "metadata": {},
- "outputs": [],
- "source": [
- "\n",
- "### Debugging if doesn't work:\n",
- "# data <- lapply(model_conc@data['complete'], function(x) x['group1'])\n",
- "# seq_len(length(data[[1]]))\n",
- "# features <- features_names(model_conc)['complete']\n",
- "# dim(data$complete$group1)\n",
- "# length(features$complete)\n",
- "#features <- features_names(model_conc)['proteomics2']\n",
- "# data[['complete']][[1]][as.character(features[['complete']]),]\n",
- "#get_data(model_conc, views = 'complete', as.data.frame = FALSE)\n",
- "\n",
- "### Test to do after running reactome part \n",
- "#enrichment.parametric = run_enrichment(model_conc,view = 'complete', factors = factor_set,\n",
- "# set.statistic = c(use_statistic),\n",
- "# feature.sets = feature_set,\n",
- "# sign = \"negative\", # alternatives: positive, negative, all\n",
- "# statistical.test = use_test, # alternatives: \"parametric\", \"cor.adj.parametric\", \"permutation\".\n",
- "# alpha = p_val_cutoff # defines the p-value cutoff for significant pathways\n",
- "#)\n"
- ]
- },
{
"cell_type": "code",
"execution_count": 223,
diff --git a/E/E9_Predictions_with_MOFA_Factors.ipynb b/E/E9_Predictions_with_MOFA_Factors.ipynb
index baf24a5..45fc869 100644
--- a/E/E9_Predictions_with_MOFA_Factors.ipynb
+++ b/E/E9_Predictions_with_MOFA_Factors.ipynb
@@ -1229,10 +1229,7 @@
"source": [
"### Data to load for Factors and Gene Expression\n",
"\n",
- "version = 'V_FINAL_INTEGRATED_FALSE'\n",
- "#version = 'V29_FALSEall'\n",
- "#version = 'V29_FALSEall'\n",
- "#version = 'V29w_o_clinical_FALSE'"
+ "version = 'V_FINAL_INTEGRATED_FALSE'"
]
},
{
@@ -1291,70 +1288,6 @@
"print(file.info(path)$mtime)"
]
},
- {
- "cell_type": "code",
- "execution_count": 10,
- "id": "d7ecf985-7a8a-4afd-b575-bdd780941ffb",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "A data.frame: 2 × 30\n",
- "\n",
- "\t | X.1 | sample_id | sample | id | measurement | library | id.y | name | read | pattern | ⋯ | meta_data | delta_ef_value_group | delta_ef_value | delta_ef_value_class | ef_classification_data | CK | CK_MB | Troponin | CRP | clinical_data |
\n",
- "\t | <int> | <chr> | <chr> | <dbl> | <chr> | <chr> | <chr> | <chr> | <chr> | <chr> | ⋯ | <int> | <chr> | <dbl> | <chr> | <int> | <int> | <chr> | <dbl> | <chr> | <int> |
\n",
- "\n",
- "\n",
- "\t1 | 1 | k1 | K1 | 1 | TP0 | L13 | HTO_B0251 | No-CCS-1 | R2 | 5PNNNNNNNNNN(BC) | ⋯ | 1 | NA | NA | NA | 0 | 43 | | 0.013 | 0.4 | 1 |
\n",
- "\t2 | 2 | k10 | K10 | 10 | TP0 | L11 | HTO_B0256 | Ch-CCS-10 | R2 | 5PNNNNNNNNNN(BC) | ⋯ | 1 | NA | NA | NA | 0 | NA | | NA | 0.2 | 1 |
\n",
- "\n",
- "
\n"
- ],
- "text/latex": [
- "A data.frame: 2 × 30\n",
- "\\begin{tabular}{r|lllllllllllllllllllll}\n",
