From c2b1c0a229ebb8fc4dd04514611c1f6d43f589bb Mon Sep 17 00:00:00 2001 From: Henrique Sposito Date: Thu, 22 Aug 2024 14:23:39 +0200 Subject: [PATCH] Added data raw folder and urgency scores script --- .Rbuildignore | 1 + R/sysdata.rda | Bin 16388 -> 16850 bytes data_raw/comm.csv | 87 +++++++++++++++ data_raw/freq.csv | 64 +++++++++++ data_raw/int.csv | 105 ++++++++++++++++++ data_raw/time.csv | 43 ++++++++ data_raw/urgency_scores.R | 218 ++++++++++++++++++++++++++++++++++++++ man/sim_urgency.Rd | 6 ++ 8 files changed, 524 insertions(+) create mode 100644 data_raw/comm.csv create mode 100644 data_raw/freq.csv create mode 100644 data_raw/int.csv create mode 100644 data_raw/time.csv create mode 100644 data_raw/urgency_scores.R diff --git a/.Rbuildignore b/.Rbuildignore index 0e91fd5b..095f201b 100644 --- a/.Rbuildignore +++ b/.Rbuildignore @@ -11,3 +11,4 @@ ^pkgdown$ ^CRAN-SUBMISSION$ ^cran-comments\.md$ +^data_raw$ diff --git a/R/sysdata.rda b/R/sysdata.rda index 5b142bd88326eb9e87e793c294e1126b534feac1..8fe3adb3f129a0457bb91df35fad9a8e81d57c6b 100644 GIT binary patch literal 16850 zcmaf4Wm6nXvt8WXeSyUZEbe4+Tio5<-3jjQ?ry;yg1bX-ch_LC=jQzd_f+-Nbk$7v z>5qM;M_kWFfJ01|UR{^U;;$9}WclC!ivwlh0kymuoPzOHq=AKC5v*c+9LZo6*b4VM zz&~KQh(2tak&y!KYn5wrI^d)dlnSst%t-WUOaSA-3}E z^5X&pB#8%!4=FVng&&0SC@YehWXDf|rJ=T*92_Eeaz|B70O{7R8}UbmPu2Wl+jX$+g3_QtlA(-(B}dcF#z0? zHi)@^75IO*0o>dG8w?B*#9(fiVgP)uY;+D#9S;_dni90dgPx0CSO(#?!9a`*#sFX- z2LC(qkHG(c@xSzo|9no_@<&Ca>KE?CN3mi!>Bx}ET$o}Jh+ps`mI`7p90UO11T4Zy zK#;28uqiA5xk%Oj<0+W}2!@17a^tC^TyW?5s;_SHh$vPsaxYr&mXt|A!~Ruh^N%WG zF2+B8q}=~1AOfjS=4LU1SQ;r6V&*#H*fJ0h2!Rx4e@Xl%CeM{0 zf_dC@Cb5AlvFCXjqtk3RQu{`2cpcPWJigZ1^;bk5IqQdzxY*;O_W^(|RMZV3!2bzj z^(#Sr^e7DtA6f)srix@RC^VfjQTFCo&Ml5bXZ}wwW4X4}f@mxxR##0kBnL@(>NoUH zC(3|ab-#mWl7T~jovIXwMvYrd?d8{eeZBVKvB5%#qUt>LJb-BrTYhK-njvagmXeG! zy7Yzr;Jhb5m_hw=HF3_JNB<6F3oECa?Zp8!k4;-{jh%f54} zWCkN53M+p=JRs<#G#+A6)Rdk0p$agkGgXz%sMn%FEe#=NbQ?Z`(&9V?{vpkQsvT8& zMMYC)KW2ohNz7C=pBfYjJDp+Y^V(~Irt|4tm1jEad?&mYg~^uhE6xL)uD*JcC%JqC zuL>U%7*xbY2iM`p(&DR$;#U*L%Ky1#jz>t7Q}y>K6e?(Z*)2%enfIRmy=T~OYI0V^ z!!0@$6$8fVOi4?j&PMr>104VBlEqnw;xMc1eHz?TLgpvBDX{~j9V;IAWN|LoxA>Y8 zM(48gxs0+GX1xF777&t!YBvr_4q}8%!&DURG!J<8CU#6-wR@J6WNsg4am+$_)N=dE&|?|dmcpkyi_DG9CZ^P0-AzXU{NSxR1*rA6J?%~ zZBjK0PdB$y+e%hLV2xm{*J(;6{9N&I6e+0c91x{Qq`}x8y??&=Lh=}2kV?h!Ur;4g zhw@Fo?$>83_|`v+2(zXVKfpNn`}nj-*Fg^fn=vs_`_f49!O#(l&xdWn+PfZ-5Ak=& zKZ28=mY;`x4jER1RtJb-nL@BMiVXCE|6?tqsfqm)PJqjM0@o~tvPOC1de4)}69fcC z(uc@Xg#(j8#@Q+#^YGzXRQwY^S+q~nTN8O;*b5@yMmxd9MESyHZL9|Ej3OCS zBJL#N(r{bF4mR<|$M_IcBSo1%dgtIsTa6Q3FxF++wR*7n0Gh@GYkm~{b|=!59KT-u z!hS;CchFLz5K-anm@7O|@}<4w5&06uJVwUE8}AH3jC*XbuZw8dB$2v^q5f`-^mY83 z-c5ik(p7X#o%+wB@C|jElYop^_8*5g3#V7Os7UjAaPTma=rgV)hf=?r4-DeAETm0F zr%Az|s?VB;@f34_cxrW`QHYH_|LY&2l})T%TRZ#6*KI%j94Wuh-Qf zHN1Qr`z>K@U9UGReIdeI$)kBUmFC#OhUfRCFk@ZvOH;DeN6xnPa! zukd_Qqxq&P;#SUkh_`g+X||d9w;eQy*QSG0M9flbu(zLFof`{Hve#9~vrmSS5#GvX zWEGYtHT;*$_Z5V5{T&5uHeA8&l@y1Ntk(uaUxie6VHIDlIXDfh{f@?hw}+v$>Z-btExI4zTckRLDqA# z%6grhdUI9LaW!;Q%jAny?4}RwMtml@=#gA!dI*q5aoE&`G$M6IM}0UZeF+X%^5jw| zK`^cBya%u1y|$E%QpiNdYvcVI}>Pb|X=AKJtQ((j?+Ov|wx)Q+6B=K_(@w^YC z?}}gR%0cOi$BUd%JZKp~(5iVA?b!9%qqRreOCH;fme5TEEsRp&=BOviX)70K1 zA?16cQVeKE{j&w7W4aua-$=O`u`F7=k@Dp$ftBcfGyv^;R zL57MV%!PkSf+OevCo~}XFd?FS9H9cH&=!KUo+xB_EbPq^kS2?Z1cFK6$uY~6jnoas zteFzcHiB0!h0vuIejKd*dY?@MmthHUz~{U&rHHIC489w&VacO}AYZbf%SeR7nIRrSN0#y@zL}^3Xn8FF)ki-;^GFN+t+2 z*GOdK2($1!9$9R`rt=mT!hs|zY8A$(?`KbQaV_lgV1^wHNlc1r5WMD=`N>VUw)T}=P~ypY=a5|mAH*Inl+ePXZ5+Fkdljx&!GL~n?f_16CE`pQ4F!-A z4p?sod{zTKL;UZ9{aau5c>_G7`mR}dZ~iK}uGdi>^l57p(7VMm!lLin_pmb9>ui@5 zIw8OG{65?=oNd|2s!o&xV`|bbJp3D*fmb-1#V$ib3x8fqpT}a%~ zB+}D0*(W89&@Kh>N4sYYj6;21Ii4OZnc5R^Yi}<^Gu%l&ka6aIq-Q+`IFoR1zZP4 z4?V0|Xml3aAu{B^d$GM2C2=MjGpRzoB66mJqJ{$bQ<|Z8JNLSp9%98Abd5@hvvoxA zyz$m~*o+g4SWfANmQ`AkzAG1JWW1#*^hjwWi(hQqtu0S{Y7*(ZAo!-V%yCg;%~N(W&lEQ)-qHx1h@lJgsJKh%CY^BJ~M zxz^+LLh-J!Gu!?oWaH5d+#aeh_tn)HsA=U6-5ttFD$nBVsZv_#zafuT9ahy0HAV3o zqBAgNUpaJ*rORpScnXc+Iq=th8dDoREWJb-*cg(&N4~~Y;0JQry6K}3XN3)FLQL#* zai6I(UB7oA&o@nSXwq27F)$$UhHGUgHb=j*H=EP?Hp)(UjT|KWXfKH!chuEhPKw}h zBMU=mQ}q@_&_h4dd^@m!CKAjOm&wT^k^ka|Hwg=$CUME9`J`}`FqMs38m9KfIM4+0 zb#}&yXyd5GYnQ@Z;_8PU?^{D+uI*WtI1RQ`Yv|&s)z#VC{gm+|4pH33EzOegWta>r z?%xZ!>i8RztrK3|6o{3#g~2?K8!IcQT%avFNoh;BFXJF+jjGXwSq@p>IiI1N0!qj) zL42Unv^>d}DlZ`GnzswjnxVU&0p?b^lzE{*$zTN^!G96R6V=0s_-v(q%C>n zcpv&z@?&8MYxc`16=h%lMJE=Lz~a<#vJR(E_qw=+4=*R}r$FVVKMO6FnQiUl=d>lg ztqaVhlG$L8X6S`q}vCF zBi{kXk@^SSaF5fJ?N46Y`+n~umtcxbh(N#mYDYCbIr68B;q(m6sT$4y+SsIJ{a^_# z{jCl8(-1Tzb6G$Za1A|G?6}#=ryjrN=I^DrJ%_X*wslbi++L*9&WsA>?G3%>q=ge6 z#wtWLa-A~yuzep)g-diwOUVaQ2$Gxk(vLs+^cc6x*=R6&57}+y3rKfldQ*=@cKiKT ztuXt?sU1VB`{%{vl^>rLTh9z%d5r+!Wd$jiMP`e=_Y6!f1_?ancB2gE8j|56H!arhn+x>IDDx$WGCPY*rMa1kLJ=lG}H~`t|aySflC=~eiB zWt0c6aGbJeMqTTfosx zH$8Z6##1@tKnGSla+pu`+(u_qWCr_%Im^1kXDB7>9|HiwLQRAO5nKVyt zl};W=<68PGM^x5z=cw001-raY{Aj}4u0K$7P11kTx4CEFzl@D&O!bg{7H@^h*40(5 zIkM5TRVi~2Cmr5RwsazeI6l1^8A!sr9v!1T(e$yTcn8jq++;dh9Q|YvWQ}!!|SLysjJ5T3V$XC1-B;nMLHtTp?nVlYoEf0xDSLMYf+07c$4Q43kWP+#E$cgIYQL)fp#D16b&pa1S;lf`m5qCT=0PQY|FDfxu0;U)Lj2=izJ8$7 zA&h|2j~L2--r3(jH9|-eEg`gjJf4hf)U`{9+RGLpqpeyBlg`9W{5BiDt51iI7Wvv9&o;o`^pa2M$W|7G@-2NQ<0X za&dgVbpy*#tz)f*)<+cIJ3U-&{wxof86X1A!tq;VeL=h0Y-BwIOJIhxH_|#qLTj(u&im(GK-=(rGZ97^lmm(o1Wm4Lq8=SsKT&-SXyy zrIIY%VJMS3Kj=A$bqQk9Gf^B*!!-pIpT`|MD$zzZF>HC--Szj_8aySdxo=-+AT^jv z6wX0y;mZ?Rt)01qZ)0 z*5Mj{ORp)91z6{`Obiz?W%9625T04c+knMqEC{RC8(D~giK8hYNe%#nj3o|ZIwSw+ z@W@W#YEQ^58e)+#T*ibB*{!S|2=2EF$S`c{HIIaR{>I!;tJwlBWu?(&VrcVh{)2=v z?0d!CkvUi7bAr=K%Z$~97C*pi=6twT7)3RlS_2evsl~CF?La}P|I1BLjL&(SmAM}_ z0qZ62WNhJ~rN@0|Uuep|>ZH-MGqvAOS|;=>;W|h=OwX%mde>)jnEB@q*%Ek{ z`jmRC1z(q+T~91R+T&-Z`grUZ&jkGpLNjyU&o-^)>; z#B7e^2b2&v>1NE@hU?J_jjVZA2n@Sbv^1!J=pkI(ctS=mTFl#|NBcZ#+H~BU0`sl) zR$P+ih!!u+F1aM(FwDm82gjIw9t%NPBWwcCE0B#%MK~(Vsf_RkGvb7RPAAf5WWUO< zHAvz@O9JF`7H8s!1h#xdO(Kc7sdC6{x<`$nJ7QqrpX36U0_Cpx!cr_S)~2t?f=M_P zWg_DlnS^8rzxOg)+1)=!oh%qU@FgAmzHJ(!m&NIz!w|VL*aD@(0nO&F+RPi6c%nFR zfDHA7vSFrO=_LG^^pK-waYK}Sh&?%?Tsm#0F~w~l!yihjSZ8iAs-INM`u;B79LcwK z!R0hA5-qXua3f#TCIUc|lkcKq5Wh;8{`Gbe5;z^U4_2hl6jAA6B7r$4oI9@dr@2;i zEi*A@aWPVBR&{cJn2OF$TW^E_XYbCE%z-oCLfTZ6;>RVxQ6+oGedNI%&Al1tYrL&Ei%0WO(c4tSD zgSIW{5gFXsnOl38d?p(jR_7yHIARC9M> z6-uROAmuzpNcA_Q=5^S@9&bDxdf$<$MoZh)A^wvRXb@ zh1$57{0FtU;B}M-3j8-`*Bxj)tEv1`Y05IAUA{*eTqy|(|D|ClJ?KK={e(BqBtEx0 zp_GM#6O^i$vY7lZ0!B=yQ1`30^>f0m8NI~|r7&G;F>E?y-ZxsEv8yB9;H_6}Coa$9 z4HVj5*#9M!ySa3N`o$*h0MaF!7JR2qFNV%71_f`T*R+u#Acuk>d6{C6UI+c^w0fqH z3aduaMO&Q87TXANS1Z$msExU;vB>X2oXMjrnr=*}X?B3WSufbcvkbg}M=6s0A_G8dhFy*%|#xpDC2Zj2#y#4|kJA%V%`cFSdfnUuv`i7Hb4OX29Rl=cK6>G(QCm|kT_i@w9K`wW67O6M9gf{X?$S8kud63#3`KgR%D>Wqj zmMqW3`-i{nqvJt3o+&ORZ1&nLQhJ*#ezz=CJdwK!->vXX8yCDlE*x&BrH|RJho+^f zrRZWT)W~MfjX(@i7QTycR=~h%fVIvofZjDXM|*&|xTJsf&u){GU}>hiVAlL_ttX4O zx^vHD43(C(%$c4~5fr4(VO~bVBJJCiZm_`AdTY7oN6%r5w6@6^PL{^#q!Hr-x{SMV z6A!h3>U`6!73ecWG&P22ds=dqP}OLKdFAuXWW93*OCs2z)*xL3o)B6IGH8G)T-qe3 zGonv{>tHt;tPbZuqe>2Geh#ObjCI0HM^I6}v9U_MqMy-d;b$rqc+nyfeCRX%&osSH zxkRVOOuBf%poQgn5poBLUsf(AM)=}&O5w-dUGy+!