Skip to content

Latest commit

 

History

History
122 lines (74 loc) · 3.43 KB

README.rst

File metadata and controls

122 lines (74 loc) · 3.43 KB

Spectrify

Documentation Status

A simple yet powerful tool to move your data from Redshift to Redshift Spectrum.

Features

One-liners to:

  • Export a Redshift table to S3 (CSV)
  • Convert exported CSVs to Parquet files in parallel
  • Create the Spectrum table on your Redshift cluster
  • Perform all 3 steps in sequence, essentially "copying" a Redshift table Spectrum in one command.

S3 credentials are specified using boto3. See http://boto3.readthedocs.io/en/latest/guide/configuration.html

Redshift credentials are supplied via environment variables, command-line parameters, or interactive prompt.

Install

$ pip install psycopg2  # or psycopg2-binary
$ pip install spectrify

Command-line Usage

Export Redshift table my_table to a folder of CSV files on S3:

$ spectrify --host=example-url.redshift.aws.com --user=myuser --db=mydb export my_table \
    's3://example-bucket/my_table'

Convert exported CSVs to Parquet:

$ spectrify --host=example-url.redshift.aws.com --user=myuser --db=mydb convert my_table \
    's3://example-bucket/my_table'

Create Spectrum table from S3 folder:

$ spectrify --host=example-url.redshift.aws.com --user=myuser --db=mydb create_table \
    's3://example-bucket/my_table' my_table my_spectrum_table

Transform Redshift table by performing all 3 steps in sequence:

$ spectrify --host=example-url.redshift.aws.com --user=myuser --db=mydb transform my_table \
    's3://example-bucket/my_table'

Python Usage

Export to S3:

from spectrify.export import RedshiftDataExporter
RedshiftDataExporter(sa_engine, s3_config).export_to_csv('my_table')

Convert exported CSVs to Parquet:

from spectrify.convert import ConcurrentManifestConverter
from spectrify.utils.schema import SqlAlchemySchemaReader
sa_table = SqlAlchemySchemaReader(engine).get_table_schema('my_table')
ConcurrentManifestConverter(sa_table, s3_config).convert_manifest()

Create Spectrum table from S3 parquet folder:

from spectrify.create import SpectrumTableCreator
from spectrify.utils.schema import SqlAlchemySchemaReader
sa_table = SqlAlchemySchemaReader(engine).get_table_schema('my_table')
SpectrumTableCreator(sa_engine, dest_schema, dest_table_name, sa_table, s3_config).create()

Transform Redshift table by performing all 3 steps in sequence:

from spectrify.transform import TableTransformer
transformer = TableTransformer(engine, 'my_table', s3_config, dest_schema, dest_table_name)
transformer.transform()

Contribute

Contributions always welcome! Read our guide on contributing here: http://spectrify.readthedocs.io/en/latest/contributing.html

License

MIT License. Copyright (c) 2017, The Narrativ Company, Inc.