- " & X.1 & sample\\_id & sample & id & measurement & library & id.y & name & read & pattern & ⋯ & meta\\_data & delta\\_ef\\_value\\_group & delta\\_ef\\_value & delta\\_ef\\_value\\_class & ef\\_classification\\_data & CK & CK\\_MB & Troponin & CRP & clinical\\_data\\\\\n",
- " & & & & & & & & & & & ⋯ & & & & & & & & & & \\\\\n",
- "\\hline\n",
- "\t1 & 1 & k1 & K1 & 1 & TP0 & L13 & HTO\\_B0251 & No-CCS-1 & R2 & 5PNNNNNNNNNN(BC) & ⋯ & 1 & NA & NA & NA & 0 & 43 & & 0.013 & 0.4 & 1\\\\\n",
- "\t2 & 2 & k10 & K10 & 10 & TP0 & L11 & HTO\\_B0256 & Ch-CCS-10 & R2 & 5PNNNNNNNNNN(BC) & ⋯ & 1 & NA & NA & NA & 0 & NA & & NA & 0.2 & 1\\\\\n",
- "\\end{tabular}\n"
- ],
- "text/markdown": [
- "\n",
- "A data.frame: 2 × 30\n",
- "\n",
- "| | X.1 <int> | sample_id <chr> | sample <chr> | id <dbl> | measurement <chr> | library <chr> | id.y <chr> | name <chr> | read <chr> | pattern <chr> | ⋯ ⋯ | meta_data <int> | delta_ef_value_group <chr> | delta_ef_value <dbl> | delta_ef_value_class <chr> | ef_classification_data <int> | CK <int> | CK_MB <chr> | Troponin <dbl> | CRP <chr> | clinical_data <int> |\n",
- "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n",
- "| 1 | 1 | k1 | K1 | 1 | TP0 | L13 | HTO_B0251 | No-CCS-1 | R2 | 5PNNNNNNNNNN(BC) | ⋯ | 1 | NA | NA | NA | 0 | 43 | | 0.013 | 0.4 | 1 |\n",
- "| 2 | 2 | k10 | K10 | 10 | TP0 | L11 | HTO_B0256 | Ch-CCS-10 | R2 | 5PNNNNNNNNNN(BC) | ⋯ | 1 | NA | NA | NA | 0 | NA | | NA | 0.2 | 1 |\n",
- "\n"
- ],
- "text/plain": [
- " X.1 sample_id sample id measurement library id.y name read\n",
- "1 1 k1 K1 1 TP0 L13 HTO_B0251 No-CCS-1 R2 \n",
- "2 2 k10 K10 10 TP0 L11 HTO_B0256 Ch-CCS-10 R2 \n",
- " pattern ⋯ meta_data delta_ef_value_group delta_ef_value\n",
- "1 5PNNNNNNNNNN(BC) ⋯ 1 NA NA \n",
- "2 5PNNNNNNNNNN(BC) ⋯ 1 NA NA \n",
- " delta_ef_value_class ef_classification_data CK CK_MB Troponin CRP\n",
- "1 NA 0 43 0.013 0.4\n",
- "2 NA 0 NA NA 0.2\n",
- " clinical_data\n",
- "1 1 \n",
- "2 1 "
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "head(sample_data,2)"
- ]
- },
{
"cell_type": "code",
"execution_count": null,
@@ -1363,171 +1296,6 @@
"outputs": [],
"source": []
},
- {
- "cell_type": "code",
- "execution_count": 11,
- "id": "def76611-1e4c-46a9-8ac8-f00c221a0a51",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "- 'K1'
- 'K10'
- 'K11'
- 'K12'
- 'K13'
- 'K14'
- 'K15'
- 'K16'
- 'K17'
- 'K18'
- 'K19'
- 'K2'
- 'K20'
- 'K21'
- 'K22'
- 'K23'
- 'K24'
- 'K25'
- 'K26'
- 'K27'
- 'K28'
- 'K29'
- 'K3'
- 'K30'
- 'K31'
- 'K32'
- 'K33'
- 'K34'
- 'K4'
- 'K5'
- 'K6'
- 'K7'
- 'K8'
- 'K9'
- 'M1'
- 'M10'
- 'M11'
- 'M12'
- 'M13'
- 'M14'
- 'M15'
- 'M16'
- 'M17'
- 'M18'
- 'M19'
- 'M2'
- 'M20'
- 'M21'
- 'M22'
