forked from ArnavVarma/G2S
-
Notifications
You must be signed in to change notification settings - Fork 0
/
kitti_utils.py
98 lines (79 loc) · 3.47 KB
/
kitti_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
from __future__ import absolute_import, division, print_function
import os
import numpy as np
from collections import Counter
def load_velodyne_points(filename):
"""Load 3D point cloud from KITTI file format
(adapted from https://github.com/hunse/kitti)
"""
points = np.fromfile(filename, dtype=np.float32).reshape(-1, 4)
points[:, 3] = 1.0 # homogeneous
return points
def read_calib_file(path):
"""Read KITTI calibration file
(from https://github.com/hunse/kitti)
"""
float_chars = set("0123456789.e+- ")
data = {}
with open(path, 'r') as f:
for line in f.readlines():
key, value = line.split(':', 1)
value = value.strip()
data[key] = value
if float_chars.issuperset(value):
# try to cast to float array
try:
data[key] = np.array(list(map(float, value.split(' '))))
except ValueError:
# casting error: data[key] already eq. value, so pass
pass
return data
def sub2ind(matrixSize, rowSub, colSub):
"""Convert row, col matrix subscripts to linear indices
"""
m, n = matrixSize
return rowSub * (n-1) + colSub - 1
def generate_depth_map(calib_dir, velo_filename, cam=2, vel_depth=False):
"""Generate a depth map from velodyne data
"""
# load calibration files
cam2cam = read_calib_file(os.path.join(calib_dir, 'calib_cam_to_cam.txt'))
velo2cam = read_calib_file(os.path.join(calib_dir, 'calib_velo_to_cam.txt'))
velo2cam = np.hstack((velo2cam['R'].reshape(3, 3), velo2cam['T'][..., np.newaxis]))
velo2cam = np.vstack((velo2cam, np.array([0, 0, 0, 1.0])))
# get image shape
im_shape = cam2cam["S_rect_02"][::-1].astype(np.int32)
# compute projection matrix velodyne->image plane
R_cam2rect = np.eye(4)
R_cam2rect[:3, :3] = cam2cam['R_rect_00'].reshape(3, 3)
P_rect = cam2cam['P_rect_0'+str(cam)].reshape(3, 4)
P_velo2im = np.dot(np.dot(P_rect, R_cam2rect), velo2cam)
# load velodyne points and remove all behind image plane (approximation)
# each row of the velodyne data is forward, left, up, reflectance
velo = load_velodyne_points(velo_filename)
velo = velo[velo[:, 0] >= 0, :]
# project the points to the camera
velo_pts_im = np.dot(P_velo2im, velo.T).T
velo_pts_im[:, :2] = velo_pts_im[:, :2] / velo_pts_im[:, 2][..., np.newaxis]
if vel_depth:
velo_pts_im[:, 2] = velo[:, 0]
# check if in bounds
# use minus 1 to get the exact same value as KITTI matlab code
velo_pts_im[:, 0] = np.round(velo_pts_im[:, 0]) - 1
velo_pts_im[:, 1] = np.round(velo_pts_im[:, 1]) - 1
val_inds = (velo_pts_im[:, 0] >= 0) & (velo_pts_im[:, 1] >= 0)
val_inds = val_inds & (velo_pts_im[:, 0] < im_shape[1]) & (velo_pts_im[:, 1] < im_shape[0])
velo_pts_im = velo_pts_im[val_inds, :]
# project to image
depth = np.zeros((im_shape[:2]))
depth[velo_pts_im[:, 1].astype(np.int), velo_pts_im[:, 0].astype(np.int)] = velo_pts_im[:, 2]
# find the duplicate points and choose the closest depth
inds = sub2ind(depth.shape, velo_pts_im[:, 1], velo_pts_im[:, 0])
dupe_inds = [item for item, count in Counter(inds).items() if count > 1]
for dd in dupe_inds:
pts = np.where(inds == dd)[0]
x_loc = int(velo_pts_im[pts[0], 0])
y_loc = int(velo_pts_im[pts[0], 1])
depth[y_loc, x_loc] = velo_pts_im[pts, 2].min()
depth[depth < 0] = 0
return depth