#d!V{qi5`!G={SS(v^o;7P6se zC3r~LcSVfDO{zGV;;fz_A^0o3XfxTHR30Qbw-M1FU;i~Vt_9rvu`>hnIktMntWQlN z7zNOday7G>9f5WVJ&gLos6ClIPZx@&NO&+`LANVD{ahj5^!L$_)X!g?qtggJ3cJVNFz}oA z!bC?X4!>oAP*%-@2~$L&0}ML$yE3M_rkmzusYnG;DPVC66S6i0SgB+ccKqs9@?P7R zdN4V4NTz{IAweNxFP@jxjjS~ZiJcwEIc76@*F9>$@5JHX?FKUuikdh<-lK27k<#%G zj-YrGGv6dc>e+PGcdV1sOx{cpqAU4~&I&Yr-T`etuE5Mr(wFG_0Yd$|y`BAyqEUt~ zQ9-uTzsPq{cDVWog=}gWX&9TOCW4{v3d`8+TbFUiYYg!ncbXy&SM{oSa7tSPE~p27XPz&dZVr(l7X zIh{O1-9eYXX{e36QX^H6Ir_Tq2c1K>`?$At-3eI*F{k{D42W}55pyEFb(qklsm(Aa zwn*_Ug|1E@nNma1Qne(|EC#93{wyO8x6F;mZiJ=C2ChE-}4n=XOH%~oJij* zxHHu$)|0;eYGQGFszlPtpt2(>0y|Cw7Un$5te>~LYyTGW(?_#WSQtzV0@P9Lp`Q18 zQBA&CQrb2ii-l#$*PYh#c0-a2g?@cW>7b2%y#4K3{fbQKH;n3Ygj+t^{1;sb?v$rg zj#KATK&07^@GOb_+lzr$+u-==4O*L!sfZXQB#c&VYB=E6FSy*|I53a)v-8R^+}wY@1+lP~>H1GSpwM${H1( zrjVt=w`uSvXpo7Duga;*V3g~U{#_wc3GYOF`1hC9K+!4(ysq##WH}lXAbfBb5Ju!P zRv%nzOdlViDP=VmqJ86?=WJmQ8II08Zn=(=bSZg$Xfo#yJDKJ0lpBcDF=BZ-x4iwR z^hsrRi1S82kjr)C_LOil&I_~M;CuJKhK`M)1I^*M@Q8iaU0G30Pf}|sjkulR&cu-g zwm3tx#=iFtZ5%{Oje--AcYK>tm^x!y2qN?5h+$}O!jTyRw}M(PjdHG{YR%M$XELSW za9atgYeP%Xh^t#V@kPF1&hArwN10sEUo4}%TL{$hhRIE5HW*v&zQ5HOtQY-Ec$q!| zyjZ{vECf7C1Y=4?4_RykL>XE~KD4DssP){o+bGj9o4vxsR@xbW_#{RMpfVU4m_+I< zh&L8JGVfHszlaAa{|q$Wd;y7gSNT5vb*W}#4UNM@sf&gMcQoW-a>ghzc{$1D{o*>O zHAJFRPrI}lwH}^I`}bb7>Zx^@HN@#`3Fnu^%5~^tn9E-RsWXdD(K;bW$9>5T#exAL zDoCFwt_3X2_i`7D7=qotUzy}vXZ)Mfwk=@t1IZ4D=E}Ppep&-G; zG|oBCix%9$NdNo5Tl$qH+hNV6#ies$H!PW@a2a629H-JU6LB~VbX@a|w5G!gbD3jW`(JQuknKoFx3WT$5E?x>rdxr< zy8%U`qbY8|B^tJTMuTro6zAB7*OvMAj=o6yO-;q>&3QaoyUD)2xFnrCOy*0!F%kZo zXg{mJZ4ei0JrdrRB2rd~0ZKLA{22&HY4C$_GG^U+WR((4kepw|)kKc=L0AF;38h%@ zpzi2-jEf!{K&0or=EuH4Un)XuTgkGLeDnpgW$^U-FDE3!-emlGdQ`1BdIY8)bbEm<1%^Zi$j;Yt*99>yf^UhxjZf@WQZ?k6;03AsXLr7uxg4M z93tyU5gIv-xObg@Y_PKKRDupQQf6mWRG~pm2|Oz&z(SjNfug*gB-xrtxszAtgQE{; zTCTUjIbbL6kEJI=jv%XaW8SF1l$&GB#_z&OcI@J?vZ&2csg%1YbmAHrsR+0*I#S8_ zaVRQV<{({wE&>A06d`LWGmT|^XdE&Pp89H^{!QBWfIvkE4<_ACLG{gTFuv*040i|7 zPKjZEKWikh)?GtlwouA}Cr)ytTA1YZ;7FKL_5q?UiKMeZ0(bK&Jm<)iIZ0rE7U3`K zux?5-A|F^QJM+Hqde(gU?_zrD1z%12UxfI@BOO@UWLh)2vvPHsY)_dm$vQI0WXRH| zcmuM+hjoUNCpqqr(8ghp<3`_Ki6yWFj$Na57t5Ja=%P55=pxJHIG159s4X~OcZH^Q z1?A{BaFJ6i5K`hxE^l~hM)$`HKr9)Elw>gdKOJ#GN5|77N+g_n@7D9=9J%=`=rnTO z#O0zuP|gfQ{QZU(O{Q5twC_`kFYp!2Tpf+=dh_7lJ0Ez`e~HHO3k@SAh7JKb?CCe^ zt)+RUX7f(1l%6Fd9Nn))`&4xc1AZJf2@;En)k@&xeFWEFJz(`9z8bV51Yd_#Tw@#x z6^A{NtHO@3h|mI*;PY6bl-GP}##Te*GzlNAsjRivO_Y*eVal!`t50l$Dw0lHkDT)S z_{?j?cP7XIcu|JtlH&GPqW<)f2r0F^@nths>ST{tLVxEztGRm96rWArWxh6`Ku(-1 zLiskxs+FLy0&cR6)tCrq0 zw}V8fJ$0yGkEmJriyV7!wG0VU&p0yRWft@v&^~{5vM-PS!`qIQy2 zP7-?FXc~Gq8|)Z?IXz4PE)%fTLWme)Nr1s9$f&H!a@1A8slnI&<`*ytOO)M550qI<9P35ZTLH2NlOjK&l#c*2BJ3=h|~F{l?3CZL|Gi zuK`gv5zQXv*8`!+8JkV)J0QMz&c7 z7De8ei-g2vD(b64t4&r%(aBpzG?8}I{h2n8qx@}g@wah-d3njF?f5yEsg4HH(EvK) zMyGCznH+0PbPP9G7Dr*}+h{0L2+fI9Jpm(`7QhuvE|8VCSvy8nVp=U9x|BRu@BWFo zUcgkDb0`NKg}jO$zg0_}e~AI7;$+FU+yURYJk(^ws3B{sMk-P`_eZYjHu3&Ta3Qg| zz+B5~hK0cPoPE64~oPfQUu)eX6pqh_@f9#JT3Bp@Rq^{3cNIIt1!UJUo&=##mvEd@=(>shHWM zZAcoZgY_W>_As)=wB#k4)Rj7iMbvj*E_rs_AYs-wQAZ02i|pa};vox@DI9o>2K^iA zNK(^No~YpH(9-H!4gyWt*jOt#&Fj^K28DNU30m9gVm>h+|Ek$qJL0d~OB8e`+8He+_x4!awz=7lDgwhBu@}Y!Nar|*e zLXkQ(Gg$689F7NPNm70GSNMKO=>;$J(SO2BK}M86@$6LGTy_DR}TSR#GV%^{g_5{li3TDyF)G0i%p_v0fI`M!(iRNBmv7!`r0s~6pjjbEm7+CRMauD?=eAk+2{JxCd0E@=HRl+qd2 z*nbV*_p0-P7)iFD0}iCd`+T1M33SW{u?uxx4vW-elFw<6HF=R6(EA6&zKqX;rqWeSL z+`+R+#lBi4DKVB(?kJTtJf@2Qm#Z5KZzdn+2m)S$0;hC*5>dTJGLbZtbb+J&fI*%* zTLqefV^nVn#+(zQb+kftZM?;`aRJq;-hgKdr2?C=kjd!?i5QcQo;0#+qFtSfk=D5L2nB{wt~WMS%LQYzFALJQw=blrkPB z&Bo!nS|8GnC}#cL6)mPvM@%HTiwkOOyk64dU%*O&BY4>QeZ5nzB$s#cA2SM)uO?o^ z_K9?@JNxT>am};1KYuk;3!30G(O+0=29u!0$0E*J0IGZ_{uKP178NX@;4ZLTK5Lup zvPi?W&x)UoYq}h1J@&)m%cQ*IuZ2@@AYsG*I&>MiRvTrGp5x;b?H(CBq*$DHgd~pK z9k`qa{o0UL$82QtoX#Zjx@%3cZs7dg-b7AdDl)pm`66?ndW(UGx{6xO5UztQu_6 zT47i^Z9}=kU4lIBVpW8Z)wLI^-H{ke*~nq#o~~?7U5a{UwruT@Dm`n6Z9}@1igrU* z$!6-hX`iwbN7XsM{z^4fiRac7nlc^?7j-3ZOL*7C+HC&MZs$@&XsmZBZX&ftcIJ2=z zWf)ivA{z@l+L^RRpia;k#}2o!h)0%ywO4t4{7Oy;Sa+2yA@~jTZ!K8 zD1Y3JD6xVUuw&4%n_q{shC)M1Hs)x)1|0ap?zyh*<8i6Y-!}_Rz7)a}c0HMaDL=#> zNnV#*@NyaL0wIGyW(D$Ea5)R`&BKw7(yV$M6bqq)l62SQHq9Wk(6Zxgd5=`D!BIs! z3D7EaC}qt!Vpqet#NrD5U)c>3__3KxA)%2&DSfsTyHsm|eJ=fzo$0OoBeXR!=9ohU z|NIswa;3ggx_xW{Tx2nL)ntjqC=H`bLOV2C@zn(2sHZ!ObSjKT1Tu8)LvX=}t<>q; zNDHCi>NsrA1o_goU^l-?j{X2SK96^Hg#__eeEPfe7`Lz#2Vq?kN>L>XAr2v^8AUU7 zttvtGDhGiSbGv3}1_nrSS!cL>LX4XkmIkOA!s7s6#>`DX4`%I6S#WDUEb;$FIMOh$ zTWbf|s#Z&AKn)G+1J|qZj_6Irm88YVr8hAt$P;MdFg;0rd=;gV3u2f$^W1Or>t1;2 zda+PY5jj*WaM^z^yV`iX-s$uAUw$)K2TsIM=6l0`XAY)Uc^u5-Y#Bc}dTQoBW?;5( z=$iLs;|Xo{S$piW@XUUs?*8Ojni#}urQP1YwK+8;{1q`0Dh9SMhD+n8Lffs4rKXO| zC0EEfti|mQ_sO=J2McLT#n6T^?wjYOb&pbLXBft@-h?|9S+q+wnYy)3t?22B+4Q9w z)iDr)Elg2qme-Prfe+3JXQzH8%6T2B{pEb$IIGY|(uWhH?}hLCQHJSZ z7}4LmtPwCuk|ikmh=I>zKJGF`tcb{WRx4cVRxITNAbIChd9KY)@b*?~8lN0PDE}7O zutfo3Hmw`oab$Xyw+J~;p8)adBUj%=Byye)NsYN>ygM0LNK=$M$|5E%vD1LsnMz*#AN^cg?U)b|=;JUt&}Yj4o9?b-+J=Gz zes31W6&Eq)v#<`BrZiie1Z{Mic|mqg*jej@&)JPHSrp-NTazV%jn$&sTvurRoYU9a zCs(#ar$?4Ni+{G0Yp72a#42n;47gr6=p0uZl}W%zlczz)n?h1g!f5pKf8{^JZv&6q z`|EN`RHA4(D!p@zV^O_zqn6YW#ce->P*SJ{Y7(>VMIGI+E`5`ORNZNqf!%x%}xWkTF4@Op= zPz&PBk#TGbF1_5^%~&3dlPC|eicgmF4vUPj?n-&9Ls80lFIIb*Bc%PlLt0FeXf|w% zqWn-uiSK9J2jocz?ag}>Ff0{jT8c9x-)HlybJJ{cp80^Egmoy6k}eu?g@vF}um?x@ zkCuG;uBA|oGwcr^zs2_?D)_6f(HTe;F!F2cDX6S6npec&LPly#`g6)8@<;N1a9)*! zidXs&4n)c87zg0{`x*`mp)61J_Stf#b0xHW_=MUqM5#1Z09SxVcOT_AB?o$mCS?CE z(eRvjHIFb=7fC(3h~W$vMpVT=O>GiMQDax#*TuxFj_`hZ_g@)N@5q#)jWw}R$51)7 zA1p;A%{4pKEY}(h4<*G#H)9kH337YBIhp(?KQag%8Nm>mIP3UOtdU>oZ4eKRlPcXL zZ=unE8k}y%>2DSJobtnnVsR^T8wCwYqlbIsk8CqkxLCK#xw({56#SK45B?K z91kc`zu*1KxBAvI(BD8h7?3xCc5t*6Pe(a)Dm6(2BeCb<3BO0AAcqVI6XP;QrDA&k z?-#VE_9_8%B~aOPzAF>5$21v?&X|<7Eb$J@SwE_@&Md2cC{Y!^7lW*>9?&)jfR)TPCuTPYy0@#EVZ$ z4vq_1aY^h$etzE+e+hnktopHco;?l!70n?Bhd&s9qZvHMl^2&&NvoAX=;%jLnAIRb zskv(1w>MNG9C6n!Iq(61Qqho`G}Tz?Mp1Z6(Ond6GWaHN0?-yCWdQA8Wr?LbUN?Yx z)Z`iuXC-3p)(|EKGh4ZYd)pc3!9ZifFj%~=@2efgU;lnX*Z@DN_zw&B{giqx{D$Eq zLJj}{ic#7`a*iH|-<^yjXeT5YyA&TmVl&^+6)TXGuZsG*h{Ya29;WJO_32I*xl55{ zNJ9AYcuD>P0({d3Rrr-D-^)}HI~?G(OxC#MSTDi5%!X-EBOWy8Zu98gMyTMCq~u9H|=j;m{c znd8b8H9}q+jiRe-b-I$Ib(fN;*HHdkzYxdsAPEe1*P%{K#oBSYespQ@eH<#8>5>Wk z;>?wkz^XC)vGbX!`>OedwSmX4B!R}o^Sq@6F^lWnl=N1^&7Bsf(yfE9`^$78%IDk# zP7jF-ky~K{$VCzJoA1ZKCc0@kQ94x|!G9V8W2Z=HD?m#D<;xEH=J#Gq9?^{wYCQ#$@fXcsnlUt&C!nUFu>t@yRCz=XD`!I5`c8p|_N+K=c; z=Rb6}micMpj|HGviT~~Z%f)_9uKRXL%zaDV&od*orPhQk`(MEGW?%E-6(~-X1k@tc-Ok`6;32=6CRB5hfGw}uGuJ6U`& zbZ|0G1|JT7S72iDe_tAOjDLT`q2f~}ak^xn_(>uBUdj>1aT6KAs{Gq2|M5ZipX|g6 zBRWX*O!8yqgUzkOI;UC`&sW><>Q1;;(PL&JJ05%D!_hJJ;f$^&sebP^pqYx5EKWztKjkJC8S4#C%!BFaQNoIbSA=+{wJo;&)J!m;?_u$X9Q5gTVYImorHzKgF zf%8XQUPOkrn}4VChTav!ju>$3ytT{cwE#-cU}?A*Bwq$gL5L008Uh5)HNOw1mouShvK>MGl#VusAgrAq0Vmki?)?vPD z14=vmWEH6V_UaZZeuNi!