- 'M23'
- 'M24'
- 'M25'
- 'M26'
- 'M27'
- 'M28'
- 'M3'
- 'M4'
- 'M5'
- 'M6'
- 'M7'
- 'M8'
- 'M9'
\n"
- ],
- "text/latex": [
- "\\begin{enumerate*}\n",
- "\\item 'K1'\n",
- "\\item 'K10'\n",
- "\\item 'K11'\n",
- "\\item 'K12'\n",
- "\\item 'K13'\n",
- "\\item 'K14'\n",
- "\\item 'K15'\n",
- "\\item 'K16'\n",
- "\\item 'K17'\n",
- "\\item 'K18'\n",
- "\\item 'K19'\n",
- "\\item 'K2'\n",
- "\\item 'K20'\n",
- "\\item 'K21'\n",
- "\\item 'K22'\n",
- "\\item 'K23'\n",
- "\\item 'K24'\n",
- "\\item 'K25'\n",
- "\\item 'K26'\n",
- "\\item 'K27'\n",
- "\\item 'K28'\n",
- "\\item 'K29'\n",
- "\\item 'K3'\n",
- "\\item 'K30'\n",
- "\\item 'K31'\n",
- "\\item 'K32'\n",
- "\\item 'K33'\n",
- "\\item 'K34'\n",
- "\\item 'K4'\n",
- "\\item 'K5'\n",
- "\\item 'K6'\n",
- "\\item 'K7'\n",
- "\\item 'K8'\n",
- "\\item 'K9'\n",
- "\\item 'M1'\n",
- "\\item 'M10'\n",
- "\\item 'M11'\n",
- "\\item 'M12'\n",
- "\\item 'M13'\n",
- "\\item 'M14'\n",
- "\\item 'M15'\n",
- "\\item 'M16'\n",
- "\\item 'M17'\n",
- "\\item 'M18'\n",
- "\\item 'M19'\n",
- "\\item 'M2'\n",
- "\\item 'M20'\n",
- "\\item 'M21'\n",
- "\\item 'M22'\n",
- "\\item 'M23'\n",
- "\\item 'M24'\n",
- "\\item 'M25'\n",
- "\\item 'M26'\n",
- "\\item 'M27'\n",
- "\\item 'M28'\n",
- "\\item 'M3'\n",
- "\\item 'M4'\n",
- "\\item 'M5'\n",
- "\\item 'M6'\n",
- "\\item 'M7'\n",
- "\\item 'M8'\n",
- "\\item 'M9'\n",
- "\\end{enumerate*}\n"
- ],
- "text/markdown": [
- "1. 'K1'\n",
- "2. 'K10'\n",
- "3. 'K11'\n",
- "4. 'K12'\n",
- "5. 'K13'\n",
- "6. 'K14'\n",
- "7. 'K15'\n",
- "8. 'K16'\n",
- "9. 'K17'\n",
- "10. 'K18'\n",
- "11. 'K19'\n",
- "12. 'K2'\n",
- "13. 'K20'\n",
- "14. 'K21'\n",
- "15. 'K22'\n",
- "16. 'K23'\n",
- "17. 'K24'\n",
- "18. 'K25'\n",
- "19. 'K26'\n",
- "20. 'K27'\n",
- "21. 'K28'\n",
- "22. 'K29'\n",
- "23. 'K3'\n",
- "24. 'K30'\n",
- "25. 'K31'\n",
- "26. 'K32'\n",
- "27. 'K33'\n",
- "28. 'K34'\n",
- "29. 'K4'\n",
- "30. 'K5'\n",
- "31. 'K6'\n",
- "32. 'K7'\n",
- "33. 'K8'\n",
- "34. 'K9'\n",
- "35. 'M1'\n",
- "36. 'M10'\n",
- "37. 'M11'\n",
- "38. 'M12'\n",
- "39. 'M13'\n",
- "40. 'M14'\n",
- "41. 'M15'\n",
- "42. 'M16'\n",
- "43. 'M17'\n",
- "44. 'M18'\n",
- "45. 'M19'\n",
- "46. 'M2'\n",
- "47. 'M20'\n",
- "48. 'M21'\n",
- "49. 'M22'\n",
- "50. 'M23'\n",
- "51. 'M24'\n",
- "52. 'M25'\n",
- "53. 'M26'\n",
- "54. 'M27'\n",
- "55. 'M28'\n",
- "56. 'M3'\n",
- "57. 'M4'\n",
- "58. 'M5'\n",
- "59. 'M6'\n",
- "60. 'M7'\n",
- "61. 'M8'\n",
- "62. 'M9'\n",
- "\n",
- "\n"
- ],
- "text/plain": [
- " [1] \"K1\" \"K10\" \"K11\" \"K12\" \"K13\" \"K14\" \"K15\" \"K16\" \"K17\" \"K18\" \"K19\" \"K2\" \n",
- "[13] \"K20\" \"K21\" \"K22\" \"K23\" \"K24\" \"K25\" \"K26\" \"K27\" \"K28\" \"K29\" \"K3\" \"K30\"\n",
