diff --git a/NAMESPACE b/NAMESPACE index feddd87a..c931c134 100644 --- a/NAMESPACE +++ b/NAMESPACE @@ -29,6 +29,8 @@ S3method(posterior_probs,hmm) S3method(posterior_probs,mhmm) S3method(posterior_probs,mnhmm) S3method(posterior_probs,nhmm) +S3method(predict,mnhmm) +S3method(predict,nhmm) S3method(print,hmm) S3method(print,mhmm) S3method(print,mnhmm) @@ -47,14 +49,13 @@ S3method(vcov,mhmm) export("cluster_names<-") export("state_names<-") export(alphabet) -export(average_marginal_effect) +export(average_marginal_prediction) export(build_hmm) export(build_lcm) export(build_mhmm) export(build_mm) export(build_mmm) export(cluster_names) -export(estimate_coef) export(estimate_mnhmm) export(estimate_nhmm) export(fit_model) diff --git a/NEWS.md b/NEWS.md index 2d2de5fb..a91a8aa9 100644 --- a/NEWS.md +++ b/NEWS.md @@ -1,13 +1,17 @@ -seqHMM 1.3.0 +seqHMM 2.0.0 ============== - * Rewrote sequence visualization functions using `ggseqplot` and `patchwork` - packages. Old plotting functions are deprecated and will be removed in the - future. * Added support for non-homogeneous HMMs where initial, transition, and - emission probabilities can depend on individual-specific covariates. - Penalized maximum likelihood estimation of these models is based on - L-BFGS-B with automatic differentiation with `Stan`. +emission probabilities can depend on individual-specific covariates. +Penalized maximum likelihood estimation of these models is based on +L-BFGS-B with automatic differentiation with `Stan`. + * Rewrote sequence visualization functions using `ggseqplot` and `patchwork` +packages. Old plotting functions are deprecated and will be removed in the +future. * Warning and error messages were rewritten using `cli` package. + * Removed the function `estimate_coef`. A portion of the code was +accidentally commented out, rendering the function non-functional for +several years. Rather than correcting the code, the function was removed as it +was deemed unnecessary. * Added automatic tests using `testthat` package. * Internally switched from Rd syntax to Markdown in Roxygen documentation. diff --git a/R/RcppExports.R b/R/RcppExports.R index 53f3d84a..12355e52 100644 --- a/R/RcppExports.R +++ b/R/RcppExports.R @@ -145,10 +145,6 @@ objectivex <- function(transition, emission, init, obs, ANZ, BNZ, INZ, nSymbols, .Call(`_seqHMM_objectivex`, transition, emission, init, obs, ANZ, BNZ, INZ, nSymbols, coef, X, numberOfStates, threads) } -estimate_coefs <- function(transition, emission, init, obs, nSymbols, coef, X, numberOfStates, itermax, tol, trace, threads) { - .Call(`_seqHMM_estimate_coefs`, transition, emission, init, obs, nSymbols, coef, X, numberOfStates, itermax, tol, trace, threads) -} - softmax <- function(x, logspace) { .Call(`_seqHMM_softmax`, x, logspace) } diff --git a/R/average_marginal_effect.R b/R/average_marginal_effect.R deleted file mode 100644 index e008c92b..00000000 --- a/R/average_marginal_effect.R +++ /dev/null @@ -1,148 +0,0 @@ -#' Average Marginal Effects of Covariates of Non-homogenous Hidden Markov Models -#' -#' @param model A Hidden Markov Model of class `nhmm` or `mnhmm`. -#' @param variable Name of the variable of interest. -#' @param values Vector containing two values for `variable`. -#' @param newdata Optional data frame which is used for marginalization. -#' @param nsim Non-negative integer defining the number of samples from the -#' normal approximation of the model parameters used in -#' computing the approximate quantiles of the estimates. If `0`, only point -#' estimates are returned. -#' @param probs Vector defining the quantiles of interest. Default is -#' `c(0.025, 0.975)`. -#' @export -average_marginal_effect <- function( - model, variable, values, newdata = NULL, - nsim = 0, - probs = c(0.025, 0.975)) { - stopifnot_( - checkmate::test_count(nsim), - "Argument {.arg nsim} should be a single non-negative integer." - ) - stopifnot_( - checkmate::test_string(x = variable), - "Argument {.arg variable} must be a single character string." - ) - stopifnot_( - length(values) != 2, - "Argument {.arg values} should contain two values for - variable {.var variable}.") - if (is.null(newdata)) { - time <- model$time_variable - id <- model$id_variable - stopifnot_( - is.data.frame(newdata), - "Argument {.arg newdata} must be a {.cls data.frame} object." - ) - stopifnot_( - !is.null(newdata[[id]]), - "Can't find grouping variable {.var {id}} in {.arg newdata}." - ) - stopifnot_( - !is.null(newdata[[time]]), - "Can't find time index variable {.var {time}} in {.arg newdata}." - ) - stopifnot_( - !is.null(newdata[[variable]]), - "Can't find time variable {.var {variable}} in {.arg newdata}." - ) - } else { - stopifnot( - !is.null(model$data), - "Model does not contain original data and argument {.arg newdata} is - {.var NULL}." - ) - newdata <- model$data - } - - beta_i_raw <- stan_to_cpp_initial( - model$estimation_results$parameters$beta_i_raw - ) - beta_s_raw <- stan_to_cpp_transition( - model$estimation_results$parameters$beta_s_raw - ) - beta_o_raw <- stan_to_cpp_emission( - model$estimation_results$parameters$beta_o_raw, - 1, - C > 1 - ) - newdata[[variable]] <- values[1] - model <- update(model, newdata = newdata) - X_initial1 <- t(model$X_initial) - X_transition1 <- aperm(model$X_transition, c(3, 1, 2)) - X_emission1 <- aperm(model$X_emission, c(3, 1, 2)) - newdata[[variable]] <- values[2] - model <- update(model, newdata = newdata) - X_initial2 <- t(model$X_initial) - X_transition2 <- aperm(model$X_transition, c(3, 1, 2)) - X_emission2 <- aperm(model$X_emission, c(3, 1, 2)) - - ame_pi <- get_pi(beta_i_raw, X_initial1, 0) - - get_pi(beta_i_raw, X_initial2, 0) - ame_A <- get_A(beta_s_raw, X_transition1, 0) - - get_A(beta_s_raw, X_transition2, 0) - ame_B <- if (model$n_channels == 1) { - get_B(beta_o_raw, X_emission1, 0) - get_B(beta_o_raw, X_emission2, 0) - } else { - get_multichannel_B( - beta_o_raw, - X_emission1, - model$n_states, - model$n_channels, - model$n_symbols, - 0, 0) - - get_multichannel_B( - beta_o_raw, - X_emission2, - model$n_states, - model$n_channels, - model$n_symbols, - 0, 0) - } - if (nsim > 0) { - stopifnot_( - checkmate::test_numeric( - x = probs, lower = 0, upper = 1, any.missing = FALSE, min.len = 1L - ), - "Argument {.arg probs} must be a {.cls numeric} vector with values - between 0 and 1." - ) - chol_precision <- chol(-model$estimation$hessian) - U <- backsolve(chol_precision, diag(ncol(chol_precision))) - x <- matrix(rnorm(nsim * ncol(U)), nrow = nsim) %*% U - x <- t(sweep(x, 2, c(beta_i_raw, beta_s_raw, beta_o_raw), "+")) - p_i <- length(beta_i_raw) - p_s <- length(beta_s_raw) - p_o <- length(beta_o_raw) - - pi_samples <- apply( - x[seq_len(p_i), ], 2, function(z) { - z <- array(z, dim = dim(beta_i_raw)) - z <- stan_to_cpp_initial(z) - get_pi(z, X_initial1) - get_pi(z, X_initial2) - } - ) - A_samples <- apply( - x[p_i + seq_len(p_s), ], 2, function(z) { - z <- array(z, dim = dim(beta_s_raw)) - z <- stan_to_cpp_transition(z) - unlist(get_A(z, X_transition1)) - - unlist(get_A(z, X_transition2)) - } - ) - B_samples <- apply( - x[p_i + p_s + seq_len(p_o), ], 2, function(z) { - z <- array(z, dim = dim(beta_o_raw)) - z <- stan_to_cpp_emission(z, 1, model$n_channels > 1) - unlist(get_B(aperm(z, c(2, 3, 1)), X_emission1)) - - unlist(get_B(aperm(z, c(2, 3, 1)), X_emission2)) - } - ) - - quantiles <- fast_quantiles(samples, probs) - for(i in seq_along(probs)) { - transition_probs[paste0("q", 100 * probs[i])] <- quantiles[, i] - } - } - class(out) <- "ame" -} diff --git a/R/average_marginal_prediction.R b/R/average_marginal_prediction.R new file mode 100644 index 00000000..d9d599d6 --- /dev/null +++ b/R/average_marginal_prediction.R @@ -0,0 +1,146 @@ +#' Average Marginal Predictions for Non-homogenous Hidden Markov Models +#' +#' @param model A Hidden Markov Model of class `nhmm` or `mnhmm`. +#' @param variable Name of the variable of interest. +#' @param values Vector containing one or two values for `variable`. +#' @param newdata Optional data frame which is used for marginalization. +#' @param nsim Non-negative integer defining the number of samples from the +#' normal approximation of the model parameters used in +#' computing the approximate quantiles of the estimates. If `0`, only point +#' estimates are returned. +#' @param probs Vector defining the quantiles of interest. Default is +#' `c(0.025, 0.5, 0.975)`. +#' @export +average_marginal_prediction <- function( + model, variable, values, marginalize_B_over = "sequences", newdata = NULL, + nsim = 0, probs = c(0.025, 0.5, 0.975)) { + marginalize_over <- match.arg( + marginalize_over, c("sequences", "states", "clusters"), several.ok = TRUE) + stopifnot_( + checkmate::test_count(nsim), + "Argument {.arg nsim} should be a single non-negative integer." + ) + stopifnot_( + checkmate::test_string(x = variable), + "Argument {.arg variable} must be a single character string." + ) + stopifnot_( + length(values) != 2, + "Argument {.arg values} should contain two values for + variable {.var variable}.") + if (is.null(newdata)) { + time <- model$time_variable + id <- model$id_variable + stopifnot_( + is.data.frame(newdata), + "Argument {.arg newdata} must be a {.cls data.frame} object." + ) + stopifnot_( + !is.null(newdata[[id]]), + "Can't find grouping variable {.var {id}} in {.arg newdata}." + ) + stopifnot_( + !is.null(newdata[[time]]), + "Can't find time index variable {.var {time}} in {.arg newdata}." + ) + stopifnot_( + !is.null(newdata[[variable]]), + "Can't find time variable {.var {variable}} in {.arg newdata}." + ) + } else { + stopifnot( + !is.null(model$data), + "Model does not contain original data and argument {.arg newdata} is + {.var NULL}." + ) + newdata <- model$data + } + # use same RNG seed so that the same samples of coefficients are drawn + newdata[[variable]] <- values[1] + seed <- sample(.Machine$integer.max, 1) + set.seed(seed) + pred <- predict(model, newdata, nsim, return_samples = TRUE) + if (length(values) == 2) { + newdata[[variable]] <- values[2] + set.seed(seed) + pred2 <- predict(model, newdata, nsim, return_samples = TRUE) + pred <- mapply("-", pred, pred2, SIMPLIFY = FALSE) + } + T <- model$length_of_sequences + N <- model$n_sequences + S <- model$n_states + M <- model$n_symbols + C <- model$n_channels + D <- model$n_clusters + if (C == 1) { + ids <- rownames(model$observations) + times <- colnames(model$observations) + symbol_names <- list(model$symbol_names) + } else { + ids <- rownames(model$observations[[1]]) + times <- colnames(model$observations[[1]]) + symbol_names <- model$symbol_names + } + marginalize <- dplyr::recode( + marginalize_B_over, + "clusters" = "cluster", + "states" = "state", + "sequences" = "id") + id_var <- model$id_variable + time_var <- model$time_variable + + pi <- data.frame( + cluster = rep(model$cluster_names, each = S * N), + id = rep(ids, each = S), + state = model$state_names, + estimate = unlist(pred$pi) + ) |> + dplyr::group_by(.data[[marginalize]]) |> + summarise(estimate = mean(estimate)) + colnames(pi)[2] <- id_var + + A <- data.frame( + cluster = rep(model$cluster_names, each = S^2 * T * N), + id = rep(ids, each = S^2 * T), + time = rep(times, each = S^2), + state_from = model$state_names, + state_to = rep(model$state_names, each = S), + estimate = unlist(pred$A) + ) + colnames(A)[2] <- id_var + colnames(A)[3] <- time_var + + B <- data.frame( + cluster = rep(model$cluster_names, each = S * sum(M) * T * N), + id = unlist(lapply(seq_len(C), function(i) rep(ids, each = S * M[i] * T))), + time = unlist(lapply(seq_len(C), function(i) rep(times, each = S * M[i]))), + state = model$state_names, + channel = unlist(lapply(seq_len(C), function(i) { + rep(model$channel_names[i], each = S * M[i]* T * N) + })), + observation = unlist(lapply(seq_len(C), function(i) { + rep(symbol_names[[i]], each = S) + })), + estimate = unlist(pred$B) + ) |> + dplyr::group_by(.data[[marginalize]]) |> + summarise(estimate = mean(estimate)) + idx <- which(names(B) == "id") + if(length(idx) == 1) names(B)[idx] <- id_var + idx <- which(names(B) == "time") + if(length(idx) == 1) names(B)[idx] <- time_var + if (C == 1) emission_probs$channel <- NULL + + if (D > 1) { + omega <- data.frame( + cluster = model$cluster_names, + id = rep(ids, each = D), + estimate = c(pred$omega) + ) + out <- list(omega = omega, pi = pi, A = A, B = B) + } else { + out <- list(pi = pi, A = A, B = B) + } + class(out) <- "amp" + out +} diff --git a/R/estimate_coef.R b/R/estimate_coef.R deleted file mode 100644 index f94880ba..00000000 --- a/R/estimate_coef.R +++ /dev/null @@ -1,47 +0,0 @@ -#' Estimate Only the Regression Coefficients of Mixture Hidden Markov Models -#' -#' Function `estimate_coef` estimates the regression coefficients of -#' mixture hidden Markov models of class `mhmm` and its restricted variants -#' while keeping other parameters fixed. -#' -#' @export -#' @param model An object of class `mhmm`. -#' @param threads Number of threads to use in parallel computing. -#' The default is 1. -estimate_coef <- function(model, threads = 1) { - stopifnot_( - inherits(model, "mhmm"), - "{.arg model} must be a {.cls mhmm} object." - ) - stopifnot_( - checkmate::test_int(x = threads, lower = 1L), - "Argument {.arg threads} must be a single positive integer." - ) - df <- attr(model, "df") - nobs <- attr(model, "nobs") - original_model <- model - model <- .combine_models(model) - obsArray <- create_obsArray(model) - emissionArray <- create_emissionArray(model) - - em.con <- list(print_level = 0, maxeval = 1000, reltol = 1e-10) - - res <- estimate_coefs( - model$transition_probs, emissionArray, model$initial_probs, obsArray, - model$n_symbols, model$coefficients, model$X, model$n_states_in_clusters, - em.con$maxeval, em.con$reltol, em.con$print_level, threads - ) - if (res$error != 0) { - err_msg <- switch(res$error, - "Scaling factors contain non-finite values.", - "Backward probabilities contain non-finite values.", - "Initial values of coefficients of covariates gives non-finite cluster probabilities.", - "Estimation of coefficients of covariates failed due to singular Hessian.", - "Estimation of coefficients of covariates failed due to non-finite cluster probabilities.", - "Non-finite log-likelihood" - ) - stop_(paste("EM algorithm failed:", err_msg)) - } - original_model$coefficients[] <- res$coefficients - original_model -} diff --git a/R/get_coefs.R b/R/get_coefs.R index b133e511..a7a783b8 100644 --- a/R/get_coefs.R +++ b/R/get_coefs.R @@ -7,10 +7,10 @@ #' computing the approximate quantiles of the estimates. If `0`, only point #' estimates are returned. #' @param probs Vector defining the quantiles of interest. Default is -#' `c(0.025, 0.975)`. +#' `c(0.025, 0.5, 0.975)`. #' @rdname coef #' @export -coef.nhmm <- function(object, nsim = 0, probs = c(0.025, 0.975), ...) { +coef.nhmm <- function(object, nsim = 0, probs = c(0.025, 0.5, 0.975), ...) { stopifnot_( checkmate::test_count(nsim), "Argument {.arg nsim} should be a single non-negative integer." @@ -84,7 +84,7 @@ coef.nhmm <- function(object, nsim = 0, probs = c(0.025, 0.975), ...) { } #' @rdname coef #' @export -coef.mnhmm <- function(object, nsim = 0, probs = c(0.025, 0.975), ...) { +coef.mnhmm <- function(object, nsim = 0, probs = c(0.025, 0.5, 0.975), ...) { stopifnot_( checkmate::test_count(nsim), "Argument {.arg nsim} should be a single non-negative integer." diff --git a/R/get_probs.R b/R/get_probs.R index 4ad5b2d3..bc202acc 100644 --- a/R/get_probs.R +++ b/R/get_probs.R @@ -7,7 +7,7 @@ #' computing the approximate quantiles of the estimates. If `0`, only point #' estimates are returned. #' @param probs Vector defining the quantiles of interest. Default is -#' `c(0.025, 0.975)`. +#' `c(0.025, 0.5, 0.975)`. #' @rdname get_probs #' @export