-*159V}8#Sxwv$V`tozgPTxTXQ6VA6P>!j}481C|pM_>O zFU*KY)3D=6aVC;Y{TG|(&mFgA2IovVy(Nr4G{{84t7+=PL*4-759HyTn)o& z?X(=i2iAj_GNj`*_&wVbE+61VNRsDF^8k=wbH*J&u93ig>v&8A`o;4LV6_d-SLDZ1P^~Rg> zJ7uBg^jOPVl~(yF_M_+HbKtmIQRaj`)i#Cm`F|8&d#O%-2^tw*_@J}gCpmwO?lx4} zv-j#Z7V&$$DSY!RS`Sa^@_VHcnCQ+rEus{TD*q7}bR{Af)c(z=KSMMK*)wB3s;DT! zP-TJE5X(C77uQ5lVVFn5Xm*GkRKfC!^En;QQs;yc`_%sYNLfk;g>p%Z__Nb=FRAhx z7CP2p%V)GtnfT$dqLXDk;gn(YUM(2$%uRlhsA;!cW6kb_2h}*r6n#oRe!1jEjCD#G zj*IqkECv4BuKPtVB1+}{sPr&%IrIC#WfHE@GGr4b#uBraD*Jm%)^9C&F0mQ#?#|bF z9gh5y&>cA!jHI2p)j#vw$0!KT^24^QGxYw}y9e0{qLc9s5W$+3CBHS2jtjr@zZ;(_+UQbk{=mR<2Lb z-XG9dci@-lf)PE}34%mJ|BQAH`XYcXYaI{WhAk6IPvBX3zP#D&k?%J$S~VA9?h$zO z6r3JHz*@(QsN5Rt4{JWr09LY#EL^$AnURPDPyQn$`antd#i2yYU(3^YAoT3EN|;%W z15AFj5yJ*u#QZ)1)IEYB$35N-q^P%s0=5*`UpayKV&g0t6-MY&Jt2}$J&N5Xl&?Gi zp}4AMNT}5_euI7^rsKTm1DbknkiL*ic6TSrI_r)=xr48T=IN~FLHOl-g0( zV6iVZCRzwoOlVZr{%G`PNL>uAa6e{o7^i!~_{ZNZZJ7ME^EGImz`a)tLvU~_unS1G zE3AxkY5g2=jML*B1Gay3Zc&~Q&DjScKs?B~dla0oEu8qQua|rp{}*)uivD5|iipW4 zG^A0;*Ng_Wzhj6v3`Mwbghv?6_2x0KVB%;8g+PBc=xHAbrTszA%au9YgWo96ZwLDr za!Da8N|0+Yt_TBCwMPa523i7*=???0nEYC0fViI6oSrdF`fhI=nA4`+Qn<$^Plh?i z-jIW&7)owsDFSQ=PnjZYeiDAq3JNLn;D`IherM&MPwX%O${;2lh2t`y8sIYeMiF~V zm8p5YL-C1&igIUQ`8(}&QE`<^01r_ZjKNQ2Kr)2mI6n5}0V`Vb?mh$C*?Y=LXqbRN zWdbWAl(AgNAqr-Yh_dPmA^Lkihavyf~=*{T=?p%8cD%fR{)Ai@744C`b>o Ge=7h7K1R_1 literal 16388 zcmYkCWl$VU@aECQ9m29mU|C!j_u%gCwz#_|!QI{6-5r9vTX1*xgb=y+e^+;Pzv`)e zrfa^;hpFj$s>Stf_@QEYv>JM3l&q$3!n^Y<^RXN=HK`8 zEgjJ}0lSJex9TYr5hBghnp*TCdbrXCnLT5;|G*yjsE!_GLvoX2ntk#4g?vw1R?}7c z-88^V*U|RYP0)4#z-z^*&fpE*=9DcIG)s}iNTGtp%V6Iu4b38LM(BGpADhDGXggSb z7CG0R zq9|8UqI{vKC@(q>q)3DV!NC`m2MS9}A+Ef@EpWlX_rTqm0hvQXLz99iqpJwDsV9C9 zBYboD9ZrBAsijzgSv!~0XrEhrssxLF@WP&GZXXTc`Mv5~3ilA#OESO_#png$=3 zt0Q&!DD7&iu2qT&{)`lVjaW@6KFB^LCN=o|kLXTsiQr#%;$>Ll)z43bzp&#mMVR$R zdo5JZl(|K6Xn>~7!R(DTVe0802pgMyaYXLB%s#)Rkefu{DAK-TUnYb7r4;S?T>jcW z8^_pBN81sagBX7f&hvld!U@0JWHxKQ6;f&GIq)-f&m%iP(9*1deDIbWW0w6;`a#_Q z3AwCz9aSp|@t&R{2Q~R~MY7Px;9;Ed-ybFRU0&Ip0?-@If!gya$JQe!O>gDpRu@Kq1^M*>H^=XNNJWdw}X#k!PRtkI>sOCr9~PZR}4Gs46%bnOSVxD8MTxY z3iF#;N!Qe(a-h}1tR~SMD%T3by3w&6*Q-IF4pWN93ONrM}#9wp8Qrbd_o%SPd+ zBf~SN+Db}>X*HQ|;c1Juv6sn5YN1l*-v+5Ghi96JN2b!J;z!=JoaqgfZfKcnyr<)# z#yKQ5=TDXe#==DgQ-*+j6`Msrk)nUjIJQhpdrxq_*xUDg*iORhveZqpH4UV~2cCc< zJk0|&36er&Du-_iTwMxj#!f%ZAO6!)Ag}a&9Dz#hl1NI&z3pMrH?>$L^nSLAM6ss3 zybm3kAfY9|MS=*rd-yX=EZ-9v7|mOnWv(??DyhK|E2t;Qdr<6a{Je>-|sWP;r$8fGxIIsJx+~vX5*Qk z{pya!>F&&>6fE+t%4KR6-l3V^D^*YwK++;OWxj@~Sk!{B8GnU{;MkWt2k^p`OvTFl zfMB0s)b#1gZHDl@Q!$1~1?NgcjD`2nwtZQy95HYlQBx62le z9?VP`uzOl8l%RrK+V|mVJnAI+)p?$8uD91Gk~9UDLh(f&2X{Edj|m^*F0i`piGHZ& zmueKWDB+OK3*+*+#UN;c^aQU{W$psX%}ZS zs};w(DFM9mjomRin5a+5Q8WQSmHF~;GWh12oEh-0XV2oa_>IpjPfvpHwo0&;&2(QG zp@9c@=r{FcS*@s;YhUbYvKdJn?6Z?)AG}2ja(P%IyUt;AG%xb*_8|MI<%@axN2LZA z?snaUOKK`fp|H2CzV7G!3vyjo*<`(vAfiy=vx|84NaXkwUJPh-X%A@CZpzvEU?-dp zLeAHz8Qz_mYDXJFh-;gLN(5J;gA_2aow{tb>VO7jEbFA@4YD#Nez;1p&bjux4Hz?ZeeqC{(DC zYag-U3_5`3_?%gNuaPh;>-yf3-2HqlN^l;$Seju_nJi5RmF9`$b7YSt;y43rFt)CE zJCe&dooiC#N_HurmvW6M%9M~t6dC7}Z7RmJAbQWI+lnNPE0vt(uu}_n-8!B`T{I~3 zWK=laDg?NDShk0Ft-lvKyN$sQ%Q9R<60TvPAhtkVeU3x?1u16KE*H`osp^ab#rUT_ zdNsM36XVlsDk%1;pvcv4K9?onUXvB|@h_HWgt)@169@nZ%PUrm^)q+Rag2B&Xl0ie z)A|9_{j4j@!Uzd~pNEX%cIT2;xJo`bN>8z6sjRB=URYg6iQf@FjBx|c6W!iv7ms*-9@i6nJ+%y%oBBJW(5 zl2&I}VahD!8E+{EakA|%k2OoC+d9#v`{AQtQn;%WwlTQG& zrn6nEq)56T{7>H0>NZv#-JkF2s6wM)#cY}|>-ga7>R=lj+b3$?k(5Abf-CBBK4M~B z7JAGd@^B)z-H*$&o~Js3w22Vx2}GW?vS@uUi4~k+1?1h;4^LzzP(ez>d$Hd4SGkOC z2}Or3&)t|&#+vQt`5pmF5m%ltiY1q&Q!-q*li_t^R^j$8((C zF~kV)6I5)7vQ575LsEjur%Rf;+7A1y;l}HF%m^{)kC|Aut__r~A9=@I^W2M?_u&h) zDiIG+zZDnLsJ>uu->3IlqppkKUVWlWEKH*+j$7-|6;B^c+{1T(UlPFTo9IBjNz6I@i*w+4(!y9TSBW#%2j^`woLaBK-5+Ohqm&) zndhbjOjKBdfjq~axdYu5#j0arZYJZl##2)+1HwCs5s}!DB@hys@_L(4vzqpcY_3ix z)gSSKrriudDGwu1Pfn{F?QFMU?EIxX10wkJ-W|99_Jv#hh!?E$%$cUg8~j2T6AcoGjaL zfS4Oo1Xm*hPLkNvNvwqoOyitM0F0%IQIPY4)gq!c4F?PV>7yr!?D~mCui^7}AA|L& zS^egQp@hurF08@OP5Pb!@j8GfJ(pe5}9;CGgitUK}->3LuWaj+^2O7n9QXcfJ5b6x_MqWfoaP+eAh z>+_+%*vcTRlv99^nX45Yk{q8*ZucgJZUXn6CND%#GHwb%NliT0<~M1+ackp7awK_M zw<1gL3 zy8R%{qFdsHw@6CuTVo|g9}F0ng>pey0)6v4EYMncez5T0XAt~k)^O>9 z)BWQMQ-AZxuU$v1^hqi-k|0k+xCwl-Rzzge6u5^P6d|wE%&WNnd;=Uo znYv?!_I@m@&)(eu^VX^CB|omV^_oA`9X&S8qU_26hqE*F51<7o5%E7`mlFdiKY5EC z!GbII-kd3SK&k_e##sJ3c@4X+qzkojOL1VYBRl~HaLW(_(1v7ty88q5*tFd(K z`-jrlOrE;X@j}A^NCV><5?^HucGaI)1nWHI{B5mNSUj|IKbmXl%VjX5&iWGoXn?4S z+LSf%06MAZx%JdXj@*a-#Ebj0*-usQoudi)?gx~^__*;DK=YZfXlbfTzWQ%F6TriO zBZ#c7pFf3v!u;ltsYaI|fOI6Ncx%}?{y_Tinb3r46 z9FZ0)EUoHJvzGPWhps~nU@-dONNj9ks*Qp$Ih=_mr?LOrZ)cYoLm8}k#| zbLSVCLx+vQ#nI7c;T%EooBWEQhxeVWd=|aaGNzEA+lhFsk2UYVFIw8V&d&b+=EM*; z)0Nl7WtPjlq8dAmUA?omLWr0A>KR{X`6k zgdDYyxMU7C)7H!&FZnwgAbC8(O2R#GC?{uy9XK@|MT6c!7%Nh4=nGG;49*o1k=Btp z-TUsp{<+|5go=GqQJUF>b(6>Lnp=Z;xsZI)aAZVu&oshzVB(nXiQF8n0)w59ey;~2 zF>p%v4~yw}%XV{ZMP2BiF%y}dseYF3wOY0zyJ>BAqh-mtrA*_QSF zVXN2IP7jM4oAcEhJO4~?X{9QLF=-VH=#V>+6#Q8#L(pU4m2tkGfX`G_*(3?M>@P~D zQh;AwjQF?Tt1GT$Xd{+3$A=n9xCbYS?=I(F&Qi88A;+nW8&^S1HjV)ZevfxsG8lA~p-710-UTy-zZOkpWE zXz?}Tok<4}?R8NOJ7t}cUP>AIS6`+XTQewedWHsKaNFx-Vw%es%JCy_mhR**M&( zi5RZ_E#ge)pVQYjIr^%U!|`M%DF=a9>3!@oJIb5-9M}Hc*5gR~p$&!>TLa?E?sY%= zbk3Ff$(X*P{Yxl=Ll*05;^#h^t|R66JT2nBA1Sh_Mj}VfhkBx*aMph@8B9a}SPuMp zwUL8vU@urbV(IZ)QOGzc)41ih!mivmU^8897|y1!%0=GC)s84^qgK;T7k_Xbzkb2o zv5zlbosOLl_{tOwTZtu}HB@`Vh{?j{{3sdthv4Jg?+Og>sY$m0Arlne9pTdU*1zh1 zu}#KOgiAelkWQO{yi8^H4fF}3-0R1%E_4p?AKOBYfv&iZS*FfYd=Ld(Dx~k?prmw? zFM=1mAB9`|7v3wl#J|uaekJ&x*uu76I;8dOutS&~GvdjuvF);Abl5h?fg@*&bO`Uh z+ih}czukspuGXRi=og1oKEId~5@_y_bHa410HHoN0NkUCI!gm#e%6tyRKQcDtPsJq zeeWb}A1<%`o;-G~u4~Y-IUF6uo#&O#flx&Zbq(1F+=uZX=8PdWQE>ec z;&*+i*Zwz1@>d(hu_w_XyR=;4coqtpf|Z{N;h&slcrKFfc2Zk8sEUB}9k)IQ0Y}uc zCOW|H`LouWIzA$H>Mms|Fed$YQwPS2cIwwo%?}ryLK$MS(^H! zK>OIRe3x_|t~S`K8< z+uQ>XFQYtFa}y(1rlCY^cX)}-ty%Y~P7LdE24j~bN$`p+ZtW5#9d*jSq78d16Ro%_P0}cT^0u4`!^~cVu6$z?ftGuq;|q@YE&%ims2Th$zm=KU$0q~`F`QZ) z{0S2{&$V6V3wKcayTg)_^w7JVlQ%ED1{>zLLeUr>v~TLj8QNL;rs>Z)1!uS2fmnUWLW;yP9MS-?H^|Z`0p4_$0Tz`${ zdT$dJzEksN5Vs?gM;>W=6g8H4H^|kVpk?*i%OCnr%{2pKfZoe7E-yG*Rp@HED9Qa; zVfYLC#|UeG>y(&{S?eMSY!M|`RRr6no28D@Uk9#lj0$UaLf3;c4N$KwVHjIq`cW8n zhT?M9ScYYjSjxcQg%ED>afKuNONh1%UYJ4#J>U9wHf1()V}*|JFXMP;0Nt%GKC%nJ z0@|{>I4LjBzYYDSz7xGnc4?1HkG)5qF6Y}`UcNZAw00=BFQW}3RrG0!w07`kv&Q~v z+74cvYklWqNMbc0Y9}&Xyt(u=?g`BxU!YACT}Ny5%RybMKQ7h*yy=}pC-*QE743G^ zot9`yn`MdcF^k*S;Ubj?W#rTdaklr)Hh?_8w{M}KppgOse$y0*3yn!Y#?N;B9&Q<) za;;~o2CZe|>rZq@{nM0O^c6KWGr?do4gz2WV>ELc+tahIQYhkhtnm?cL{uBs-%qwh z(L~6UH&8iP#_H8qn>ohmNBKJE!a4XAX=I zx<>e8>XyvQ3}#f3B-C zilIGoGPl{yYDwX7z4GvBA| zm4Vc>+hdDFnOQ(N$bNhj_9>AlpQtycp_$`VD43HebS82G)LE9xew^l$p~}XI`4tTM-{a8nW;p%P8tZXQKI3o63YQut#!HLCu5G)* z_af!;D)*Y*TBsxCFKw0%I2s(nnlZ#CkV{_mdg=JCSE!hs8{XA7GZkt*(HyOhYG4a* z7goc=ErTUGSe_jz#}ZA?p{FuowWgGY9?K~aY0_0p>D?rh$Qa5W!LW!O6_QdDPZSt^ zE$oN8vW%%ex{;I0S}8VI0_Zc*dM_SqgdZ1VePEs zaUau>aOh_!&x+1Fi=dX(aecXbyEVjPrf3)|Jol5{#+uK!KEt1S+%FW9;}Z|1Qjglb{1DjV?Igw`=W zHlllp58}Z7n{1afW;G_yHkvZ2n8eDXtyOt$!b-k1cs!@iNczSG`#b;8oh}K78sBZ~XucgekZ^D=tY$V{Q5QDJD9X)!ee8pPTa6N}o};KTJSRRH@+BR3z1 z?)Q!