- "[25] \"K31\" \"K32\" \"K33\" \"K34\" \"K4\" \"K5\" \"K6\" \"K7\" \"K8\" \"K9\" \"M1\" \"M10\"\n",
- "[37] \"M11\" \"M12\" \"M13\" \"M14\" \"M15\" \"M16\" \"M17\" \"M18\" \"M19\" \"M2\" \"M20\" \"M21\"\n",
- "[49] \"M22\" \"M23\" \"M24\" \"M25\" \"M26\" \"M27\" \"M28\" \"M3\" \"M4\" \"M5\" \"M6\" \"M7\" \n",
- "[61] \"M8\" \"M9\" "
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "unique(sample_data$sample)"
- ]
- },
{
"cell_type": "code",
"execution_count": 12,
@@ -1539,35 +1307,6 @@
"patients_filter = unique(sample_data$sample_id) # use all samples"
]
},
- {
- "cell_type": "code",
- "execution_count": 13,
- "id": "578b3431-bbb3-41e0-8839-e72267b2add1",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "0"
- ],
- "text/latex": [
- "0"
- ],
- "text/markdown": [
- "0"
- ],
- "text/plain": [
- "[1] 0"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "sum(patients_filter == 'm.20.1')"
- ]
- },
{
"cell_type": "code",
"execution_count": 14,
@@ -1632,636 +1371,6 @@
"unique(sample_data$delta_ef_value_class_summarized)"
]
},
- {
- "cell_type": "code",
- "execution_count": 24,
- "id": "48f1ca57-1fcb-43f8-af18-c7eef5dd9652",
- "metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\u001b[1m\u001b[22m`summarise()` has grouped output by 'delta_ef_value_class_summarized'. You can\n",
- "override using the `.groups` argument.\n"
- ]
- },
- {
- "data": {
- "text/html": [
- "\n",
- "A grouped_df: 4 × 5\n",
- "\n",
- "\tdelta_ef_value_class_summarized | delta_ef_value_class | amount | min_df | max_df |
\n",
- "\t<chr> | <chr> | <int> | <dbl> | <dbl> |
\n",
- "\n",
- "\n",
- "\tbad | bad | 7 | -2.50 | -0.060 |
\n",
- "\tgood | good | 7 | 1.15 | 14.300 |
\n",
- "\tgood | intermediate | 7 | 0.00 | 0.875 |
\n",
- "\tNA | NA | 41 | NA | NA |
\n",
- "\n",
- "
\n"
- ],
- "text/latex": [
- "A grouped\\_df: 4 × 5\n",
- "\\begin{tabular}{lllll}\n",
- " delta\\_ef\\_value\\_class\\_summarized & delta\\_ef\\_value\\_class & amount & min\\_df & max\\_df\\\\\n",
- " & & & & \\\\\n",
- "\\hline\n",
- "\t bad & bad & 7 & -2.50 & -0.060\\\\\n",
- "\t good & good & 7 & 1.15 & 14.300\\\\\n",
- "\t good & intermediate & 7 & 0.00 & 0.875\\\\\n",
- "\t NA & NA & 41 & NA & NA\\\\\n",
- "\\end{tabular}\n"
- ],
- "text/markdown": [
- "\n",
- "A grouped_df: 4 × 5\n",
- "\n",
- "| delta_ef_value_class_summarized <chr> | delta_ef_value_class <chr> | amount <int> | min_df <dbl> | max_df <dbl> |\n",
- "|---|---|---|---|---|\n",
- "| bad | bad | 7 | -2.50 | -0.060 |\n",
- "| good | good | 7 | 1.15 | 14.300 |\n",
- "| good | intermediate | 7 | 0.00 | 0.875 |\n",
- "| NA | NA | 41 | NA | NA |\n",
- "\n"
- ],
- "text/plain": [
- " delta_ef_value_class_summarized delta_ef_value_class amount min_df max_df\n",
