-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathtrain.py
43 lines (37 loc) · 1.38 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import numpy
numpy.random.seed(0)
import CDAE
import movie_lens
import metrics
# data
train_users, train_x, test_users, test_x = movie_lens.load_data()
train_x_users = numpy.array(train_users, dtype=numpy.int32).reshape(len(train_users), 1)
test_x_users = numpy.array(test_users, dtype=numpy.int32).reshape(len(test_users), 1)
# model
model = CDAE.create(I=train_x.shape[1], U=len(train_users)+1, K=50,
hidden_activation='relu', output_activation='sigmoid', q=0.50, l=0.01)
model.compile(loss='mean_absolute_error', optimizer='adam')
model.summary()
# train
history = model.fit(x=[train_x, train_x_users], y=train_x,
batch_size=128, nb_epoch=1000, verbose=1,
validation_data=[[test_x, test_x_users], test_x])
# predict
pred = model.predict(x=[train_x, numpy.array(train_users, dtype=numpy.int32).reshape(len(train_users), 1)])
pred = pred * (train_x == 0) # remove watched items from predictions
pred = numpy.argsort(pred)
for n in range(1, 11):
sr = metrics.success_rate(pred[:, -n:], test_x)
print("Success Rate at {:d}: {:f}".format(n, sr))
'''
Success Rate at 1: 27.783669
Success Rate at 2: 39.236479
Success Rate at 3: 45.281018
Success Rate at 4: 49.310710
Success Rate at 5: 51.219512
Success Rate at 6: 53.234358
Success Rate at 7: 54.188759
Success Rate at 8: 55.673383
Success Rate at 9: 56.733828
Success Rate at 10: 57.688229
'''