_ey^bEyWR6_f5P@<+qR4PFtp4a$N1l_DW}+lJd{ODta4`CA$XV56(v&X&wCXS zTAp>w3=t(FQQURc(S3hDkJ^$k<(+i(lnnc+^c2;4QzW@_!jd*8h1NVZlCS(eC}|o8u%-tC7q|5nul%oBjE1i-8SAofoz;~dcJNpuUU{;CKuNw>lp1HWtQmU(|X6W z{%OlC0;0Y?V|wSCbMpYfd?kU06n_b#au%(I(F<-t1^w*eqWW=-b%8`K4AjEHc_nwp z{m=BFi{=qbI~7{S`KBy=-LXWx)T!YOlkxLbaWtD!eLwte$$gizf6jS}2@DGi!iJ^P z#PFn|=`RexgtuVei$rE3e=-^h8k?~8%>LCl@{NL0JOfvty*}uw@^|1(RntjXi|wmxrP){2y!=rR;3&8-j0 zx~7|?8jNxj=*2?5^Fd6Z)b(xCB5aLLsbi6@bA38%no{O+8Fh)TrGN6W{}eESyP@v+@i*4W8a!!h+QB@cWu*%Qx<8;o`Bcn%*D(}Vw3 zd{p&$cH?US8$Gu$+H3`9YBWwBF6>Le_-SMt*QW+|ji>bC95ds`5V) z1IF~fPX(?fD|w1Gxj9VeYebWP*4DU#tmX1whV4MC+2lhh`ToumGFwE{Sc z(V=@eteA2aJ|5X~$`ejp5(eB+#oqGmP>$ClH}w7U19}4tJS5e36JeoGm=9tO_p|a6 zdTtYi=Gx|MM5>x%Frp9Ihv6v|uG!b`K-!c1jGscCqrkD&rs>=f~l#fV> z+@2H;O*wrZinzq$!{31BRf#iIQw?~)sIjflDVSYsb^^uu4NakOj#hO=a!_sv3K%5}|0c@SXq63}?RtbKJU}-Z^$RO5dH=<>@A=LB6k zKlVP-%@kTn1}H`Ge20wysZwL;WIFjuVku8)Gn)2*m-A5G;U;9Q7RN~cJe}nJev9Tad|#tjmcQZFf9U*EYy?3Xv;pi%wOGD ztBq7{BK(-&;Sk_lK9VN1o^o>QWZ@+s@?UeN)82Q*=^tC!E>v>k&`v#?b$Kt$pGzJ; zhP|QSSfF*Kh^{G2u&6biKHhu2142QfqI=MCo?iu44Q}}=` z{g%Xs?@Ldj`*VG+v?6<6$xso7#Gz4!N83 zaYYpi6ToY&kxC(^4l!o7aBi0<~{A{x-V>Mdp$P3==;%3Fhm3enI@t zimCQX^$i@_9Fi_dQwY;&EP^Bhwec*F!9$vS5&+p|xMp;8sbpqpIU+ocE%0g+kzDDs zSqrA{)a&F;FNX|4Tj>tJ*`42KO^%J5y+O|U_+;R-Fb?LhcIU<6v5!6f$c;~Jn?XG` z-bsz|WJdUA+*VF4(cF<^> zxX3DF7#jv!FJ(xgiGc1W5399i*}`++Hp6mxbz<`*uT!MOa3Nq!ROZO+prgPZJzWvm zRj@!Th<5t+!P4r03#R++W6%7!g&d8!j8x82#feWhrod=O=7c!3&dF#TH2RTN z)nw!+K$#sce4ZJ;m3OcUYbSA7QmKw+6?37F$Z|`%WL9paobl&L`mcCT`#3pnL?C)B zycA?g7f&jvQa*DsDpJ%?j(dbkS57OCUJ9!@bft==30ED!VH!G8Rj0W#2KWTQz$0_o$({{3?IS8J2 zy|$`L^AZ7}B4a~cuyi&kQ}N~1VY1SJJj8r2qsu4Vgs#{V!mp-u)?c-=m_XC$28K|h z(CVYJgxK~y)Z(cTs_mm|qoej_@r|TlcCjKrrF16)&8Yqx-=Qqg^pyfhdM14MrxWsR zT2d*`_b9=bt=*>;%QZD=Z)dB!CUe=2YgM{TO=~I?EtnwQZhWlg%_(lxQK6+lM~8Rh z#^&0^EKDsi0uV;%j|`-5+?p{N;*gb~Rg7IRJ7HcJoEXr9p&C#Xp|b+nKS-<#(||}5 zIjoIj#Mg`CVeG@KbJ8Ouk{os(+>`SHar(}KNm#vRJUue>-}(YnvT+J^Uji2%E`Hzs zd1PCO2f))GH>M#JTkzz#CCXp&%hxwv#6M^TyghY3V@UTcCv!R4W!VM0rf?qU#v=l{HOvJ97ZGo*8}M7jz;q?6{3;`Y3eAC|sr43AfE?#Rxf`v=N6u zM0BWMN$?|P?2@GFDI8{sfKN+<2W&KwId{|^Ssn$o6p=nrW1s}9d}}Hg?*c5Nx{B7K zg_#`&9Zbbgq%SZnT=B7%j$~h0mBZj=*fWG2f=Fx1Az9R)rqwc+O3g=IM(YVCpR)r- zk8|74UO*+Q20Ct!J5Rb+*em{)y4m}8Hye^b)WN8jSqom`L0e`tVjCv0KGaN^Xeto( z=qh|yV{--A`FM**sv#bIZP#38FC;7f}5!#tQ}oKS5eXW-nZPvR#G|B z8jMy#)gE|*(8xro0~%1LM;)ivlC`I&CAkoxLxCLBI3!+JN9`_y$?#$593jX_{|zAG zskb>N7lng{TY0hfBZG@8tD!_%veD6Err<$;3E$Rl$k6 z$s#%?@p;dFCX~C2bt2nRufMG*1*HSByz+E}5F79|&eojPOG& z3qR%&OZ=}ZU#4P1pk*foD87~i`EPi$xqP~3#K;Fcb)gFqZJ zEbPUN3riy`n(ArtRYhga-FizB>SQO(_Hh*hldBRDx1=O|`lUddrsz$zBA)6(!i8<{ zplAR{b42~+2pS`YoSiPlAp;gK!llVXg~kFzClQe(bx|jp(DmSIX<9?gn~_=>BR4rQ zrR2_XS(0Kbnk8rBl=PysGza7cBr2ums=qo|WUZLMkT13^*W4)q z1$l3>{sAS*DI>#cSmdY8-W!6ipbc(f#YfoyNAAgolczkW;DH()_GFM~n{h`X7cc&N zt@VuGyi#+|9_vaPMy^X#``XmO9QUu^>))HDV7V$?jRsUbEaY9T*;i&G^vC``59KPb z#vNQT{Abo)_FEBBG?(i+{G77*Y_#0(;Gge4wB|%pGc`t}kma1$&u?4wT7gIq z4!P5qcK7aiT2I+!UYvdS=HupexIIxpL5nAxX(ljUzeQ66%ktMYkrZ}s@FZxH?uFP@ z>41LCO;T)Lt{%W@JZR$BqhvmC?2n|!Db-*k?GbzzzZ__MRa#SV_Twz&5s~tjL6!L$ z##!M0wV>K2eNJifXJ;>ox1gubO=XM5oZP+8;zr7lJukNVc1y@;_*|{MpQ6!SS2|;Q zX?om^35V~@_37zyOV8BjsX<}TSX?Kc&?t&2=2ePV0m38sRjNla^tDgu%;rc4^hKmD z(f`IVQ2#->}oslzK> zSI`49*EgFtl};;>@HlI_3rmU=SeAOt$}m1h)t$wlE{tPl8vxQbogL~FaGb?*wQ(de z;xQZsTx6n#RNjpAgbg{C)0XWF(;IDLt)b6a>@@0CLK(VJSdzEPd9g|JiwfkT_>$*XL_1`M3x3lSGo3IK3TWrI&OF9O8~`?IscA+|RN3$4=B}0YWcMRJLRo)Kp2_G=C%+qq^Y>6!n=|yaUX_gdvtQTn z(w9lqG8RLoH5%FTalQuQ2F>@2hbk}_+oPbLNRdMEQq7x=hsAQM%?Y)%SS*GSa*7kz znqnoTnYAgSMm)*f8jAbJSG+n@TsN=d+sTeXa@+Gn;z@cgJ-Ov9$wPl&fVLwGvBfN1 zeDX#(l(|0)hZM`@_7|7_BsbAJ9F|-67ThGSY1C@>P8bE92~RGNio^l1j~RAFw%e=} zz-dGd%|c+9=I-qp$Mul0u7e)KgipTDfFz9oD8xKimKa&4Z)a^*-B4A7#4AZoA5Q`Y znvF5zu0T=N+Vq41mxGs9;iXK>{&N;m#rhGiqvpmhHz|plY>We5FcJwYMizM^1SLW^ z@&PH@x3ZK;fz#|Jn)YD9X-2`ioTklO4C*|h=GYmS$Uq2EJ1%Z@)3WvBEX#=7x2#ga z4Ek(yIj1#G@gqIh1-`!8HD|F{_o*dbmMv>#@B0H@35te5pMRTxms8Tzlv`GFZj0(t zs+1Ksrj(j|ot9~tggV$xcT(N-nl?HxGLn!4t*jJ3wlWn@E($ZHmd;v_TF{I2`}azN zjh#vi*9d$_q$?VT6fk&%$wU~(%kIk*4RUar)(1kj-X@$PAeLq>c7;JHsz4XK@hK&Lzxc?dwuKUr4fyPv7h#WYBK>xVV-ah1?P9b|c<;UBkjV*hkfig;`3IZk4NO&jjuOiViZ=6oFYP*4XBK=se2Zw){`CVTZb(rymEA*o+JEG z$zJ-V@v<3tT%|o-_pbG@q@4V6-@3#>0-MsMGr}blPv@nbl(mJN!b#x^&kRo z9Kj<$x58I1-n_9823?1(JK8u53_>vt3=kg|ZBgT3j-O5fgsiI$+j{nc`u+~sBg&F1 z)l8YIi&Z+xb7ZP1DwbMl3)cp}MboOz1e-Y<*MX|cws1i>f#85hIs!g50|vM`gk)P+ z#dzDdq)41}^9y>HLx!{)dfjGRBEB@ML_FvI_A>Lk%Gy_N841l*q;M|?T&D(E1Z|>S zAwYpOdT45ev;fqkdZC*eOG2rG-fd_R$L@v=Tg%sqYh-F|!DS@t8=-CzKt9>fjykdS= z<64`cU9QphyiVOs9dgn9YzY)EDm&TiR-7Ky;4^T=7CALVr|lTggVwe{`#b ztp?hRY^cUr*Xmr6Nw7oq#bn|?C+^=;5uQ%yjxtg8JCklS2|b0cmTz*@YM&=`zXZ(1 z^SEfy`KYC#GzXU16Stu=%h)flgNS)B@e+sTBLq$bvKN}L6l4@qp=K^oXz`#CicFBDov*UQWB!`>(|mT{n|t?yl|H)>Sx8|k&;YnLFa}^>xv_}& z&mu@}>(z@@W>Ip+?gFqe;+MA>db&kZqhIO}=xHHx%#lk-+gH(H9vF((G1t;=!ce#L zdyPdW@S_l55Isk|+B8lUivv1dooJR^6jA9-EGHPvdbd*g5GEERM~(*#6^8E&6-&Qp zD(*Ophd+Z;=Xs#!xCdQ|`BMYjz#(GA`$u?j;?>dB{E!SRtQOA3h42zZ<`<_E4ZcQQUnNs1~b*K*WF zAa4k5G-^s3ax8I-00rumx_vT{r}Ua4==5q)8jovrgUgkWRkArU(I$tpDms;otA`=u zBWJoJtvr2lTMh_Es9nLs4QoAonQ=;5F|Mt~;9URZJSTSDhTU*i-n|KmoQJQOt92G; zh2_hwg@R7xEm3*@F?;1ru7oVr+~o>;d`j_s+%VpC626j!x%`<7icO++>Z0cZNuV zdG4nm>hK{Omm71Pi~_aRec||ig>NZc&x$Y0eL`tkF+a45`;sflBE5PRgP)es^q>bK zbW65N{0aWw1+yOWWeIQDBlOIfgGbqemgJ*KfiNPKRevllC;PL4q{rRUqoo~I+Gias z5t!VW{?Q69_J<~NK$tYO=|)E#YatWLMMTg-_nrF!E*PKxZH7WwfLS%9YT)Tg^ir&> z`;K!FIr;4fo*ID<~l7(w0*Hx{<<)!UO-t`W6$WSsV zrgHdkf||HZj_DFn%wU7x9gJn9EgRZ59t|#)V=(}56e~HZPfIX2s)ci=?jEm5(TQpi z;{xqm0uWKrZ9r2pQPpAyb03Dlnif2fv%AiCT2d*mpHA;mG)#DK3R_}UBU6?Ig@C88 zZHd)Dj7byl&z>zI5SJH}pd*-l!8n~Ibo z{IW!ythQc(HOazYiF)mcyq%!UinKXX;`Zt$aUL6Cqa0LZpYMZmxM?MO5Fv&qi$jH+ zHB&}Fq8gFzR_|?8UZ&Y(nlCqsJ7>ICZjzLsI}JRGggOQWNwri67Z$yetmqM1Wud{k zqKYE46qmPkQ^FPrSK-9Sc6pN~JiIq4)rW-GnB*okaM56DM`|@ilL5(^4pc~wih7jP z9GK{rqy7_U#Y1!MUk|qdL?oaPDf}q{HU2Qlp&5iyIxRnh^`qv>rX_d;QkXghD zArp2)G4ulwlu=epQ70gA9%G?lB@t~%BHU@KH<%h1DKcb5P2vU+A=;Ct;dPmlG?7&D zF{|8N7-M609=&!+3Z_P`mHMp1Ucc2@Lf$VgENbwN@a4Lcrb6W7qi;0MH+~W#wkHrF zqO<*q{@Bdu2<|oHaY6jR&^9Q3M=s(GtDATB7d1@XN-X@?Dn8cwd?xKl^Z0g*LF#%8 zNuHel)sL0@bgRrPb+LGbeFPk*KRjUs37bNbeTrK{1K^glOr#|Wrq<+}& z-)sDG@?xyg>6(Ob5CkFTd9vNP^?7-lS$c7_`x$&l=2v5Ud;|SN_{)?MO9yQL6-A$n zxRfbSv`Nw}YDkQ}Nq!N&4rpdxou<{hqGdD90jy1H9wC_qlyPTk;QUH!v6}fO^sQyj zJM$hJM@bY3K1i}p_JpDkR_w9KoY}H$&%kC*@{W&mQg}zb6 zVm~hkMF5GFDxY18XnexPR{^_4w===^%IPfR>uSW?&bx2@$KaNNcu6ONCN}IJ`tPSB z>o}>(3xk5@*CY7EN4Ox38Y)H^0+mE1ZWLW{Nt47xOgnk$5m!~d8hZRxtb)jC^yA?t zli1VMk`x&fZRN8gZfD<)8XV%Xl9-41vAVq5(=-2^mE-e!7jGW#J}h#gnbqwZyHj6| z(_w$>s?pJ;%CXTUeuB2pCkMW~7?sc9zjqfbXW48Szx*2r5#I%#@| z0!BC)Yic?|6>MK>su7q|SiNQ`Te#5KBqN5w-B07TejAe`v3W%)bF57Lt+Q9K@QtBn z?eFOQC&(Ep&dIDgQ>>_8VhJljT#y*9JD%`1nU0*;xSzc72d2AyK#7W2gK702BO-=a zDbz0;1dnTIzy5TZj(+xjucO9XCS5GS8Fr#nHaF6cyTnpA61++Dw$lKc!a& zG1^kX7iWfIapBI2VFrtoM$#cRA3w!QO*xxW58;ZgI#($W&_{E9^^@|Dfl>4C-CdJ$;cIh5YAvOL+h}&OX}%VK(lVBt}%9SgcTwifmWLGk}Hxxe-ZFYdeG#=Gc3eM1`CrJu0z_|V{k{yFYDUP<$ zBVaNKzn|!<;V8E2oeFGJ77m$Z$K2-U!BN@(8K6L{6dH{Eu=4}gPm06>0|GUWE)>nl z%_J&?VJt)@jbC5^sK4kK!hW0l;*eV`L4E(a2iyNlQ~ZX)Q;DLdU>3?ZMK4?)KWMfC zklSY2@3m2!lkiy@Ix>(DyR}&$H{l6#v9Bq|zJq&!t3_7lgu9n?X^tAEcGK*Rm| P;0@6TLxUeeIEDLPUU%K1 diff --git a/data_raw/comm.csv b/data_raw/comm.csv new file mode 100644 index 00000000..de2f450b --- /dev/null +++ b/data_raw/comm.csv @@ -0,0 +1,87 @@ +word,assigned_score,coefficient,se,grammar_function +imperative,1,1.09,0.5,adjective +serious,1,0.79,0.58,adjective +essential,1,0.7,0.37,adjective +severe,1,0.57,0.87,adjective +best,1,0.12,0.75,adjective +important,1,-0.39,0.35,adjective +significant,1,-1.03,0.5,adjective +major,1,-1.88,1.24,adjective +necessary,1,0,NA,adjective +oblige,1,-1.01,0.49,verb +need to,1,-1.04,0.43,verb +must,1,0,NA,verb +necessarily,1,NA,NA,adverb +obligatory,1,NA,NA,adjective +require,1,NA,NA,verb +importantly,1,NA,NA,adverb +momentous,1,NA,NA,adjective +unavoidable,0.8,0.44,0.47,adjective +invaluable,0.8,-0.8,0.4,adjective +is time to,0.8,-0.85,0.47,verb +have to,0.8,-0.92,0.41,verb +going to,0.8,-1.64,0.58,verb +ready to,0.8,-1.94,0.44,verb +will,0.8,-2.65,0.54,verb +urge,0.8,NA,NA,verb +quintessential,0.8,NA,NA,adjective +worthy,0.8,NA,NA,adjective +valuable,0.8,NA,NA,adjective +unavoidably,0.8,NA,NA,adverb +inevitable,0.8,NA,NA,adjective +inevitably,0.8,NA,NA,adverb +inexorable,0.8,NA,NA,adjective +inexorably,0.8,NA,NA,adverb +eminent,0.8,NA,NA,adjective +prominent,0.8,NA,NA,adjective +prominently,0.8,NA,NA,adverb +preeminent,0.8,NA,NA,adjective +pre-eminent,0.8,NA,NA,adjective +relevant,0.7,-1.6,0.6,adjective +promise to,0.7,-2.84,0.5,verb +commit to,0.7,NA,NA,verb +intend to,0.7,NA,NA,verb +relevantly,0.7,NA,NA,adverb +optimal,0.5,-0.28,0.7,adjective +timely,0.5,-0.82,0.95,adjective +better,0.5,-1.28,0.86,adjective +willing,0.5,-1.53,0.72,adjective +opportune,0.5,-1.57,1.05,adjective +cautious,0.5,-1.69,1.04,adjective +able,0.5,-2.55,0.9,adjective +good,0.5,-2.04,0.52,adjective +preferable,0.5,-2.06,0.75,adjective +ideal,0.5,-2.06,0.49,adjective +useful,0.5,-2.53,0.51,adjective +great,0.5,-2.75,0.71,adjective +optional,0.5,-3.28,1.06,adjective +possible,0.5,-4.59,1.04,adjective +let's,0.5,-1.8,0.52,imperative +should,0.5,-2.49,0.52,verb +want to,0.5,-2.58,0.47,verb +would,0.5,-5.49,1.03,verb +can,0.5,-5.64,0.94,verb +might,0.5,-6.1,1.53,verb +could,0.5,-7.04,1.05,verb +may,0.5,-7.63,1.34,verb +let us,0.5,NA,NA,imperative +shall,0.5,NA,NA,verb +plan to,0.5,NA,NA,verb +tenable,0.5,NA,NA,adjective +doable,0.5,NA,NA,adjective +obvious,0.5,NA,NA,adjective +ideally,0.5,NA,NA,adverb +preferably,0.5,NA,NA,adverb +useable,0.5,NA,NA,adjective +marginal,0.5,NA,NA,adjective +option,0.5,NA,NA,noun +careful,0.5,NA,NA,adjective +carefully,0.5,NA,NA,adverb +plausible,0.5,NA,NA,adjective +plausibly,0.5,NA,NA,adverb +possibly,0.5,NA,NA,adverb +trivial,0.2,-2.23,1.1,adjective +ambiguous,0.2,-3.07,1.29,adjective +ambivalent,0.2,-3.14,1.27,adjective +insignificant,0.2,-3.69,1.08,adjective +vague,0.2,NA,NA,adjective \ No newline at end of file diff --git a/data_raw/freq.csv b/data_raw/freq.csv new file mode 100644 index 00000000..060879c5 --- /dev/null +++ b/data_raw/freq.csv @@ -0,0 +1,64 @@ +word,assigned_score,coefficient,se,grammar_function +persistently,1,13.18,1873.64,adverb +relentlessly,1,-0.33,1.91,adverb +constantly,1,-0.99,1.21,adverb +incessantly,1,-1.02,1.77,adverb +always,1,0,NA,adverb +daily,1,-0.38,0.8,adverb +hourly,1,0,NA,adverb +by the minute,1,NA,NA,adverb +by the hour,1,NA,NA,adverb +every hour,1,NA,NA,adverb +every minute,1,NA,NA,adverb +persistent,1,NA,NA,adverb +relentless,1,NA,NA,adverb +unrelentingly,1,NA,NA,adverb +everyday,1,NA,NA,adverb +nightly,1,NA,NA,adverb +every night,1,NA,NA,adverb +constant,1,NA,NA,adjective +incessant,1,NA,NA,adjective +interminable,1,NA,NA,adjective +interminably,1,NA,NA,adverb +weekly,0.9,-1.65,0.65,adverb +every week,0.9,NA,NA,adverb +steadily,0.8,-2.81,1.13,adverb +generally,0.8,-3.99,1.21,adverb +usually,0.8,-4.27,1.11,adverb +fortnightly,0.8,NA,NA,adverb +steady,0.8,NA,NA,adjective +normally,0.8,NA,NA,adverb +frequently,0.7,-2.56,1.09,adverb +regularly,0.7,-2.92,1.18,adverb +often,0.7,-3.37,1.06,adverb +monthly,0.7,-3.21,0.76,adverb +frequent,0.7,NA,NA,adjective +regular,0.7,NA,NA,adjective +every month,0.7,NA,NA,adverb +incrementally,0.6,-2.6,1.8,adverb +progressively,0.6,-2.74,1.2,adverb +gradually,0.6,-4.75,1.09,adverb +quarterly,0.6,-3.38,0.91,adverb +progressive,0.6,NA,NA,adjective +gradual,0.6,NA,NA,adjective +sometimes,0.5,-6.28,1.19,adverb +annually,0.5,-5.01,1.03,adverb +yearly,0.5,NA,NA,adverb +every year,0.5,NA,NA,adverb +intermittently,0.3,-3.29,1.69,adverb +sporadically,0.3,-5.36,1.31,adverb +occasionally,0.3,-6.32,1.19,adverb +irregularly,0.3,-7.33,1.25,adverb +intermittent,0.3,NA,NA,adjective +sporadic,0.3,NA,NA,adjective +occasional,0.3,NA,NA,adjective +irregular,0.3,NA,NA,adjective +seldom,0.2,-7.13,1.14,adverb +infrequently,0.1,-6.46,1.13,adverb +infrequent,0.1,NA,NA,adjective +unusual,0.05,-5.77,1.18,adjective +rarely,0.05,-6.48,1.11,adverb +rare,0.05,NA,NA,adjective +scarcely,0.02,-5.88,1.2,adverb +hardly,0.02,-6.3,1.14,adverb +hardly ever,0.02,-6.46,1.49,adverb \ No newline at end of file diff --git a/data_raw/int.csv b/data_raw/int.csv new file mode 100644 index 00000000..9d4b3471 --- /dev/null +++ b/data_raw/int.csv @@ -0,0 +1,105 @@ +word,assigned_score,coefficient,se,grammar_function +strongly,1,1.79,1.94,adverb +desperately,1,1.69,0.46,adverb +extremely,1,1.62,0.52,adverb +urgently,1,1.27,0.44,adverb +intensively,1,0.96,0.79,adverb +highly,1,0.83,0.34,adverb +especially,1,0.4,0.72,adverb +firmly,1,0.35,2.07,adverb +really,1,-0.36,0.24,adverb +certainly,1,-0.71,0.25,adverb +everywhere,1,-2.16,1.09,adverb +simply,1,-0.75,0.38,adverb +practically,1,-3.66,1.47,adverb +definitely,1,0,NA,adverb +maximum,1,3.04,1.52,adjective +exceptional,1,1.85,0.92,adjective +extra,1,1.15,0.46,adjective +determined,1,1,1.05,adjective +pervasive,1,0.29,0.78,adjective +extensive,1,-0.35,0.5,adjective +unmatched,1,-0.39,0.8,adjective +remarkable,1,-0.51,1.09,adjective +intense,1,-1.82,1.08,adjective +enormous,1,0,NA,adjective +extraordinary,1,NA,NA,adjective +deeply,1,NA,NA,adverb +urgent,1,NA,NA,adjective +huge,1,NA,NA,adjective +tremendous,1,NA,NA,adjective +immense,1,NA,NA,adjective +vast,1,NA,NA,adjective +ultimate,1,NA,NA,adjective +high,1,NA,NA,adjective +definite,1,NA,NA,adjective +utterly,1,NA,NA,adverb +surely,1,NA,NA,adverb +certain,1,NA,NA,adjective +vigorously,1,NA,NA,adverb +vigorous,1,NA,NA,adjective +prevalent,1,NA,NA,adjective +intensive,1,NA,NA,adjective +extensively,1,NA,NA,adverb +wide,1,NA,NA,adjective +widely,1,NA,NA,adverb +widespread,1,NA,NA,adjective +remarkably,1,NA,NA,adverb +intensely,1,NA,NA,adverb +globally,1,NA,NA,adverb +global,1,NA,NA,adjective +completely,0.6,2.27,1.57,adverb +fully,0.6,1.34,0.74,adverb +most,0.6,0.87,1.79,determiner +very,0.6,0.83,0.51,adverb +substantially,0.6,-0.26,1.26,adverb +more,0.6,-0.53,0.31,determiner +moderately,0.6,-3,0.58,adverb +above,0.6,-0.84,1.08,preposition +realistic,0.6,-0.94,0.53,adjective +insufficient,0.6,-3.2,1.74,adjective +large,0.6,NA,NA,adjective +largest,0.6,NA,NA,adjective +big,0.6,NA,NA,adjective +biggest,0.6,NA,NA,adjective +totally,0.6,NA,NA,adverb +entirely,0.6,NA,NA,adverb +absolutely,0.6,NA,NA,adverb +ambitious,0.6,NA,NA,adjective +ambitiously,0.6,NA,NA,adverb +realistically,0.6,NA,NA,adverb +substantial,0.6,NA,NA,adjective +lots,0.6,NA,NA,quantifier +much,0.6,NA,NA,quantifier +far,0.6,NA,NA,adjective +moderate,0.6,NA,NA,adjective +plenty,0.5,NA,NA,quantifier +quite,0.4,-1.47,0.55,adverb +almost,0.4,-1.98,0.51,adverb +somewhat,0.4,-3.39,1.48,adverb +clear,0.4,-0.74,0.97,adjective +least,0.4,NA,NA,determiner +less,0.4,NA,NA,determiner +clearly,0.4,NA,NA,adverb +enough,0.2,3.97,1.45,determiner +nearly,0.2,-1.34,0.54,adverb +rather,0.2,-1.4,0.39,adverb +barely,0.2,-1.53,0.89,adverb +adequately,0.2,-2.45,1.94,adverb +reasonably,0.2,-2.4,0.98,adverb +slightly,0.2,-3.76,0.89,adverb +minimal,0.2,-1.53,0.72,adjective +modest,0.2,-1.77,0.59,adjective +low,0.2,-1.88,0.75,adjective +little,0.2,-2.41,0.98,adjective +some,0.2,-3.3,1.49,determiner +average,0.2,-3.48,1.59,adjective +limited,0.2,-4.39,1.63,adjective +sufficient,0.2,NA,NA,adjective +minimum,0.2,NA,NA,adjective +near,0.2,NA,NA,adverb +reasonable,0.2,NA,NA,adjective +weakly,0.2,NA,NA,adverb +slight,0.2,NA,NA,adjective +small,0.2,NA,NA,adjective +adequate,0.2,NA,NA,adjective \ No newline at end of file diff --git a/data_raw/time.csv b/data_raw/time.csv new file mode 100644 index 00000000..3cac5e8b --- /dev/null +++ b/data_raw/time.csv @@ -0,0 +1,43 @@ +word,assigned_score,coefficient,se,grammar_function +immediately,1,-0.2,0.18,adverb +imminently,1,-0.56,0.18,adverb +first,1,-0.86,0.4,adverb +hastily,1,-2.01,0.62,adverb +now,1,0,NA,adverb +tonight,1,-0.38,0.35,adverb +today,1,0,NA,adverb +imminent,1,NA,NA,adjective +hasty,1,NA,NA,adjective +immediate,1,NA,NA,adjective +promptly,0.9,-2.08,0.28,adverb +as soon as possible,0.9,-2.08,0.28,adverbial phrase +tomorrow,0.9,-2.32,0.32,adverb +prompt,0.9,NA,NA,adjective +quickly,0.8,-1.6,0.27,adverb +rapidly,0.8,-1.63,0.47,adverb +fast,0.8,-2.11,0.63,adverb +shortly,0.8,-2.69,0.36,adverb +speedily,0.8,-2.89,0.48,adverb +next,0.8,-2.91,0.3,adverb +this week,0.8,-2.24,0.41,adverbial phrase +quick,0.8,NA,NA,adjective +rapid,0.8,NA,NA,adjective +short,0.8,NA,NA,adjective +speedy,0.8,NA,NA,adjective +before,0.7,-0.56,0.46,conjunction +early,0.7,-2.6,0.27,adverb +next week,0.7,-3.47,0.39,adverbial phrase +earlier,0.6,NA,NA,adverb +this year,0.5,-4.96,0.43,adverbial phrase +soon(?! as possible),0.5,-3.03,0.25,adverb +afterwards,0.4,-4.19,0.63,adverb +after,0.4,-4.36,1.1,conjunction +long,0.2,-5.88,0.77,adjective +later,0.2,-6.03,0.53,adverb +slowly,0.2,-6.25,0.59,adverb +late,0.2,NA,NA,adverb +slow,0.2,NA,NA,adjective +finally,0.1,-4.55,0.56,adverb +eventually,0.05,-6.5,0.55,adverb +at some point,0.05,-6.7,0.65,adverbial phrase +at some stage,0.05,-7.74,1.1,adverbial phrase \ No newline at end of file diff --git a/data_raw/urgency_scores.R b/data_raw/urgency_scores.R new file mode 100644 index 00000000..ac51752b --- /dev/null +++ b/data_raw/urgency_scores.R @@ -0,0 +1,218 @@ +# # This script rescales the data for each dictionary gathered from the "urgency" survey. + +# # Note that the coefficients and standard errors in the data refer to the +# # coefficients generated by the Bradley-Terry models for pairwise comparisons. +# # The assigned scores are author assigned scores before survey. +# # These served as controls in models to account for "expected outcomes" and +# # improve the coefficient ranks (i.e. odds of winning in pairwise comparison). + +# # The first task is to get close synonyms or versions of adjective/adverbs +# # scored in the same ways. +# # This is done since not all versions of the same word were surveyed. +# # The second tasks refers to how the scores are rescaled to caluculate urgency +# # and the urgency of priorities. + +library(readr) +library(dplyr) +library(scales) + +# # Timing dictionary + +# Load original data +timing <- read_csv("data_raw/time.csv") + +# Standardise scores for synonyms/equivalents +timing[which(timing$word=="hasty"),3] <- timing[which(timing$word=="hastily"),3] +timing[which(timing$word=="immediate"),3] <- timing[which(timing$word=="immediately"),3] +timing[which(timing$word=="imminent"),3] <- timing[which(timing$word=="imminently"),3] +timing[which(timing$word=="prompt"),3] <- timing[which(timing$word=="promptly"),3] +timing[which(timing$word=="quick"),3] <- timing[which(timing$word=="quickly"),3] +timing[which(timing$word=="speedy"),3] <- timing[which(timing$word=="speedily"),3] +timing[which(timing$word=="short"),3] <- timing[which(timing$word=="shortly"),3] +timing[which(timing$word=="earlier"),3] <- timing[which(timing$word=="early"),3] +timing[which(timing$word=="rapid"),3] <- timing[which(timing$word=="rapidly"),3] +timing[which(timing$word=="late"),3] <- timing[which(timing$word=="later"),3] +timing[which(timing$word=="slow"),3] <- timing[which(timing$word=="slowly"),3] + +# Rescale coefficients +timing <- timing %>% mutate(Rescaled1 = scales::rescale((1-coefficient)/min(timing$coefficient, + na.rm = TRUE), to = c(0.05, 1)), + Rescaled2 = scales::rescale((1-coefficient)/min(timing$coefficient, + na.rm = TRUE), to = c(0.05, 2))) + +# # Commitment dictionary + +# Get original file +commitment <- read_csv("data_raw/comm.csv") + +# Standardise scores for synonyms/equivalents +commitment[which(commitment$word=="necessarily"),3] <- commitment[which(commitment$word=="necessary"),3] +commitment[which(commitment$word=="importantly"),3] <- commitment[which(commitment$word=="important"),3] +commitment[which(commitment$word=="obligatory"),3] <- commitment[which(commitment$word=="oblige"),3] +#commitment[which(commitment$word=="require"),3] <- commitment[which(commitment$word=="need to"),3] +#commitment[which(commitment$word=="commit to"),3] <- commitment[which(commitment$word=="promise to"),3] +#commitment[which(commitment$word=="intend to"),3] <- commitment[which(commitment$word=="promise to"),3] +#commitment[which(commitment$word=="urge"),3] <- commitment[which(commitment$word=="going