- "1 bad bad 7 -2.50 -0.060\n",
- "2 good good 7 1.15 14.300\n",
- "3 good intermediate 7 0.00 0.875\n",
- "4 NA NA 41 NA NA"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "unique(sample_data[,c('sample', 'delta_ef_value_class_summarized', 'delta_ef_value', 'delta_ef_value_class')]) %>% group_by(delta_ef_value_class_summarized, delta_ef_value_class) %>% summarise(amount = n(), min_df = min(delta_ef_value), max_df = max(delta_ef_value))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 25,
- "id": "f8438f4f-e19c-4b23-8683-2ecf35f580a5",
- "metadata": {},
- "outputs": [],
- "source": [
- "test = unique(sample_data[,c('sample', 'delta_ef_value_class_summarized', 'delta_ef_value', 'delta_ef_value_class')]) "
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 27,
- "id": "63b8dff8-0403-409f-ba86-9af23ab530a6",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "A data.frame: 62 × 4\n",
- "\n",
- "\t | sample | delta_ef_value_class_summarized | delta_ef_value | delta_ef_value_class |
\n",
- "\t | <chr> | <chr> | <dbl> | <chr> |
\n",
- "\n",
- "\n",
- "\t72 | M18 | bad | -2.500 | bad |
\n",
- "\t51 | M13 | bad | -2.200 | bad |
\n",
- "\t56 | M14 | bad | -1.300 | bad |
\n",
- "\t84 | M20 | bad | -1.000 | bad |
\n",
- "\t112 | M27 | bad | -0.667 | bad |
\n",
- "\t39 | M10 | bad | -0.300 | bad |
\n",
- "\t120 | M3 | bad | -0.060 | bad |
\n",
- "\t96 | M23 | good | 0.000 | intermediate |
\n",
- "\t92 | M22 | good | 0.067 | intermediate |
\n",
- "\t128 | M5 | good | 0.083 | intermediate |
\n",
- "\t108 | M26 | good | 0.300 | intermediate |
\n",
- "\t104 | M25 | good | 0.690 | intermediate |
\n",
- "\t138 | M7 | good | 0.750 | intermediate |
\n",
- "\t132 | M6 | good | 0.875 | intermediate |
\n",
- "\t76 | M19 | good | 1.150 | good |
\n",
- "\t80 | M2 | good | 1.150 | good |
\n",
- "\t116 | M28 | good | 2.250 | good |
\n",
- "\t124 | M4 | good | 3.100 | good |
\n",
- "\t88 | M21 | good | 3.550 | good |
\n",
- "\t60 | M15 | good | 5.200 | good |
\n",
- "\t146 | M9 | good | 14.300 | good |
\n",
- "\t1 | K1 | NA | NA | NA |
\n",
- "\t2 | K10 | NA | NA | NA |
\n",
- "\t3 | K11 | NA | NA | NA |
\n",
- "\t4 | K12 | NA | NA | NA |
\n",
- "\t5 | K13 | NA | NA | NA |
\n",
- "\t6 | K14 | NA | NA | NA |
\n",
- "\t7 | K15 | NA | NA | NA |
\n",
- "\t8 | K16 | NA | NA | NA |
\n",
- "\t9 | K17 | NA | NA | NA |
\n",
- "\t⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
\n",
- "\t12 | K2 | NA | NA | NA |
\n",
- "\t13 | K20 | NA | NA | NA |
\n",
- "\t14 | K21 | NA | NA | NA |
\n",
- "\t15 | K22 | NA | NA | NA |
\n",
- "\t16 | K23 | NA | NA | NA |
\n",
- "\t17 | K24 | NA | NA | NA |
\n",
- "\t18 | K25 | NA | NA | NA |
\n",