get_probs <- function(model, ...) { @@ -15,15 +15,15 @@ get_probs <- function(model, ...) { } #' @rdname get_probs #' @export -get_probs.nhmm <- function(model, data = NULL, nsim = 0, - probs = c(0.025, 0.975), ...) { +get_probs.nhmm <- function(model, newdata = NULL, nsim = 0, + probs = c(0.025, 0.5, 0.975), ...) { stopifnot_( checkmate::test_count(nsim), "Argument {.arg nsim} should be a single non-negative integer." ) - if (!is.null(data)) { - model <- update(model, newdata = data) + if (!is.null(newdata)) { + model <- update(model, newdata = ne) } S <- model$n_states M <- model$n_symbols @@ -125,16 +125,16 @@ get_probs.nhmm <- function(model, data = NULL, nsim = 0, } #' @rdname get_probs #' @export -get_probs.mnhmm <- function(model, data = NULL, nsim = 0, - probs = c(0.025, 0.975), ...) { +get_probs.mnhmm <- function(model, ne = NULL, nsim = 0, + probs = c(0.025, 0.5, 0.975), ...) { stopifnot_( checkmate::test_count(nsim), "Argument {.arg nsim} should be a single non-negative integer." ) - if (!is.null(data)) { - model <- update(model, newdata = data) + if (!is.null(ne)) { + model <- update(model, newdata = ne) } T <- model$length_of_sequences @@ -233,65 +233,18 @@ get_probs.mnhmm <- function(model, data = NULL, nsim = 0, ) if (nsim > 0) { - stopifnot_( - checkmate::test_numeric( - x = probs, lower = 0, upper = 1, any.missing = FALSE, min.len = 1L - ), - "Argument {.arg probs} must be a {.cls numeric} vector with values - between 0 and 1." - ) - chol_precision <- chol(-model$estimation$hessian) - U <- backsolve(chol_precision, diag(ncol(chol_precision))) - x <- matrix(rnorm(nsim * ncol(U)), nrow = nsim) %*% U - beta_i_raw <- model$estimation_results$parameters$beta_i_raw - beta_s_raw <- model$estimation_results$parameters$beta_s_raw - beta_o_raw <- model$estimation_results$parameters$beta_o_raw - theta_raw <- model$estimation_results$parameters$theta_raw - x <- t(sweep(x, 2, c(beta_i_raw, beta_s_raw, beta_o_raw, theta_raw), "+")) - p_i <- length(beta_i_raw) - p_s <- length(beta_s_raw) - p_o <- length(beta_o_raw) - p_d <- length(theta_raw) - - samples <- apply( - x[seq_len(p_i), ], 2, function(z) { - z <- array(z, dim = dim(beta_i_raw)) - get_pi(z, X_initial) - } - ) - quantiles <- fast_quantiles(samples, probs) + out <- sample_parameters(model, nsim, probs) for(i in seq_along(probs)) { - initial_probs[paste0("q", 100 * probs[i])] <- quantiles[, i] + initial_probs[paste0("q", 100 * probs[i])] <- out$quantiles_pi[, i] } - samples <- apply( - x[p_i + seq_len(p_s), ], 2, function(z) { - z <- array(z, dim = dim(beta_s_raw)) - unlist(get_A(aperm(z, c(2, 3, 1)), X_transition)) - } - ) - quantiles <- fast_quantiles(samples, probs) for(i in seq_along(probs)) { - transition_probs[paste0("q", 100 * probs[i])] <- quantiles[, i] + transition_probs[paste0("q", 100 * probs[i])] <- out$quantiles_A[, i] } - samples <- apply( - x[p_i + p_s + seq_len(p_o), ], 2, function(z) { - z <- array(z, dim = dim(beta_o_raw)) - unlist(get_B(aperm(z, c(2, 3, 1)), X_emission)) - } - ) - quantiles <- fast_quantiles(samples, probs) for(i in seq_along(probs)) { - emission_probs[paste0("q", 100 * probs[i])] <- quantiles[, i] + emission_probs[paste0("q", 100 * probs[i])] <- out$quantiles_B[, i] } - samples <- apply( - x[p_i + p_s + p_o + seq_len(p_d), ], 2, function(z) { - z <- array(z, dim = dim(theta_raw)) - unlist(get_omega(z, X_cluster)) - } - ) - quantiles <- fast_quantiles(samples, probs) for(i in seq_along(probs)) { - cluster_probs[paste0("q", 100 * probs[i])] <- quantiles[, i] + cluster_probs[paste0("q", 100 * probs[i])] <- out$quantiles_omega[, i] } } list( diff --git a/R/predict.R b/R/predict.R new file mode 100644 index 00000000..b7cc2994 --- /dev/null +++ b/R/predict.R @@ -0,0 +1,163 @@ +#' Predict method for non-homogeneous hidden Markov models +#' +#' @param model A Hidden Markov Model of class `nhmm` or `mnhmm`. +#' @param newdata Optional data frame which is used for prediction. +#' @param nsim Non-negative integer defining the number of samples from the +#' normal approximation of the model coefficients. +#' @param probs Vector defining the quantiles of interest. +#' @param return_samples Logical indicating whether to return samples or +#' quantiles. +#' @export +predict.nhmm <- function( + model, newdata = NULL, nsim = 0, + probs = c(0.025, 0.5, 0.975), return_samples = FALSE) { + + stopifnot_( + checkmate::test_count(nsim), + "Argument {.arg nsim} should be a single non-negative integer." + ) + if (!is.null(newdata)) { + time <- model$time_variable + id <- model$id_variable + stopifnot_( + is.data.frame(newdata), + "Argument {.arg newdata} must be a {.cls data.frame} object." + ) + stopifnot_( + !is.null(newdata[[id]]), + "Can't find grouping variable {.var {id}} in {.arg newdata}." + ) + stopifnot_( + !is.null(newdata[[time]]), + "Can't find time index variable {.var {time}} in {.arg newdata}." + ) + stopifnot_( + !is.null(newdata[[variable]]), + "Can't find time variable {.var {variable}} in {.arg newdata}." + ) + } else { + stopifnot( + !is.null(model$data), + "Model does not contain original data and argument {.arg newdata} is + {.var NULL}." + ) + model <- update(model, newdata = newdata) + } + + beta_i_raw <- stan_to_cpp_initial( + model$estimation_results$parameters$beta_i_raw + ) + beta_s_raw <- stan_to_cpp_transition( + model$estimation_results$parameters$beta_s_raw + ) + beta_o_raw <- stan_to_cpp_emission( + model$estimation_results$parameters$beta_o_raw, + 1, + C > 1 + ) + X_initial <- t(model$X_initial) + X_transition <- aperm(model$X_transition, c(3, 1, 2)) + X_emission <- aperm(model$X_emission, c(3, 1, 2)) + out <- list() + out$pi <- get_pi(beta_i_raw, X_initial, 0) + out$A <- get_A(beta_s_raw, X_transition, 0) + out$B <- if (model$n_channels == 1) { + get_B(beta_o_raw, X_emission, 0) + } else { + get_multichannel_B( + beta_o_raw, + X_emission1, + model$n_states, + model$n_channels, + model$n_symbols, + 0, 0) + } + if (nsim > 0) { + samples <- sample_parameters(model, nsim, probs, return_samples) + if (return_samples) { + out$samples <- samples + } else { + out$quantiles <- samples + } + } + out +} +#' @export +predict.mnhmm <- function( + model, newdata = NULL, nsim = 0, + probs = c(0.025, 0.5, 0.975), return_samples = FALSE) { + + stopifnot_( + checkmate::test_count(nsim), + "Argument {.arg nsim} should be a single non-negative integer." + ) + if (!is.null(newdata)) { + time <- model$time_variable + id <- model$id_variable + stopifnot_( + is.data.frame(newdata), + "Argument {.arg newdata} must be a {.cls data.frame} object." + ) + stopifnot_( + !is.null(newdata[[id]]), + "Can't find grouping variable {.var {id}} in {.arg newdata}." + ) + stopifnot_( + !is.null(newdata[[time]]), + "Can't find time index variable {.var {time}} in {.arg newdata}." + ) + stopifnot_( + !is.null(newdata[[variable]]), + "Can't find time variable {.var {variable}} in {.arg newdata}." + ) + } else { + stopifnot( + !is.null(model$data), + "Model does not contain original data and argument {.arg newdata} is + {.var NULL}." + ) + model <- update(model, newdata = newdata) + } + + beta_i_raw <- stan_to_cpp_initial( + model$estimation_results$parameters$beta_i_raw + ) + beta_s_raw <- stan_to_cpp_transition( + model$estimation_results$parameters$beta_s_raw + ) + beta_o_raw <- stan_to_cpp_emission( + model$estimation_results$parameters$beta_o_raw, + 1, + C > 1 + ) + X_initial <- t(model$X_initial) + X_transition <- aperm(model$X_transition, c(3, 1, 2)) + X_emission <- aperm(model$X_emission, c(3, 1, 2)) + X_cluster <- t(model$X_cluster) + out <- list() + out$pi <- get_pi(beta_i_raw, X_initial, 0) + out$A <- get_A(beta_s_raw, X_transition, 0) + out$B <- if (model$n_channels == 1) { + get_B(beta_o_raw, X_emission, 0) + } else { + get_multichannel_B( + beta_o_raw, + X_emission1, + model$n_states, + model$n_channels, + model$n_symbols, + 0, 0) + } + out$omega <- get_omega( + model$estimation_results$parameters$theta_raw, X_cluster, 0 + ) + if (nsim > 0) { + samples <- sample_parameters(model, nsim, probs, return_samples) + if (return_samples) { + out$samples <- samples + } else { + out$quantiles <- samples + } + } + out +} \ No newline at end of file diff --git a/R/sample_parameters.R b/R/sample_parameters.R new file mode 100644 index 00000000..fa941a68 --- /dev/null +++ b/R/sample_parameters.R @@ -0,0 +1,85 @@ +#' Samples parameters of non-homegeneous Markov hidden models using the normal approximation. +#' +#' @param model An object of class `nhmm` or `mnhmm`. +#' @param nsim A non-negative integer defining the number of samples from the +#' normal approximation. +#' @param probs A numeric vector defining the quantiles of interest. +#' @param return_samples A logical indicating whether to return the samples +#' instead of quantiles. +#' @noRd +sample_parameters <- function(model, nsim, probs, return_samples = FALSE) { + stopifnot_( + checkmate::test_int(x = nsim, lower = 1L), + "Argument {.arg nsim} must be a single positive integer." + ) + stopifnot_( + !return_samples && checkmate::test_numeric( + x = probs, lower = 0, upper = 1, any.missing = FALSE, min.len = 1L + ), + "Argument {.arg probs} must be a {.cls numeric} vector with values + between 0 and 1." + ) + mixture <- inherits(model, "mnhmm") + X_initial <- t(model$X_initial) + X_transition <- aperm(model$X_transition, c(3, 1, 2)) + X_emission <- aperm(model$X_emission, c(3, 1, 2)) + if (mixture) X_cluster <- t(model$X_cluster) + + chol_precision <- chol(-model$estimation$hessian) + U <- backsolve(chol_precision, diag(ncol(chol_precision))) + x <- matrix(rnorm(nsim * ncol(U)), nrow = nsim) %*% U + beta_i_raw <- model$estimation_results$parameters$beta_i_raw + beta_s_raw <- model$estimation_results$parameters$beta_s_raw + beta_o_raw <- model$estimation_results$parameters$beta_o_raw + pars <- c(beta_i_raw, beta_s_raw, beta_o_raw) + p_i <- length(beta_i_raw) + p_s <- length(beta_s_raw) + p_o <- length(beta_o_raw) + if (mixture) { + theta_raw <- model$estimation_results$parameters$theta_raw + pars <- c(pars, theta_raw) + if (mixture) p_d <- length(theta_raw) + } + x <- t(sweep(x, 2, pars, "+")) + samples_pi <- apply( + x[seq_len(p_i), ], 2, function(z) { + z <- array(z, dim = dim(beta_i_raw)) + get_pi(z, X_initial) + } + ) + samples_A <- apply( + x[p_i + seq_len(p_s), ], 2, function(z) { + z <- array(z, dim = dim(beta_s_raw)) + unlist(get_A(aperm(z, c(2, 3, 1)), X_transition)) + } + ) + samples_B <- apply( + x[p_i + p_s + seq_len(p_o), ], 2, function(z) { + z <- array(z, dim = dim(beta_o_raw)) + unlist(get_B(aperm(z, c(2, 