to"),3] +commitment[which(commitment$word=="relevantly"),3] <- commitment[which(commitment$word=="relevant"),3] +#commitment[which(commitment$word=="eminent"),3] <- commitment[which(commitment$word=="important"),3] +#commitment[which(commitment$word=="prominent"),3] <- commitment[which(commitment$word=="important"),3] +#commitment[which(commitment$word=="prominently"),3] <- commitment[which(commitment$word=="important"),3] +#commitment[which(commitment$word=="preeminent"),3] <- commitment[which(commitment$word=="important"),3] +#commitment[which(commitment$word=="pre-eminent"),3] <- commitment[which(commitment$word=="important"),3] +#commitment[which(commitment$word=="momentous"),3] <- commitment[which(commitment$word=="important"),3] +#commitment[which(commitment$word=="worthy"),3] <- commitment[which(commitment$word=="invaluable"),3] +commitment[which(commitment$word=="quintessential"),3] <- commitment[which(commitment$word=="essential"),3] +commitment[which(commitment$word=="valuable"),3] <- commitment[which(commitment$word=="invaluable"),3] +commitment[which(commitment$word=="unavoidably"),3] <- commitment[which(commitment$word=="unavoidable"),3] +#commitment[which(commitment$word=="inevitable"),3] <- commitment[which(commitment$word=="unavoidable"),3] +#commitment[which(commitment$word=="inevitably"),3] <- commitment[which(commitment$word=="unavoidable"),3] +#commitment[which(commitment$word=="inexorable"),3] <- commitment[which(commitment$word=="unavoidable"),3] +#commitment[which(commitment$word=="inexorably"),3] <- commitment[which(commitment$word=="unavoidable"),3] +commitment[which(commitment$word=="let us"),3] <- commitment[which(commitment$word=="let's"),3] +commitment[which(commitment$word=="shall"),3] <- commitment[which(commitment$word=="should"),3] +#commitment[which(commitment$word=="plan to"),3] <- commitment[which(commitment$word=="intend to"),3] +#commitment[which(commitment$word=="marginal"),3] <- commitment[which(commitment$word=="optional"),3] +#commitment[which(commitment$word=="tenable"),3] <- commitment[which(commitment$word=="able"),3] +commitment[which(commitment$word=="doable"),3] <- commitment[which(commitment$word=="able"),3] +#commitment[which(commitment$word=="plausible"),3] <- commitment[which(commitment$word=="possible"),3] +#commitment[which(commitment$word=="plausibly"),3] <- commitment[which(commitment$word=="possible"),3] +commitment[which(commitment$word=="possibly"),3] <- commitment[which(commitment$word=="possible"),3] +commitment[which(commitment$word=="useable"),3] <- commitment[which(commitment$word=="useful"),3] +commitment[which(commitment$word=="ideally"),3] <- commitment[which(commitment$word=="ideal"),3] +#commitment[which(commitment$word=="careful"),3] <- commitment[which(commitment$word=="cautious"),3] +#commitment[which(commitment$word=="carefully"),3] <- commitment[which(commitment$word=="cautious"),3] +#commitment[which(commitment$word=="obvious"),3] <- commitment[which(commitment$word=="able"),3] +#commitment[which(commitment$word=="vague"),3] <- commitment[which(commitment$word=="ambiguous"),3] +commitment[which(commitment$word=="option"),3] <- commitment[which(commitment$word=="optional"),3] +commitment[which(commitment$word=="preferably"),3] <- commitment[which(commitment$word=="preferable"),3] + +# Save/Move "commitment" adverbs to intensity as they are intensifiers +comm_adv <- filter(commitment, grammar_function == "adverb") # separate adverbs + +# Rescale coefficients +commitment <- filter(commitment, grammar_function != "adverb") %>% + mutate(Rescaled1 = scales::rescale((1-coefficient)/min(commitment$coefficient, + na.rm = TRUE), to = c(0.05, 1)), + Rescaled2 = scales::rescale((1-coefficient)/min(commitment$coefficient, + na.rm = TRUE), to = c(0.05, 2))) + +# # Intensity dictionary + +# Load original data +intensity <- read_csv("data_raw/int.csv") + +# Standardise synonyms/equivalents +#intensity[which(intensity$word=="deeply"),3] <- intensity[which(intensity$word=="extremely"),3] # add scale values for similar words +intensity[which(intensity$word=="high"),3] <- intensity[which(intensity$word=="highly"),3] +intensity[which(intensity$word=="definite"),3] <- intensity[which(intensity$word=="definitely"),3] +#intensity[which(intensity$word=="surely"),3] <- intensity[which(intensity$word=="certainly"),3] +intensity[which(intensity$word=="certain"),3] <- intensity[which(intensity$word=="certainly"),3] +#intensity[which(intensity$word=="utterly"),3] <- intensity[which(intensity$word=="completely"),3] +#intensity[which(intensity$word=="absolutely"),3] <- intensity[which(intensity$word=="completely"),3] +intensity[which(intensity$word=="urgent"),3] <- intensity[which(intensity$word=="urgently"),3] +#intensity[which(intensity$word=="vigorously"),3] <- intensity[which(intensity$word=="strongly"),3] +#intensity[which(intensity$word=="vigorous"),3] <- intensity[which(intensity$word=="strongly"),3] +#intensity[which(intensity$word=="huge"),3] <- intensity[which(intensity$word=="enormous"),3] +#intensity[which(intensity$word=="large"),3] <- intensity[which(intensity$word=="enormous"),3] +#intensity[which(intensity$word=="largest"),3] <- intensity[which(intensity$word=="enormous"),3] +#intensity[which(intensity$word=="big"),3] <- intensity[which(intensity$word=="enormous"),3] +#intensity[which(intensity$word=="biggest"),3] <- intensity[which(intensity$word=="enormous"),3] +#intensity[which(intensity$word=="global"),3] <- intensity[which(intensity$word=="everywhere"),3] +#intensity[which(intensity$word=="globally"),3] <- intensity[which(intensity$word=="everywhere"),3] +#intensity[which(intensity$word=="prevalent"),3] <- intensity[which(intensity$word=="pervasive"),3] +intensity[which(intensity$word=="extensively"),3] <- intensity[which(intensity$word=="extensive"),3] +#intensity[which(intensity$word=="tremendous"),3] <- intensity[which(intensity$word=="enormous"),3] +#intensity[which(intensity$word=="extraordinary"),3] <- intensity[which(intensity$word=="exceptional"),3] +intensity[which(intensity$word=="remarkably"),3] <- intensity[which(intensity$word=="remarkable"),3] +#intensity[which(intensity$word=="immense"),3] <- intensity[which(intensity$word=="enormous"),3] +#intensity[which(intensity$word=="vast"),3] <- intensity[which(intensity$word=="enormous"),3] +#intensity[which(intensity$word=="ultimate"),3] <- intensity[which(intensity$word=="enormous"),3] +#intensity[which(intensity$word=="ambitiously"),3] <- intensity[which(intensity$word=="determined"),3] +#intensity[which(intensity$word=="ambitious"),3] <- intensity[which(intensity$word=="determined"),3] +intensity[which(intensity$word=="realistically"),3] <- intensity[which(intensity$word=="realistic"),3] +#intensity[which(intensity$word=="more"),3] <- intensity[which(intensity$word=="moderately"),3] +intensity[which(intensity$word=="moderate"),3] <- intensity[which(intensity$word=="moderately"),3] +intensity[which(intensity$word=="substantial"),3] <- intensity[which(intensity$word=="substantially"),3] +#intensity[which(intensity$word=="lots"),3] <- intensity[which(intensity$word=="substantially"),3] +#intensity[which(intensity$word=="plenty"),3] <- intensity[which(intensity$word=="substantially"),3] +#intensity[which(intensity$word=="much"),3] <- intensity[which(intensity$word=="substantially"),3] +#intensity[which(intensity$word=="totally"),3] <- intensity[which(intensity$word=="fully"),3] +#intensity[which(intensity$word=="entirely"),3] <- intensity[which(intensity$word=="fully"),3] +#intensity[which(intensity$word=="far"),3] <- intensity[which(intensity$word=="substantially"),3] +intensity[which(intensity$word=="clearly"),3] <- intensity[which(intensity$word=="clear"),3] +#intensity[which(intensity$word=="least"),3] <- intensity[which(intensity$word=="almost"),3] +#intensity[which(intensity$word=="less"),3] <- intensity[which(intensity$word=="almost"),3] +#intensity[which(intensity$word=="small"),3] <- intensity[which(intensity$word=="limited"),3] +#intensity[which(intensity$word=="marginally"),3] <- intensity[which(intensity$word=="limited"),3] +#intensity[which(intensity$word=="minimum"),3] <- intensity[which(intensity$word=="minimal"),3] +#intensity[which(intensity$word=="weakly"),3] <- intensity[which(intensity$word=="slightly"),3] +intensity[which(intensity$word=="adequate"),3] <- intensity[which(intensity$word=="adequately"),3] +#intensity[which(intensity$word=="sufficient"),3] <- intensity[which(intensity$word=="enough"),3] +intensity[which(intensity$word=="near"),3] <- intensity[which(intensity$word=="nearly"),3] +#intensity[which(intensity$word=="some"),3] <- intensity[which(intensity$word=="modest"),3] +intensity[which(intensity$word=="slight"),3] <- intensity[which(intensity$word=="slightly"),3] +intensity[which(intensity$word=="reasonable"),3] <- intensity[which(intensity$word=="reasonably"),3] +#intensity[which(intensity$word=="wide"),3] <- intensity[which(intensity$word=="extensive"),3] +#intensity[which(intensity$word=="widely"),3] <- intensity[which(intensity$word=="extensive"),3] +#intensity[which(intensity$word=="widespread"),3] <- intensity[which(intensity$word=="extensive"),3] +intensity[which(intensity$word=="intensive"),3] <- intensity[which(intensity$word=="intense"),3] +intensity[which(intensity$word=="intensely"),3] <- intensity[which(intensity$word=="intense"),3] + +# Merge commitment adverbs and rescale coefficients +intensity <- full_join(intensity, comm_adv) %>% + mutate(Rescaled1 = scales::rescale((1-coefficient)/min(intensity$coefficient, + na.rm = TRUE), to = c(0.05, 1)), + Rescaled2 = scales::rescale((1-coefficient)/min(intensity$coefficient, + na.rm = TRUE), to = c(0.05, 2))) + +# # Frequency dictionary + +# Load original data +frequency <- read_csv("data_raw/freq.csv") + +# Standardise scores for synonyms/equivalents +frequency[which(frequency$word=="constant"),3] <- frequency[which(frequency$word=="constantly"),3] +frequency[which(frequency$word=="by the minute"),3] <- frequency[which(frequency$word=="hourly"),3] +frequency[which(frequency$word=="by the hour"),3] <- frequency[which(frequency$word=="hourly"),3] +frequency[which(frequency$word=="everyday"),3] <- frequency[which(frequency$word=="daily"),3] +frequency[which(frequency$word=="nightly"),3] <- frequency[which(frequency$word=="daily"),3] +frequency[which(frequency$word=="every night"),3] <- frequency[which(frequency$word=="daily"),3] +frequency[which(frequency$word=="persistent"),3] <- frequency[which(frequency$word=="persistently"),3] +frequency[which(frequency$word=="relentless"),3] <- frequency[which(frequency$word=="relentlessly"),3] +frequency[which(frequency$word=="incessant"),3] <- frequency[which(frequency$word=="incessantly"),3] +frequency[which(frequency$word=="unrelentingly"),3] <- frequency[which(frequency$word=="relentlessly"),3] +#frequency[which(frequency$word=="interminable"),3] <- frequency[which(frequency$word=="incessantly"),3] +#frequency[which(frequency$word=="interminably"),3] <- frequency[which(frequency$word=="incessantly"),3] +#frequency[which(frequency$word=="fortnightly"),3] <- frequency[which(frequency$word=="weekly"),3] +frequency[which(frequency$word=="yearly"),3] <- frequency[which(frequency$word=="annually"),3] +frequency[which(frequency$word=="every year"),3] <- frequency[which(frequency$word=="annually"),3] +frequency[which(frequency$word=="every hour"),3] <- frequency[which(frequency$word=="hourly"),3] +frequency[which(frequency$word=="every minute"),3] <- frequency[which(frequency$word=="hourly"),3] +frequency[which(frequency$word=="every week"),3] <- frequency[which(frequency$word=="weekly"),3] +frequency[which(frequency$word=="every month"),3] <- frequency[which(frequency$word=="monthly"),3] +#frequency[which(frequency$word=="normally"),3] <- frequency[which(frequency$word=="usually"),3] +frequency[which(frequency$word=="regular"),3] <- frequency[which(frequency$word=="regularly"),3] +frequency[which(frequency$word=="steady"),3] <- frequency[which(frequency$word=="steadily"),3] +frequency[which(frequency$word=="infrequent"),3] <- frequency[which(frequency$word=="infrequently"),3] +frequency[which(frequency$word=="progressive"),3] <- frequency[which(frequency$word=="progressively"),3] +frequency[which(frequency$word=="gradual"),3] <- frequency[which(frequency$word=="gradually"),3] +#frequency[which(frequency$word=="occasional"),3] <- frequency[which(frequency$word=="infrequently"),3] +#frequency[which(frequency$word=="occasionally"),3] <- frequency[which(frequency$word=="infrequently"),3] +frequency[which(frequency$word=="sporadic"),3] <- frequency[which(frequency$word=="sporadically"),3] +frequency[which(frequency$word=="irregular"),3] <- frequency[which(frequency$word=="irregularly"),3] +frequency[which(frequency$word=="intermittent"),3] <- frequency[which(frequency$word=="intermittently"),3] +frequency[which(frequency$word=="rare"),3] <- frequency[which(frequency$word=="rarely"),3] + +# Rescale coefficients +frequency <- frequency %>% + mutate(Rescaled1 = scales::rescale((1-coefficient)/min(frequency$coefficient, + na.rm = TRUE), to = c(0.05, 1)), + Rescaled2 = scales::rescale((1-coefficient)/min(frequency$coefficient, + na.rm = TRUE), to = c(0.05, 2))) + +# # Save the data as internal data +# # Note that the CAP Topics is another type of internal data saved in package +# # that should be (re)saved as well. + +usethis::use_data(CAP_topics, commitment, frequency, intensity, timing, + internal = TRUE, overwrite = TRUE) diff --git a/man/sim_urgency.Rd b/man/sim_urgency.Rd index 27b6bfde..0a6ad017 100644 --- a/man/sim_urgency.Rd +++ b/man/sim_urgency.Rd @@ -11,4 +11,10 @@ Simulating urgency } \examples{ sim_urgency() +sim_urgency(urgency = 0.5) +sim_urgency(urgency = 2.5) +sim_urgency(urgency = -2.5) +sim_urgency(commitment = 0.6) +sim_urgency(commitment = 0.6, intensity = 1.4) +sim_urgency(commitment = 0.6, intensity = 1.4, timing = 1.4) }