- "\t19 | K26 | NA | NA | NA |
\n",
- "\t20 | K27 | NA | NA | NA |
\n",
- "\t21 | K28 | NA | NA | NA |
\n",
- "\t22 | K29 | NA | NA | NA |
\n",
- "\t23 | K3 | NA | NA | NA |
\n",
- "\t24 | K30 | NA | NA | NA |
\n",
- "\t25 | K31 | NA | NA | NA |
\n",
- "\t26 | K32 | NA | NA | NA |
\n",
- "\t27 | K33 | NA | NA | NA |
\n",
- "\t28 | K34 | NA | NA | NA |
\n",
- "\t29 | K4 | NA | NA | NA |
\n",
- "\t30 | K5 | NA | NA | NA |
\n",
- "\t31 | K6 | NA | NA | NA |
\n",
- "\t32 | K7 | NA | NA | NA |
\n",
- "\t33 | K8 | NA | NA | NA |
\n",
- "\t34 | K9 | NA | NA | NA |
\n",
- "\t35 | M1 | NA | NA | NA |
\n",
- "\t43 | M11 | NA | NA | NA |
\n",
- "\t47 | M12 | NA | NA | NA |
\n",
- "\t64 | M16 | NA | NA | NA |
\n",
- "\t68 | M17 | NA | NA | NA |
\n",
- "\t100 | M24 | NA | NA | NA |
\n",
- "\t142 | M8 | NA | NA | NA |
\n",
- "\n",
- "
\n"
- ],
- "text/latex": [
- "A data.frame: 62 × 4\n",
- "\\begin{tabular}{r|llll}\n",
- " & sample & delta\\_ef\\_value\\_class\\_summarized & delta\\_ef\\_value & delta\\_ef\\_value\\_class\\\\\n",
- " & & & & \\\\\n",
- "\\hline\n",
- "\t72 & M18 & bad & -2.500 & bad \\\\\n",
- "\t51 & M13 & bad & -2.200 & bad \\\\\n",
- "\t56 & M14 & bad & -1.300 & bad \\\\\n",
- "\t84 & M20 & bad & -1.000 & bad \\\\\n",
- "\t112 & M27 & bad & -0.667 & bad \\\\\n",
- "\t39 & M10 & bad & -0.300 & bad \\\\\n",
- "\t120 & M3 & bad & -0.060 & bad \\\\\n",
- "\t96 & M23 & good & 0.000 & intermediate\\\\\n",
- "\t92 & M22 & good & 0.067 & intermediate\\\\\n",
- "\t128 & M5 & good & 0.083 & intermediate\\\\\n",
- "\t108 & M26 & good & 0.300 & intermediate\\\\\n",
- "\t104 & M25 & good & 0.690 & intermediate\\\\\n",
- "\t138 & M7 & good & 0.750 & intermediate\\\\\n",
- "\t132 & M6 & good & 0.875 & intermediate\\\\\n",
- "\t76 & M19 & good & 1.150 & good \\\\\n",
- "\t80 & M2 & good & 1.150 & good \\\\\n",
- "\t116 & M28 & good & 2.250 & good \\\\\n",
- "\t124 & M4 & good & 3.100 & good \\\\\n",
- "\t88 & M21 & good & 3.550 & good \\\\\n",
- "\t60 & M15 & good & 5.200 & good \\\\\n",
- "\t146 & M9 & good & 14.300 & good \\\\\n",
- "\t1 & K1 & NA & NA & NA \\\\\n",
- "\t2 & K10 & NA & NA & NA \\\\\n",
- "\t3 & K11 & NA & NA & NA \\\\\n",
- "\t4 & K12 & NA & NA & NA \\\\\n",
- "\t5 & K13 & NA & NA & NA \\\\\n",
- "\t6 & K14 & NA & NA & NA \\\\\n",
- "\t7 & K15 & NA & NA & NA \\\\\n",
- "\t8 & K16 & NA & NA & NA \\\\\n",
- "\t9 & K17 & NA & NA & NA \\\\\n",
- "\t⋮ & ⋮ & ⋮ & ⋮ & ⋮\\\\\n",
- "\t12 & K2 & NA & NA & NA\\\\\n",
- "\t13 & K20 & NA & NA & NA\\\\\n",
- "\t14 & K21 & NA & NA & NA\\\\\n",
- "\t15 & K22 & NA & NA & NA\\\\\n",
- "\t16 & K23 & NA & NA & NA\\\\\n",
- "\t17 & K24 & NA & NA & NA\\\\\n",
- "\t18 & K25 & NA & NA & NA\\\\\n",
- "\t19 & K26 & NA & NA & NA\\\\\n",