3, 1)), X_emission)) + } + ) + if (mixture) { + samples_omega <- apply( + x[p_i + p_s + p_o + seq_len(p_d), ], 2, function(z) { + z <- array(z, dim = dim(theta_raw)) + unlist(get_omega(z, X_cluster)) + } + ) + } + if (return_samples) { + list( + samples_pi = samples_pi, + samples_A = samples_A, + samples_B = samples_B, + samples_omega = if (mixture) samples_omega + ) + } else { + list( + quantiles_pi = fast_quantiles(samples_pi, probs), + quantiles_A = fast_quantiles(samples_A, probs), + quantiles_B = fast_quantiles(samples_B, probs), + quantiles_omega = if (mixture) fast_quantiles(samples_omega, probs) + ) + } +} \ No newline at end of file diff --git a/R/summary.nhmm.R b/R/summary.nhmm.R index b186ec3c..6fe5a98a 100644 --- a/R/summary.nhmm.R +++ b/R/summary.nhmm.R @@ -5,7 +5,7 @@ #' #' @export #' @param object Non-homogeneous hidden Markov model of class `nhmm`. -summary.nhmm <- function(object, nsim = 0, probs = c(0.025, 0.975), ...) { +summary.nhmm <- function(object, nsim = 0, probs = c(0.025, 0.5, 0.975), ...) { ll <- logLik(object) out <- list( logLik = ll, BIC = BIC(ll), @@ -21,7 +21,7 @@ summary.nhmm <- function(object, nsim = 0, probs = c(0.025, 0.975), ...) { #' #' @export #' @param object Non-homogeneous hidden Markov model of class `mnhmm`. -summary.mnhmm <- function(object, nsim = 0, probs = c(0.025, 0.975), ...) { +summary.mnhmm <- function(object, nsim = 0, probs = c(0.025, 0.5, 0.975), ...) { cf <- coef(object, nsim, probs) pr <- exp(object$X_cluster %*% object$estimation_results$parameters$theta_raw) prior_cluster_probabilities <- pr / rowSums(pr) diff --git a/man/average_marginal_effect.Rd b/man/average_marginal_prediction.Rd similarity index 57% rename from man/average_marginal_effect.Rd rename to man/average_marginal_prediction.Rd index eb7cf5c3..48ef3f42 100644 --- a/man/average_marginal_effect.Rd +++ b/man/average_marginal_prediction.Rd @@ -1,16 +1,17 @@ % Generated by roxygen2: do not edit by hand -% Please edit documentation in R/average_marginal_effect.R -\name{average_marginal_effect} -\alias{average_marginal_effect} -\title{Average Marginal Effects of Covariates of Non-homogenous Hidden Markov Models} +% Please edit documentation in R/average_marginal_prediction.R +\name{average_marginal_prediction} +\alias{average_marginal_prediction} +\title{Average Marginal Predictions for Non-homogenous Hidden Markov Models} \usage{ -average_marginal_effect( +average_marginal_prediction( model, variable, values, + marginalize_B_over = "sequences", newdata = NULL, nsim = 0, - probs = c(0.025, 0.975) + probs = c(0.025, 0.5, 0.975) ) } \arguments{ @@ -18,7 +19,7 @@ average_marginal_effect( \item{variable}{Name of the variable of interest.} -\item{values}{Vector containing two values for \code{variable}.} +\item{values}{Vector containing one or two values for \code{variable}.} \item{newdata}{Optional data frame which is used for marginalization.} @@ -28,8 +29,8 @@ computing the approximate quantiles of the estimates. If \code{0}, only point estimates are returned.} \item{probs}{Vector defining the quantiles of interest. Default is -\code{c(0.025, 0.975)}.} +\code{c(0.025, 0.5, 0.975)}.} } \description{ -Average Marginal Effects of Covariates of Non-homogenous Hidden Markov Models +Average Marginal Predictions for Non-homogenous Hidden Markov Models } diff --git a/man/coef.Rd b/man/coef.Rd index b237fdf3..2ef115a4 100644 --- a/man/coef.Rd +++ b/man/coef.Rd @@ -6,9 +6,9 @@ \title{Get the Estimated Regression Coefficients of Non-Homogeneous Hidden Markov Models} \usage{ -\method{coef}{nhmm}(object, nsim = 0, probs = c(0.025, 0.975), ...) +\method{coef}{nhmm}(object, nsim = 0, probs = c(0.025, 0.5, 0.975), ...) -\method{coef}{mnhmm}(object, nsim = 0, probs = c(0.025, 0.975), ...) +\method{coef}{mnhmm}(object, nsim = 0, probs = c(0.025, 0.5, 0.975), ...) } \arguments{ \item{object}{An object of class \code{nhmm} or \code{mnhmm}.} @@ -19,7 +19,7 @@ computing the approximate quantiles of the estimates. If \code{0}, only point estimates are returned.} \item{probs}{Vector defining the quantiles of interest. Default is -\code{c(0.025, 0.975)}.} +\code{c(0.025, 0.5, 0.975)}.} } \description{ Get the Estimated Regression Coefficients of Non-Homogeneous Hidden Markov diff --git a/man/estimate_coef.Rd b/man/estimate_coef.Rd deleted file mode 100644 index e76884c5..00000000 --- a/man/estimate_coef.Rd +++ /dev/null @@ -1,19 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/estimate_coef.R -\name{estimate_coef} -\alias{estimate_coef} -\title{Estimate Only the Regression Coefficients of Mixture Hidden Markov Models} -\usage{ -estimate_coef(model, threads = 1) -} -\arguments{ -\item{model}{An object of class \code{mhmm}.} - -\item{threads}{Number of threads to use in parallel computing. -The default is 1.} -} -\description{ -Function \code{estimate_coef} estimates the regression coefficients of -mixture hidden Markov models of class \code{mhmm} and its restricted variants -while keeping other parameters fixed. -} diff --git a/man/get_probs.Rd b/man/get_probs.Rd index 72227fe5..42440daa 100644 --- a/man/get_probs.Rd +++ b/man/get_probs.Rd @@ -9,9 +9,9 @@ or MNHMM} \usage{ get_probs(model, ...) -\method{get_probs}{nhmm}(model, data = NULL, nsim = 0, probs = c(0.025, 0.975), ...) +\method{get_probs}{nhmm}(model, newdata = NULL, nsim = 0, probs = c(0.025, 0.5, 0.975), ...) -\method{get_probs}{mnhmm}(model, data = NULL, nsim = 0, probs = c(0.025, 0.975), ...) +\method{get_probs}{mnhmm}(model, ne = NULL, nsim = 0, probs = c(0.025, 0.5, 0.975), ...) } \arguments{ \item{model}{An object of class \code{nhmm} or \code{mnhmm}.} @@ -22,7 +22,7 @@ computing the approximate quantiles of the estimates. If \code{0}, only point estimates are returned.} \item{probs}{Vector defining the quantiles of interest. Default is -\code{c(0.025, 0.975)}.} +\code{c(0.025, 0.5, 0.975)}.} } \description{ Get the Estimated Initial, Transition, and Emission Probabilities for NHMM diff --git a/man/predict.nhmm.Rd b/man/predict.nhmm.Rd new file mode 100644 index 00000000..c6dd5881 --- /dev/null +++ b/man/predict.nhmm.Rd @@ -0,0 +1,30 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/predict.R +\name{predict.nhmm} +\alias{predict.nhmm} +\title{Predict method for non-homogeneous hidden Markov models} +\usage{ +\method{predict}{nhmm}( + model, + newdata = NULL, + nsim = 0, + probs = c(0.025, 0.5, 0.975), + return_samples = FALSE +) +} +\arguments{ +\item{model}{A Hidden Markov Model of class \code{nhmm} or \code{mnhmm}.} + +\item{newdata}{Optional data frame which is used for prediction.} + +\item{nsim}{Non-negative integer defining the number of samples from the +normal approximation of the model coefficients.} + +\item{probs}{Vector defining the quantiles of interest.} + +\item{return_samples}{Logical indicating whether to return samples or +quantiles.} +} +\description{ +Predict method for non-homogeneous hidden Markov models +} diff --git a/man/summary.mnhmm.Rd b/man/summary.mnhmm.Rd index f57868a1..78333686 100644 --- a/man/summary.mnhmm.Rd +++ b/man/summary.mnhmm.Rd @@ -4,7 +4,7 @@ \alias{summary.mnhmm} \title{Summary method for non-homogeneous hidden Markov models} \usage{ -\method{summary}{mnhmm}(object, nsim = 0, probs = c(0.025, 0.975), ...) +\method{summary}{mnhmm}(object, nsim = 0, probs = c(0.025, 0.5, 0.975), ...) } \arguments{ \item{object}{Non-homogeneous hidden Markov model of class \code{mnhmm}.} diff --git a/man/summary.nhmm.Rd b/man/summary.nhmm.Rd index dbcc9991..6f89932c 100644 --- a/man/summary.nhmm.Rd +++ b/man/summary.nhmm.Rd @@ -4,7 +4,7 @@ \alias{summary.nhmm} \title{Summary of Non-homogeneous Hidden Markov Models} \usage{ -\method{summary}{nhmm}(object, nsim = 0, probs = c(0.025, 0.975), ...) +\method{summary}{nhmm}(object, nsim = 0, probs = c(0.025, 0.5, 0.975), ...) } \arguments{ \item{object}{Non-homogeneous hidden Markov model of class \code{nhmm}.} diff --git a/src/RcppExports.cpp b/src/RcppExports.cpp index b405cec6..914ad599 100644 --- a/src/RcppExports.cpp +++ b/src/RcppExports.cpp @@ -623,28 +623,6 @@ BEGIN_RCPP return rcpp_result_gen; END_RCPP } -// estimate_coefs -Rcpp::List estimate_coefs(const arma::mat& transition, const arma::cube& emission, const arma::vec& init, const arma::ucube& obs, const arma::uvec& nSymbols, arma::mat coef, const arma::mat& X, const arma::uvec& numberOfStates, int itermax, double tol, int trace, unsigned int threads); -RcppExport SEXP _seqHMM_estimate_coefs(SEXP transitionSEXP, SEXP emissionSEXP, SEXP initSEXP, SEXP obsSEXP, SEXP nSymbolsSEXP, SEXP coefSEXP, SEXP XSEXP, SEXP numberOfStatesSEXP, SEXP itermaxSEXP, SEXP tolSEXP, SEXP traceSEXP, SEXP threadsSEXP) { -BEGIN_RCPP - Rcpp::RObject rcpp_result_gen; - Rcpp::RNGScope rcpp_rngScope_gen; - Rcpp::traits::input_parameter< const arma::mat& >::type transition(transitionSEXP); - Rcpp::traits::input_parameter< const arma::cube& >::type emission(emissionSEXP); - Rcpp::traits::input_parameter< const arma::vec& >::type init(initSEXP); - Rcpp::traits::input_parameter< const arma::ucube& >::type obs(obsSEXP); - Rcpp::traits::input_parameter< const arma::uvec& >::type nSymbols(nSymbolsSEXP); - Rcpp::traits::input_parameter< arma::mat >::type coef(coefSEXP); - Rcpp::traits::input_parameter< const arma::mat& >::type X(XSEXP); - Rcpp::traits::input_parameter< const arma::uvec& >::type numberOfStates(numberOfStatesSEXP); - Rcpp::traits::input_parameter< int >::type itermax(itermaxSEXP); - Rcpp::traits::input_parameter< double >::type tol(tolSEXP); - Rcpp::traits::input_parameter< int >::type trace(traceSEXP); - Rcpp::traits::input_parameter< unsigned int >::type threads(threadsSEXP); - rcpp_result_gen = Rcpp::wrap(estimate_coefs(transition, emission, init, obs, nSymbols, coef, X, numberOfStates, itermax, tol, trace, threads)); - return rcpp_result_gen; -END_RCPP -} // softmax arma::vec softmax(const arma::vec& x, const int logspace); RcppExport SEXP _seqHMM_softmax(SEXP xSEXP, SEXP logspaceSEXP) { @@ -861,7 +839,6 @@ static const R_CallMethodDef CallEntries[] = { {"_seqHMM_log_objectivex", (DL_FUNC) &_seqHMM_log_objectivex, 12}, {"_seqHMM_objective", (DL_FUNC) &_seqHMM_objective, 9}, {"_seqHMM_objectivex", (DL_FUNC) &_seqHMM_objectivex, 12}, - {"_seqHMM_estimate_coefs", (DL_FUNC) &_seqHMM_estimate_coefs, 12}, {"_seqHMM_softmax", (DL_FUNC) &_seqHMM_softmax, 2}, {"_seqHMM_varcoef", (DL_FUNC) &_seqHMM_varcoef, 2}, {"_seqHMM_viterbi", (DL_FUNC) &_seqHMM_viterbi, 4}, diff --git a/src/sa_opt_coef.cpp b/src/sa_opt_coef.cpp deleted file mode 100644 index a335155a..00000000 --- a/src/sa_opt_coef.cpp +++ /dev/null @@ -1,100 +0,0 @@ -//stand-alone coefficient estimation -#include "optcoef.h" -#include "forward_backward.h" -#include "reparma.h" - -// [[Rcpp::export]] -Rcpp::List estimate_coefs(const arma::mat& transition, const arma::cube& emission, - const arma::vec& init, const arma::ucube& obs, const arma::uvec& nSymbols, - arma::mat coef, const arma::mat& X, const arma::uvec& numberOfStates, - int itermax, double tol, int trace, unsigned int threads) { - - coef.col(0).zeros(); - arma::mat weights = exp(X * coef).t(); - if (!weights.is_finite()) { - return Rcpp::List::create(Rcpp::Named("error") = 3); - } - weights.each_row() /= sum(weights, 0); - - arma::mat initk(emission.n_rows, obs.n_slices); - for (unsigned int k = 0; k < obs.n_slices; k++) { - initk.col(k) = init % reparma(weights.col(k), numberOfStates); - } - - arma::cube alpha(emission.n_rows, obs.n_cols, obs.n_slices); //m,n,k - arma::cube beta(emission.n_rows, obs.n_cols, obs.n_slices); //m,n,k - arma::mat scales(obs.n_cols, obs.n_slices); //m,n,k - - arma::sp_mat sp_trans(transition); - internalForwardx(sp_trans.t(), emission, initk, obs, alpha, scales, threads); - if(!scales.is_finite()) { - return Rcpp::List::create(Rcpp::Named("error") = 1); - } - internalBackwardx(sp_trans, emission, obs, beta, scales, threads); - if(!beta.is_finite()) { - return Rcpp::List::create(Rcpp::Named("error") = 2); - } - double max_sf = scales.max(); - if (max_sf > 1e150) { - Rcpp::warning("Largest scaling factor was %e, results can be numerically unstable.", max_sf); - } - - double sumlogLik = -arma::accu(log(scales)); - - if (trace > 0) { - Rcpp:: Rcout << "Log-likelihood of initial model: " << sumlogLik << std::endl; - } - - double change = tol + 1.0; - int iter = 0; - - arma::uvec cumsumstate = arma::cumsum(numberOfStates); - - while ((change > tol) && (iter < itermax)) { - iter++; - // - // unsigned int error = optCoef(weights, obs, emission, initk, beta, scales, coef, X, cumsumstate, - // numberOfStates, trace); - // if (error != 0) { - // return Rcpp::List::create(Rcpp::Named("error") = error); - // } - - for (unsigned int k = 0; k < obs.n_slices; k++) { - initk.col(k) = init % reparma(weights.col(k), numberOfStates); - } - - internalForwardx(sp_trans.t(), emission, initk, obs, alpha, scales, threads); - if(!scales.is_finite()) { - return Rcpp::List::create(Rcpp::Named("error") = 1); - } - internalBackwardx(sp_trans, emission, obs, beta, scales, threads); - if(!beta.is_finite()) { - return Rcpp::List::create(Rcpp::Named("error") = 2); - } - double max_sf = scales.max(); - if (max_sf > 1e150) { - Rcpp::warning("Largest scaling factor was %e, results can be numerically unstable.", max_sf); - } - double tmp = -arma::accu(log(scales)); - change = (tmp - sumlogLik) / (std::abs(sumlogLik) + 0.1); - sumlogLik = tmp; - if (trace > 1) { - Rcpp::Rcout << "iter: " << iter; - Rcpp::Rcout << " logLik: " << sumlogLik; - Rcpp::Rcout << " relative change: " << change << std::endl; - } - - } - if (trace > 0) { - if (iter == itermax) { - Rcpp::Rcout << "EM algorithm stopped after reaching the maximum number of " << iter - << " iterations." << std::endl; - } else { - Rcpp::Rcout << "EM algorithm stopped after reaching the relative change of " << change; - Rcpp::Rcout << " after " << iter << " iterations." << std::endl; - } - Rcpp::Rcout << "Final log-likelihood: " << sumlogLik << std::endl; - - } - return Rcpp::List::create(Rcpp::Named("coefficients") = Rcpp::wrap(coef), Rcpp::Named("error") = 0); -} diff --git a/tests/testthat/test-estimate_coef.R b/tests/testthat/test-estimate_coef.R deleted file mode 100644 index 51d562cd..00000000 --- a/tests/testthat/test-estimate_coef.R +++ /dev/null @@ -1,26 +0,0 @@ - -test_that("'estimate_coef' works for 'mhmm'", { - set.seed(123) - data("mhmm_biofam") - expect_error( - out <- estimate_coef(mhmm_biofam), - NA - ) - expect_gte(out, logLik(mhmm_biofam)) -}) - -test_that("'estimate_coef' errors for 'hmm'", { - set.seed(123) - data("hmm_biofam") - expect_error( - out <- estimate_coef(hmm_biofam), - "`model` must be a `mhmm` object." - ) -}) -test_that("'estimate_coef' errors for incorrect 'threads'", { - data("mhmm_biofam") - expect_error( - out <- estimate_coef(mhmm_biofam, threads = "a"), - "Argument `threads` must be a single positive integer" - ) -}) diff --git a/tests/testthat/test-simulate_mnhmm.R b/tests/testthat/test-simulate_mnhmm.R index bd2ead34..f1c2cf31 100644 --- a/tests/testthat/test-simulate_mnhmm.R +++ b/tests/testthat/test-simulate_mnhmm.R @@ -1,6 +1,6 @@ set.seed(1) -p <- 100 -n <- 20 +p <- 50 +n <- 10 d <- data.frame( person = rep(1:p, each = n), month = rep(1:n, p), @@ -22,5 +22,18 @@ test_that("simulate_mnhmm works", { coefs = "random", init_sd = 2), NA ) + expect_equal( + table(unlist(sim$states)), + structure( + c(`Cluster 1: State 1` = 305L, `Cluster 1: State 2` = 304L, + `Cluster 2: State 1` = 355L, `Cluster 2: State 2` = 335L, + `Cluster 3: State 1` = 380L, `Cluster 3: State 2` = 321L, + `*` = 0L, `%` = 0L), dim = 8L, + dimnames = structure(list( + c("Cluster 1: State 1", "Cluster 1: State 2", "Cluster 2: State 1", + "Cluster 2: State 2", "Cluster 3: State 1", "Cluster 3: State 2", + "*", "%")), names = ""), class = "table") + + ) })