- "\t20 & K27 & NA & NA & NA\\\\\n",
- "\t21 & K28 & NA & NA & NA\\\\\n",
- "\t22 & K29 & NA & NA & NA\\\\\n",
- "\t23 & K3 & NA & NA & NA\\\\\n",
- "\t24 & K30 & NA & NA & NA\\\\\n",
- "\t25 & K31 & NA & NA & NA\\\\\n",
- "\t26 & K32 & NA & NA & NA\\\\\n",
- "\t27 & K33 & NA & NA & NA\\\\\n",
- "\t28 & K34 & NA & NA & NA\\\\\n",
- "\t29 & K4 & NA & NA & NA\\\\\n",
- "\t30 & K5 & NA & NA & NA\\\\\n",
- "\t31 & K6 & NA & NA & NA\\\\\n",
- "\t32 & K7 & NA & NA & NA\\\\\n",
- "\t33 & K8 & NA & NA & NA\\\\\n",
- "\t34 & K9 & NA & NA & NA\\\\\n",
- "\t35 & M1 & NA & NA & NA\\\\\n",
- "\t43 & M11 & NA & NA & NA\\\\\n",
- "\t47 & M12 & NA & NA & NA\\\\\n",
- "\t64 & M16 & NA & NA & NA\\\\\n",
- "\t68 & M17 & NA & NA & NA\\\\\n",
- "\t100 & M24 & NA & NA & NA\\\\\n",
- "\t142 & M8 & NA & NA & NA\\\\\n",
- "\\end{tabular}\n"
- ],
- "text/markdown": [
- "\n",
- "A data.frame: 62 × 4\n",
- "\n",
- "| | sample <chr> | delta_ef_value_class_summarized <chr> | delta_ef_value <dbl> | delta_ef_value_class <chr> |\n",
- "|---|---|---|---|---|\n",
- "| 72 | M18 | bad | -2.500 | bad |\n",
- "| 51 | M13 | bad | -2.200 | bad |\n",
- "| 56 | M14 | bad | -1.300 | bad |\n",
- "| 84 | M20 | bad | -1.000 | bad |\n",
- "| 112 | M27 | bad | -0.667 | bad |\n",
- "| 39 | M10 | bad | -0.300 | bad |\n",
- "| 120 | M3 | bad | -0.060 | bad |\n",
- "| 96 | M23 | good | 0.000 | intermediate |\n",
- "| 92 | M22 | good | 0.067 | intermediate |\n",
- "| 128 | M5 | good | 0.083 | intermediate |\n",
- "| 108 | M26 | good | 0.300 | intermediate |\n",
- "| 104 | M25 | good | 0.690 | intermediate |\n",
- "| 138 | M7 | good | 0.750 | intermediate |\n",
- "| 132 | M6 | good | 0.875 | intermediate |\n",
- "| 76 | M19 | good | 1.150 | good |\n",
- "| 80 | M2 | good | 1.150 | good |\n",
- "| 116 | M28 | good | 2.250 | good |\n",
- "| 124 | M4 | good | 3.100 | good |\n",
- "| 88 | M21 | good | 3.550 | good |\n",
- "| 60 | M15 | good | 5.200 | good |\n",
- "| 146 | M9 | good | 14.300 | good |\n",
- "| 1 | K1 | NA | NA | NA |\n",
- "| 2 | K10 | NA | NA | NA |\n",
- "| 3 | K11 | NA | NA | NA |\n",
- "| 4 | K12 | NA | NA | NA |\n",
- "| 5 | K13 | NA | NA | NA |\n",
- "| 6 | K14 | NA | NA | NA |\n",
- "| 7 | K15 | NA | NA | NA |\n",
- "| 8 | K16 | NA | NA | NA |\n",
- "| 9 | K17 | NA | NA | NA |\n",
- "| ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |\n",
- "| 12 | K2 | NA | NA | NA |\n",
- "| 13 | K20 | NA | NA | NA |\n",
- "| 14 | K21 | NA | NA | NA |\n",
- "| 15 | K22 | NA | NA | NA |\n",
- "| 16 | K23 | NA | NA | NA |\n",
- "| 17 | K24 | NA | NA | NA |\n",
- "| 18 | K25 | NA | NA | NA |\n",
- "| 19 | K26 | NA | NA | NA |\n",
- "| 20 | K27 | NA | NA | NA |\n",
- "| 21 | K28 | NA | NA | NA |\n",
- "| 22 | K29 | NA | NA | NA |\n",
- "| 23 | K3 | NA | NA | NA |\n",
- "| 24 | K30 | NA | NA | NA |\n",
- "| 25 | K31 | NA | NA | NA |\n",
- "| 26 | K32 | NA | NA | NA |\n",
- "| 27 | K33 | NA | NA | NA |\n",
- "| 28 | K34 | NA | NA | NA |\n",
- "| 29 | K4 | NA | NA | NA |\n",
- "| 30 | K5 | NA | NA | NA |\n",
- "| 31 | K6 | NA | NA | NA |\n",
- "| 32 | K7 | NA | NA | NA |\n",
- "| 33 | K8 | NA | NA | NA |\n",
- "| 34 | K9 | NA | NA | NA |\n",
- "| 35 | M1 | NA | NA | NA |\n",
- "| 43 | M11 | NA | NA | NA |\n",
- "| 47 | M12 | NA | NA | NA |\n",
- "| 64 | M16 | NA | NA | NA |\n",
- "| 68 | M17 | NA | NA | NA |\n",
- "| 100 | M24 | NA | NA | NA |\n",
- "| 142 | M8 | NA | NA | NA |\n",
- "\n"
- ],
- "text/plain": [
- " sample delta_ef_value_class_summarized delta_ef_value delta_ef_value_class\n",
- "72 M18 bad -2.500 bad \n",
- "51 M13 bad -2.200 bad \n",
- "56 M14 bad -1.300 bad \n",
- "84 M20 bad -1.000 bad \n",
- "112 M27 bad -0.667 bad \n",
- "39 M10 bad -0.300 bad \n",
- "120 M3 bad -0.060 bad \n",
- "96 M23 good 0.000 intermediate \n",
- "92 M22 good 0.067 intermediate \n",
- "128 M5 good 0.083 intermediate \n",
- "108 M26 good 0.300 intermediate \n",
- "104 M25 good 0.690 intermediate \n",
- "138 M7 good 0.750 intermediate \n",
- "132 M6 good 0.875 intermediate \n",
- "76 M19 good 1.150 good \n",
- "80 M2 good 1.150 good \n",
- "116 M28 good 2.250 good \n",
- "124 M4 good 3.100 good \n",
- "88 M21 good 3.550 good \n",
- "60 M15 good 5.200 good \n",
- "146 M9 good 14.300 good \n",
- "1 K1 NA NA NA \n",
- "2 K10 NA NA NA \n",
- "3 K11 NA NA NA \n",
- "4 K12 NA NA NA \n",
- "5 K13 NA NA NA \n",
- "6 K14 NA NA NA \n",
- "7 K15 NA NA NA \n",
- "8 K16 NA NA NA \n",
- "9 K17 NA NA NA \n",
- "⋮ ⋮ ⋮ ⋮ ⋮ \n",
- "12 K2 NA NA NA \n",
- "13 K20 NA NA NA \n",
- "14 K21 NA NA NA \n",
- "15 K22 NA NA NA \n",
- "16 K23 NA NA NA \n",
- "17 K24 NA NA NA \n",
- "18 K25 NA NA NA \n",
- "19 K26 NA NA NA \n",
- "20 K27 NA NA NA \n",
- "21 K28 NA NA NA \n",
- "22 K29 NA NA NA \n",
- "23 K3 NA NA NA \n",
- "24 K30 NA NA NA \n",
- "25 K31 NA NA NA \n",
- "26 K32 NA NA NA \n",
- "27 K33 NA NA NA \n",
- "28 K34 NA NA NA \n",
- "29 K4 NA NA NA \n",
- "30 K5 NA NA NA \n",
- "31 K6 NA NA NA \n",
- "32 K7 NA NA NA \n",
- "33 K8 NA NA NA \n",
- "34 K9 NA NA NA \n",
- "35 M1 NA NA NA \n",
- "43 M11 NA NA NA \n",
- "47 M12 NA NA NA \n",
- "64 M16 NA NA NA \n",
- "68 M17 NA NA NA \n",
- "100 M24 NA NA NA \n",
- "142 M8 NA NA NA "
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "test[order(test$delta_ef_value),]"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 26,
- "id": "0aa96da1-fde6-4661-b2b2-75dbd9d4a9ba",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "