-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_3Dviz_volumetric_smpl_DMTEST.py
executable file
·1104 lines (798 loc) · 50 KB
/
evaluate_3Dviz_volumetric_smpl_DMTEST.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import numpy as np
import random
import copy
import lib_pyrender as libRender
import lib_pyrender as libPyRender
from opendr.renderer import ColoredRenderer
from opendr.renderer import DepthRenderer
from opendr.lighting import LambertianPointLight
from opendr.camera import ProjectPoints
from smpl.smpl_webuser.serialization import load_model
from cv_bridge import CvBridge, CvBridgeError
from util import batch_global_rigid_transformation, batch_rodrigues, batch_lrotmin, reflect_pose
import cPickle as pkl
def load_pickle(filename):
with open(filename, 'rb') as f:
return pickle.load(f)
# some_file.py
import sys
# insert at 1, 0 is the script path (or '' in REPL)
sys.path.insert(1, '/home/henry/git/volumetric_pose_gen/convnets')
#volumetric pose gen libraries
import lib_visualization as libVisualization
import lib_kinematics as libKinematics
from multipose_lib import ArTagLib
from multipose_lib import VizLib
from process_yash_data import ProcessYashData
from preprocessing_lib import PreprocessingLib
from tensorprep_lib import TensorPrepLib
from time import sleep
import rospy
import roslib
from sensor_msgs.msg import PointCloud2
from hrl_msgs.msg import FloatArrayBare
from ar_track_alvar_msgs.msg import AlvarMarkers
import sensor_msgs.point_cloud2
from scipy.stats import mode
import os.path as osp
import imutils
from scipy.ndimage.filters import gaussian_filter
#ROS
#import rospy
#import tf
DATASET_CREATE_TYPE = 1
import cv2
from camera import Camera
import math
from random import shuffle
import torch
import torch.nn as nn
import tensorflow as tensorflow
import cPickle as pickle
VERT_CUT, HORIZ_CUT = 0, 50
pre_VERT_CUT = 40
#IKPY
from ikpy.chain import Chain
from ikpy.link import OriginLink, URDFLink
#MISC
import time as time
import matplotlib.pyplot as plt
#from mpl_toolkits.mplot3d import Axes3D
#hmr
from hmr.src.tf_smpl.batch_smpl import SMPL
SHOW_SMPL_EST = True
#PARTICIPANT = "S196"#"S151"
POSE_TYPE = "1"
MAT_SIZE = (64, 27)
PC_WRT_ARTAG_ADJ = [0.11, -0.02, 0.07]
ARTAG_WRT_PMAT = [0.08, 0.05, 0.0]
DROPOUT = False
CAM_BED_DIST = 1.66
import sys
sys.path.insert(0, '/home/henry/git/volumetric_pose_gen/convnets')
from unpack_batch_lib import UnpackBatchLib
import convnet_resub as convnet
from torch.autograd import Variable
if False:#torch.cuda.is_available():
# Use for GPU
GPU = True
dtype = torch.cuda.FloatTensor
print '######################### CUDA is available! #############################'
else:
# Use for CPU
GPU = False
dtype = torch.FloatTensor
print '############################## USING CPU #################################'
class Viz3DPose():
def __init__(self, filepath_prefix, participant_directory, htwt):
##load participant info
participant_info = load_pickle(participant_directory+"/participant_info.p")
print "participant directory: ", participant_directory
for entry in participant_info:
print entry, participant_info[entry]
self.gender = participant_info['gender']
self.height_in = participant_info['height_in']
self.weight_lbs = participant_info['weight_lbs']
self.adj_2 = participant_info['adj_2']
#participant_directory2 = "/media/henry/multimodal_data_2/CVPR2020_study/S187"
#participant_info2 = load_pickle(participant_directory2+"/participant_info.p")
self.calibration_optim_values = participant_info['cal_func']
#self.calibration_optim_values = [-0.171537, -4.05880298, -1.51663182, 0.08712198, 0.03664871, 0.09108604, 0.67524232]
self.tf_corners = participant_info['corners']
## Load SMPL model
self.filepath_prefix = filepath_prefix
self.index_queue = []
if self.gender == "m":
model_path = filepath_prefix+'/git/SMPL_python_v.1.0.0/smpl/models/basicModel_m_lbs_10_207_0_v1.0.0.pkl'
else:
model_path = filepath_prefix+'/git/SMPL_python_v.1.0.0/smpl/models/basicModel_f_lbs_10_207_0_v1.0.0.pkl'
self.reset_pose = False
self.m = load_model(model_path)
self.marker0, self.marker1, self.marker2, self.marker3 = None, None, None, None
self.pressure = None
self.markers = [self.marker0, self.marker1, self.marker2, self.marker3]
self.point_cloud_array = np.array([[0., 0., 0.]])
self.pc_isnew = False
self.CTRL_PNL = {}
self.CTRL_PNL['batch_size'] = 1
self.CTRL_PNL['loss_vector_type'] = 'anglesDC'
self.CTRL_PNL['verbose'] = False
self.CTRL_PNL['num_epochs'] = 101
self.CTRL_PNL['incl_inter'] = True
self.CTRL_PNL['shuffle'] = False
self.CTRL_PNL['incl_ht_wt_channels'] = htwt
self.CTRL_PNL['incl_pmat_cntct_input'] = True
self.CTRL_PNL['num_input_channels'] = 3
self.CTRL_PNL['GPU'] = GPU
self.CTRL_PNL['dtype'] = dtype
self.CTRL_PNL['repeat_real_data_ct'] = 1
self.CTRL_PNL['regr_angles'] = 1
self.CTRL_PNL['dropout'] = DROPOUT
self.CTRL_PNL['depth_map_labels'] = False
self.CTRL_PNL['depth_map_output'] = True
self.CTRL_PNL['depth_map_input_est'] = False#rue #do this if we're working in a two-part regression
self.CTRL_PNL['adjust_ang_from_est'] = self.CTRL_PNL['depth_map_input_est'] #holds betas and root same as prior estimate
self.CTRL_PNL['clip_sobel'] = True
self.CTRL_PNL['clip_betas'] = True
self.CTRL_PNL['mesh_bottom_dist'] = True
self.CTRL_PNL['full_body_rot'] = True#False
self.CTRL_PNL['normalize_input'] = True#False
self.CTRL_PNL['all_tanh_activ'] = True#False
self.CTRL_PNL['L2_contact'] = True#False
self.CTRL_PNL['pmat_mult'] = int(5)
self.CTRL_PNL['cal_noise'] = False
self.CTRL_PNL['output_only_prev_est'] = False
self.CTRL_PNL['double_network_size'] = False
self.CTRL_PNL['first_pass'] = True
if self.CTRL_PNL['cal_noise'] == True:
self.CTRL_PNL['incl_pmat_cntct_input'] = False #if there's calibration noise we need to recompute this every batch
self.CTRL_PNL['clip_sobel'] = False
if self.CTRL_PNL['incl_pmat_cntct_input'] == True:
self.CTRL_PNL['num_input_channels'] += 1
if self.CTRL_PNL['depth_map_input_est'] == True: #for a two part regression
self.CTRL_PNL['num_input_channels'] += 3
self.CTRL_PNL['num_input_channels_batch0'] = np.copy(self.CTRL_PNL['num_input_channels'])
if self.CTRL_PNL['incl_ht_wt_channels'] == True:
self.CTRL_PNL['num_input_channels'] += 2
if self.CTRL_PNL['cal_noise'] == True:
self.CTRL_PNL['num_input_channels'] += 1
pmat_std_from_mult = ['N/A', 11.70153502792190, 19.90905848383454, 23.07018866032369, 0.0, 25.50538629767412]
if self.CTRL_PNL['cal_noise'] == False:
sobel_std_from_mult = ['N/A', 29.80360490415032, 33.33532963163579, 34.14427844692501, 0.0, 34.86393494050921]
else:
sobel_std_from_mult = ['N/A', 45.61635847182483, 77.74920396659292, 88.89398421073700, 0.0, 97.90075708182506]
self.CTRL_PNL['norm_std_coeffs'] = [1./41.80684362163343, #contact
1./16.69545796387731, #pos est depth
1./45.08513083167194, #neg est depth
1./43.55800622930469, #cm est
1./pmat_std_from_mult[int(self.CTRL_PNL['pmat_mult'])], #pmat x5
1./sobel_std_from_mult[int(self.CTRL_PNL['pmat_mult'])], #pmat sobel
1./1.0, #bed height mat
1./1.0, #OUTPUT DO NOTHING
1./1.0, #OUTPUT DO NOTHING
1. / 30.216647403350, #weight
1. / 14.629298141231] #height
self.CTRL_PNL['filepath_prefix'] = '/home/henry/'
if self.CTRL_PNL['depth_map_output'] == True: # we need all the vertices if we're going to regress the depth maps
self.verts_list = "all"
self.TPL = TensorPrepLib()
self.count = 0
self.CTRL_PNL['filepath_prefix'] = '/home/henry/'
self.CTRL_PNL['aws'] = False
self.CTRL_PNL['lock_root'] = False
self.bridge = CvBridge()
self.color, self.depth_r, self.pressure = 0, 0, 0
self.kinect_im_size = (960, 540)
self.pressure_im_size = (64, 27)
self.pressure_im_size_required = (64, 27)
# initialization of kinect and thermal cam calibrations from YAML files
dist_model = 'rational_polynomial'
self.kcam = Camera('kinect', self.kinect_im_size, dist_model)
self.kcam.init_from_yaml(osp.expanduser('~/catkin_ws/src/multimodal_pose/calibrations/kinect.yaml'))
# we are at qhd not hd so need to cut the focal lengths and centers in half
self.kcam.K[0:2, 0:3] = self.kcam.K[0:2, 0:3] / 2
# print self.kcam.K
self.new_K_kin, roi = cv2.getOptimalNewCameraMatrix(self.kcam.K, self.kcam.D, self.kinect_im_size, 1,
self.kinect_im_size)
#print self.new_K_kin
self.drawing = False # true if mouse is pressed
self.mode = True # if True, draw rectangle. Press 'm' to toggle to curve
self.ix, self.iy = -1, -1
self.label_index = 0
self.coords_from_top_left = [0, 0]
self.overall_image_scale_amount = 0.85
self.depthcam_midpixel = [0, 0]
self.depthcam_midpixel2 = [0, 0]
self.select_new_calib_corners = {}
self.select_new_calib_corners["lay"] = True
self.select_new_calib_corners["sit"] = True
self.calib_corners = {}
self.calib_corners["lay"] = 8 * [[0, 0]]
self.calib_corners["sit"] = 8 * [[0, 0]]
self.final_dataset = {}
def load_next_file(self, newpath):
print "loading existing npy files in the new path...."
time_orig = time.time()
self.color_all = np.load(newpath+"/color.npy")
self.depth_r_all = np.load(newpath+"/depth_r.npy")
self.pressure_all = np.load(newpath+"/pressure.npy")
self.bedstate_all = np.load(newpath+"/bedstate.npy")
self.markers_all = np.load(newpath+"/markers.npy", allow_pickle=True)
self.time_stamp_all = np.load(newpath+"/time_stamp.npy")
self.point_cloud_autofil_all = np.load(newpath+"/point_cloud.npy")
#self.config_code_all = np.load(newpath+"/config_code.npy")
print "Finished. Time taken: ", time.time() - time_orig
def transform_selected_points(self, image, camera_alpha_vert, camera_alpha_horiz, angle, right, up, h_scale_cut, v_scale_cut, coords_subset):
h_scale = h_scale_cut[0]
h_cut = h_scale_cut[1]
v_scale = v_scale_cut[0]
v_cut = v_scale_cut[1]
tf_coords_subset = np.copy(coords_subset)
#print camera_alpha_vert, camera_alpha_horiz, HORIZ_CUT, VERT_CUT, pre_VERT_CUT, right
h = VizLib().get_new_K_kin_homography(camera_alpha_vert, camera_alpha_horiz, self.new_K_kin, flip_vert=-1)
for i in range(4):
new_coords = np.matmul(h, np.array([tf_coords_subset[i, 1]+pre_VERT_CUT, tf_coords_subset[i, 0]+HORIZ_CUT, 1]))
new_coords = new_coords/new_coords[2]
tf_coords_subset[i, 0] = new_coords[1] - HORIZ_CUT
tf_coords_subset[i, 1] = new_coords[0] - pre_VERT_CUT
tf_coords_subset[i, 1] = (tf_coords_subset[i, 1] - image.shape[0] / 2) * np.cos(np.deg2rad(angle)) - (
tf_coords_subset[i, 0] - image.shape[1] / 2) * np.sin(np.deg2rad(angle)) + image.shape[
0] / 2 - up
tf_coords_subset[i, 0] = (tf_coords_subset[i, 1] - image.shape[0] / 2) * np.sin(np.deg2rad(angle)) + (
tf_coords_subset[i, 0] - image.shape[1] / 2) * np.cos(np.deg2rad(angle)) + image.shape[
1] / 2 - right
tf_coords_subset[i, 0] = h_scale * (tf_coords_subset[i][0] + h_cut) - h_cut
tf_coords_subset[i, 1] = v_scale * (tf_coords_subset[i][1] + v_cut) - v_cut
image[int(tf_coords_subset[i][1] + 0.5) - 2:int(tf_coords_subset[i][1] + 0.5) + 2,
int(tf_coords_subset[i][0] + 0.5) - 2:int(tf_coords_subset[i][0] + 0.5) + 2, :] = 255
return tf_coords_subset, image
def rotate_selected_head_points(self, pressure_im_size_required, u_c_pmat, v_c_pmat, u_p_bend, v_p_bend, u_p_bend_calib, v_p_bend_calib):
low_vert = np.rint(v_c_pmat[2]).astype(np.uint16)
low_horiz = np.rint(u_c_pmat[1]).astype(np.uint16)
legs_bend_loc2 = pressure_im_size_required[0]*20/64 + low_horiz
HEAD_BEND_TAXEL = 41 # measured from the bottom of the pressure mat
LEGS_BEND2_TAXEL = 20 #measured from the bottom of the pressure mat
head_bend_loc = pressure_im_size_required[0]*HEAD_BEND_TAXEL/64 + low_horiz
head_points_L = [np.rint(v_p_bend_calib[0]).astype(np.uint16) - 3 - HORIZ_CUT + 4,
380-np.rint(u_p_bend_calib[0] - head_bend_loc - 3).astype(np.uint16) - pre_VERT_CUT + 4] # np.copy([head_points1[2][0] - decrease_from_orig_len, head_points1[2][1] - increase_across_pmat])
head_points_R = [np.rint(v_p_bend_calib[1]).astype(np.uint16) + 4 - HORIZ_CUT - 4,
380-np.rint(u_p_bend_calib[1] - head_bend_loc - 3).astype(np.uint16) - pre_VERT_CUT + 4] # np.copy([head_points1[3][0] - decrease_from_orig_len, head_points1[3][1] + increase_across_pmat])
legs_points_pre = [pressure_im_size_required[0] * 64 / 64 - pressure_im_size_required[0] * (64 - LEGS_BEND2_TAXEL) / 64, low_vert] # happens at legs bend2
legs_points_L = [np.rint(v_p_bend[4]).astype(np.uint16) - 3 - HORIZ_CUT + 4,
head_bend_loc - pressure_im_size_required[0] * HEAD_BEND_TAXEL / 64 + 560] # happens at legs bottom
legs_points_R = [np.rint(v_p_bend[5]).astype(np.uint16) + 4 - HORIZ_CUT - 4,
head_bend_loc - pressure_im_size_required[0] * HEAD_BEND_TAXEL / 64 + 560] # happens at legs bottom
return [head_points_L, head_points_R, legs_points_L, legs_points_R]
def get_pc_from_depthmap(self, bed_angle, zero_location):
# print zero_location, 'zero loc'
#transform 3D pc using homography!
#bed_angle = 0.
#x and y are pixel selections
zero_location += 0.5
zero_location = zero_location.astype(int)
x = np.arange(0, 440).astype(float)
x = np.tile(x, (880, 1))
y = np.arange(0, 880).astype(float)
y = np.tile(y, (440, 1)).T
x_coord_from_camcenter = x - self.depthcam_midpixel[0]
y_coord_from_camcenter = y - self.depthcam_midpixel[1]
#here try transforming the 2D representation before we move on to 3D
depth_value = self.depth_r_orig.astype(float) / 1000
f_x, f_y, c_x, c_y = self.new_K_kin[0, 0], self.new_K_kin[1, 1], self.new_K_kin[0, 2], self.new_K_kin[1, 2]
X = (x_coord_from_camcenter) * depth_value / f_y
Y = (y_coord_from_camcenter) * depth_value / f_x
x_coord_from_camcenter_single = zero_location[0] - self.depthcam_midpixel[0]
y_coord_from_camcenter_single = zero_location[1] - self.depthcam_midpixel[1]
X_single = (x_coord_from_camcenter_single) * CAM_BED_DIST / f_y
Y_single = (y_coord_from_camcenter_single) * CAM_BED_DIST / f_x
#print X_single, Y_single, 'Y single'
X -= X_single
Y -= (Y_single)
Y = -Y
Z = -depth_value + CAM_BED_DIST
point_cloud = np.stack((Y, X, -Z))
point_cloud = np.swapaxes(point_cloud, 0, 2)
point_cloud = np.swapaxes(point_cloud, 0, 1)
point_cloud_red = np.zeros((point_cloud.shape[0]/10, point_cloud.shape[1]/10, 3))
for j in range(point_cloud_red.shape[0]):
for i in range(point_cloud_red.shape[1]):
point_cloud_red[j, i, :] = np.median(np.median(point_cloud[j*10:(j+1)*10, i*10:(i+1)*10, :], axis = 0), axis = 0)
self.point_cloud_red = point_cloud_red.reshape(-1, 3)
self.point_cloud = point_cloud.reshape(-1, 3)
self.point_cloud[:, 0] += PC_WRT_ARTAG_ADJ[0] + ARTAG_WRT_PMAT[0]
self.point_cloud[:, 1] += PC_WRT_ARTAG_ADJ[1] + ARTAG_WRT_PMAT[1]
self.point_cloud[:, 2] += PC_WRT_ARTAG_ADJ[2] + ARTAG_WRT_PMAT[2]
#print point_cloud.shape, 'pc shape'
#print point_cloud_red.shape
return X, Y, Z
def trim_pc_sides(self, tf_corners, camera_alpha_vert, camera_alpha_horiz, h, kinect_rot_cw):
f_x, f_y, c_x, c_y = self.new_K_kin[0, 0], self.new_K_kin[1, 1], self.new_K_kin[0, 2], self.new_K_kin[1, 2]
#for i in range(3):
# print np.min(self.point_cloud_autofil[:, i]), np.max(self.point_cloud_autofil[:, i])
self.point_cloud_autofil[:, 0] = self.point_cloud_autofil[:, 0]# - 0.17 - 0.036608
#CALIBRATE THE POINT CLOUD HERE
pc_autofil_red = np.copy(self.point_cloud_autofil)
if pc_autofil_red.shape[0] == 0:
pc_autofil_red = np.array([[0.0, 0.0, 0.0]])
#warp it by the homography i.e. rotate a bit
pc_autofil_red -=[0.0, 0.0, CAM_BED_DIST]
theta_1 = np.arctan((camera_alpha_vert-1)*CAM_BED_DIST/(270*CAM_BED_DIST/f_y))/2 #short side
short_side_rot = np.array([[1.0, 0.0, 0.0], [0.0, np.cos(theta_1), -np.sin(theta_1)], [0.0, np.sin(theta_1), np.cos(theta_1)]])
pc_autofil_red = np.matmul(pc_autofil_red, short_side_rot)#[0:3, :]
theta_2 = np.arctan((1-camera_alpha_horiz)*CAM_BED_DIST/(270*CAM_BED_DIST/f_x))/2 #long side
long_side_rot = np.array([[np.cos(theta_2), 0.0, np.sin(theta_2)], [0.0, 1.0, 0.0], [-np.sin(theta_2), 0.0, np.cos(theta_2)]])
pc_autofil_red = np.matmul(pc_autofil_red, long_side_rot)#[0:3, :]
pc_autofil_red +=[0.0, 0.0, CAM_BED_DIST]
#add the warping translation
X_single1 = h[0, 2] * CAM_BED_DIST / f_y
Y_single1 = h[1, 2] * CAM_BED_DIST / f_x
print X_single1, Y_single1
pc_autofil_red += [-Y_single1/2, -X_single1/2, 0.0]
#rotate normal to the bed
angle = kinect_rot_cw*np.pi/180.
z_rot_mat = np.array([[np.cos(angle), -np.sin(angle), 0], [np.sin(angle), np.cos(angle), 0], [0.0, 0.0, 1.0]])
pc_autofil_red = np.matmul(pc_autofil_red, z_rot_mat)#[0:3, :]
#translate by the picture shift amount in the x and y directions
#print np.min(pc_autofil_red[:, 0]), np.max(pc_autofil_red[:, 0]), "Y min max"
#print self.tf_corners[2], self.depthcam_midpixel2
#translate from the 0,0 being the camera to 0,0 being the left corner of the bed measured by the clicked point
zero_location = np.copy(self.tf_corners[2]) #TF corner needs to be manipulated!
x_coord_from_camcenter_single = zero_location[0] - self.depthcam_midpixel2[0]
y_coord_from_camcenter_single = zero_location[1] - self.depthcam_midpixel2[1]
X_single2 = (x_coord_from_camcenter_single) * CAM_BED_DIST / f_y #shift dim
Y_single2 = (y_coord_from_camcenter_single) * CAM_BED_DIST / f_x #long dim
pc_autofil_red += [Y_single2, -X_single2, -CAM_BED_DIST]
#adjust to fit to the lower left corner step 2
pc_autofil_red += [self.adj_2[0], self.adj_2[1], 0.0]
#pc_autofil_red = np.swapaxes(np.array(self.pc_all).reshape(3, 440*880), 0, 1)
#print np.min(pc_autofil_red[:, 0]), np.max(pc_autofil_red[:, 0]), "Y min max"
#cut off everything that's not overlying the bed.
pc_autofil_red = pc_autofil_red[pc_autofil_red[:, 1] > 0.0, :]
pc_autofil_red = pc_autofil_red[pc_autofil_red[:, 1] < 0.0286 * 27, :]
pc_autofil_red = pc_autofil_red[pc_autofil_red[:, 0] > 0.0, :] #up and down bed
pc_autofil_red = pc_autofil_red[pc_autofil_red[:, 0] < 0.0286 * 64 * 1.04, :] #up and down bed
#adjust it by a half taxel width
#pc_autofil_red += [0.0143, 0.0143, 0.0]
return pc_autofil_red
def estimate_pose(self, pmat, bedangle, markers_c, model, model2, tf_corners, camera_alpha_vert, camera_alpha_horiz, h, kinect_rot_cw):
mat_size = (64, 27)
pmat = np.fliplr(np.flipud(np.clip(pmat.reshape(MAT_SIZE)*float(self.CTRL_PNL['pmat_mult']), a_min=0, a_max=100)))
if self.CTRL_PNL['cal_noise'] == False:
pmat = gaussian_filter(pmat, sigma=0.5)
pmat_stack = PreprocessingLib().preprocessing_create_pressure_angle_stack_realtime(pmat, 0.0, mat_size)
if self.CTRL_PNL['cal_noise'] == False:
pmat_stack = np.clip(pmat_stack, a_min=0, a_max=100)
pmat_stack = np.array(pmat_stack)
if self.CTRL_PNL['incl_pmat_cntct_input'] == True:
pmat_contact = np.copy(pmat_stack[:, 0:1, :, :])
pmat_contact[pmat_contact > 0] = 100
pmat_stack = np.concatenate((pmat_contact, pmat_stack), axis=1)
weight_input = self.weight_lbs / 2.20462
height_input = (self.height_in * 0.0254 - 1) * 100
batch1 = np.zeros((1, 162))
if self.gender == 'f':
batch1[:, 157] += 1
elif self.gender == 'm':
batch1[:, 158] += 1
batch1[:, 160] += weight_input
batch1[:, 161] += height_input
if self.CTRL_PNL['normalize_input'] == True:
self.CTRL_PNL['depth_map_input_est'] = False
pmat_stack = self.TPL.normalize_network_input(pmat_stack, self.CTRL_PNL)
batch1 = self.TPL.normalize_wt_ht(batch1, self.CTRL_PNL)
pmat_stack = torch.Tensor(pmat_stack)
batch1 = torch.Tensor(batch1)
if DROPOUT == True:
pmat_stack = pmat_stack.repeat(25, 1, 1, 1)
batch1 = batch1.repeat(25, 1)
batch = []
batch.append(pmat_stack)
batch.append(batch1)
NUMOFOUTPUTDIMS = 3
NUMOFOUTPUTNODES_TRAIN = 24
self.output_size_train = (NUMOFOUTPUTNODES_TRAIN, NUMOFOUTPUTDIMS)
self.CTRL_PNL['adjust_ang_from_est'] = False
scores, INPUT_DICT, OUTPUT_DICT = UnpackBatchLib().unpackage_batch_kin_pass(batch, False, model, self.CTRL_PNL)
mdm_est_pos = OUTPUT_DICT['batch_mdm_est'].clone().unsqueeze(1) / 16.69545796387731
mdm_est_neg = OUTPUT_DICT['batch_mdm_est'].clone().unsqueeze(1) / 45.08513083167194
mdm_est_pos[mdm_est_pos < 0] = 0
mdm_est_neg[mdm_est_neg > 0] = 0
mdm_est_neg *= -1
cm_est = OUTPUT_DICT['batch_cm_est'].clone().unsqueeze(1) * 100 / 43.55800622930469
# 1. / 16.69545796387731, # pos est depth
# 1. / 45.08513083167194, # neg est depth
# 1. / 43.55800622930469, # cm est
sc_sample1 = OUTPUT_DICT['batch_targets_est'].clone()
sc_sample1 = sc_sample1[0, :].squeeze() / 1000
sc_sample1 = sc_sample1.view(self.output_size_train)
#print sc_sample1
if model2 is not None:
print "Using model 2"
batch_cor = []
batch_cor.append(torch.cat((pmat_stack[:, 0:1, :, :],
mdm_est_pos.type(torch.FloatTensor),
mdm_est_neg.type(torch.FloatTensor),
cm_est.type(torch.FloatTensor),
pmat_stack[:, 1:, :, :]), dim=1))
if self.CTRL_PNL['full_body_rot'] == False:
batch_cor.append(torch.cat((batch1,
OUTPUT_DICT['batch_betas_est'].cpu(),
OUTPUT_DICT['batch_angles_est'].cpu(),
OUTPUT_DICT['batch_root_xyz_est'].cpu()), dim=1))
elif self.CTRL_PNL['full_body_rot'] == True:
batch_cor.append(torch.cat((batch1,
OUTPUT_DICT['batch_betas_est'].cpu(),
OUTPUT_DICT['batch_angles_est'].cpu(),
OUTPUT_DICT['batch_root_xyz_est'].cpu(),
OUTPUT_DICT['batch_root_atan2_est'].cpu()), dim=1))
self.CTRL_PNL['adjust_ang_from_est'] = True
scores, INPUT_DICT, OUTPUT_DICT = UnpackBatchLib().unpackage_batch_kin_pass(batch_cor, False, model2,
self.CTRL_PNL)
self.CTRL_PNL['first_pass'] = False
# print betas_est, root_shift_est, angles_est
if self.CTRL_PNL['dropout'] == True:
#print OUTPUT_DICT['verts'].shape
smpl_verts = np.mean(OUTPUT_DICT['verts'], axis = 0)
dropout_variance = np.std(OUTPUT_DICT['verts'], axis=0)
dropout_variance = np.linalg.norm(dropout_variance, axis = 1)
else:
smpl_verts = OUTPUT_DICT['verts'][0, :, :]
dropout_variance = None
self.RESULTS_DICT['betas'].append(OUTPUT_DICT['batch_betas_est_post_clip'].cpu().numpy()[0])
smpl_verts = np.concatenate((smpl_verts[:, 1:2] - 0.286 + 0.0143, smpl_verts[:, 0:1] - 0.286 + 0.0143, 0.0 -smpl_verts[:, 2:3]), axis = 1)
smpl_faces = np.array(self.m.f)
pc_autofil_red = self.trim_pc_sides(tf_corners, camera_alpha_vert, camera_alpha_horiz, h, kinect_rot_cw) #this is the point cloud
q = OUTPUT_DICT['batch_mdm_est'].data.numpy().reshape(OUTPUT_DICT['batch_mdm_est'].size()[0], 64, 27) * -1
q = np.mean(q, axis = 0)
camera_point = [1.09898028, 0.46441343, -CAM_BED_DIST]
if SHOW_SMPL_EST == False:
smpl_verts *= 0.001
#print smpl_verts
viz_type = "3D"
self.RESULTS_DICT['body_roll_rad'].append(float(OUTPUT_DICT['batch_angles_est'][0, 1]))
if viz_type == "2D":
from visualization_lib import VisualizationLib
if model2 is not None:
self.im_sample = INPUT_DICT['batch_images'][0, 4:5,:].squeeze() * 11.70153502792190#25.50538629767412# # normalizing_std_constants[4]*5. #pmat
self.im_sample2 = np.clip(INPUT_DICT['batch_images'][0, 4:5,:].squeeze() * 25.50538629767412*5, 0, 100) # normalizing_std_constants[4]*5. #pmat
self.im_sample3 = np.clip(INPUT_DICT['batch_images'][0, 4:5,:].squeeze() * 25.50538629767412*20, 0, 100) # normalizing_std_constants[4]*5. #pmat
else:
self.im_sample = INPUT_DICT['batch_images'][0, 1:,:].squeeze() * 20. # normalizing_std_constants[4]*5. #pmat
self.im_sample_ext = INPUT_DICT['batch_images'][0, 0:, :].squeeze() * 20. # normalizing_std_constants[0] #pmat contact
# self.im_sample_ext2 = INPUT_DICT['batch_images'][im_display_idx, 2:, :].squeeze()*20.#normalizing_std_constants[4] #sobel
self.im_sample_ext3 = OUTPUT_DICT['batch_mdm_est'][0, :, :].squeeze().unsqueeze(0) * -1 # est depth output
# print scores[0, 10:16], 'scores of body rot'
# print self.im_sample.size(), self.im_sample_ext.size(), self.im_sample_ext2.size(), self.im_sample_ext3.size()
# self.publish_depth_marker_array(self.im_sample_ext3)
self.tar_sample = INPUT_DICT['batch_targets']
self.tar_sample = self.tar_sample[0, :].squeeze() / 1000
sc_sample = OUTPUT_DICT['batch_targets_est'].clone()
sc_sample = sc_sample[0, :].squeeze() / 1000
sc_sample = sc_sample.view(self.output_size_train)
print np.max(self.im_sample), np.max(self.im_sample2), np.max(self.im_sample3), 'max'
print np.sum(self.im_sample), np.sum(self.im_sample2), np.sum(self.im_sample3), 'sums'
#print np.shape(self.im_sample3)
VisualizationLib().visualize_pressure_map(self.im_sample, None, None, #sc_sample1, sc_sample,
self.im_sample2, None, None,
self.im_sample3, None, None, #, self.tar_sample_val, self.sc_sample_val,
block=False)
time.sleep(4)
elif viz_type == "3D":
print np.min(smpl_verts[:, 0]), np.max(smpl_verts[:, 0])
print np.min(smpl_verts[:, 1]), np.max(smpl_verts[:, 1])
print np.min(smpl_verts[:, 2]), np.max(smpl_verts[:, 2])
#render everything
self.RESULTS_DICT = self.pyRender.render_mesh_pc_bed_pyrender_everything(smpl_verts, smpl_faces, camera_point,
bedangle, self.RESULTS_DICT,
pc = pc_autofil_red, pmat = pmat, smpl_render_points = False,
markers = [[0.0, 0.0, 0.0],[0.0, 1.5, 0.0],[0.0, 0.0, 0.0],[0.0, 0.0, 0.0]],
dropout_variance = dropout_variance)
#render in 3D pyrender with pressure mat
#self.pyRender.render_mesh_pc_bed_pyrender(smpl_verts, smpl_faces, camera_point, bedangle,
# pc = None, pmat = pmat, smpl_render_points = False,
# facing_cam_only=False, viz_type = None,
# markers = None, segment_limbs=False)
#render in 3D pyrender with segmented limbs
#self.pyRender.render_mesh_pc_bed_pyrender(smpl_verts, smpl_faces, camera_point, bedangle,
# pc = None, pmat = None, smpl_render_points = False,
# facing_cam_only=False, viz_type = None,
# markers = None, segment_limbs=True)
#render the error of point cloud points relative to verts
#self.Render.eval_dist_render_open3d(smpl_verts, smpl_faces, pc_autofil_red, viz_type = 'pc_error',
# camera_point = camera_point, segment_limbs=False)
#self.pyRender.render_mesh_pc_bed_pyrender(smpl_verts, smpl_faces, camera_point, bedangle,
# pc = pc_autofil_red, pmat = None, smpl_render_points = False,
# facing_cam_only=True, viz_type = 'pc_error',
# markers = None, segment_limbs=False)
#render the error of verts relative to point cloud points
#self.Render.eval_dist_render_open3d(smpl_verts, smpl_faces, pc_autofil_red, viz_type = 'mesh_error',
# camera_point = camera_point, segment_limbs=False)
#self.pyRender.render_mesh_pc_bed_pyrender(smpl_verts, smpl_faces, camera_point, bedangle,
# pc = pc_autofil_red, pmat = None, smpl_render_points = False,
# facing_cam_only=True, viz_type = 'mesh_error',
# markers = None, segment_limbs=False)
time.sleep(1)
self.point_cloud_array = None
#dss = dart_skel_sim.DartSkelSim(render=True, m=self.m, gender = gender, posture = posture, stiffness = stiffness, shiftSIDE = shape_pose_vol[4], shiftUD = shape_pose_vol[5], filepath_prefix=self.filepath_prefix, add_floor = False)
#dss.run_simulation(10000)
#generator.standard_render()
#print self.RESULTS_DICT['v_limb_to_gt_err']
#print self.RESULTS_DICT['precision']
#print np.mean(self.RESULTS_DICT['precision'])
def evaluate_data(self, filename1, filename2=None):
#self.Render = libRender.pyRenderMesh(render = False)
self.pyRender = libPyRender.pyRenderMesh(render = False)
#model = torch.load(filename1, map_location={'cuda:5': 'cuda:0'})
if GPU == True:
for i in range(0, 8):
try:
model = torch.load(filename1, map_location={'cuda:'+str(i):'cuda:0'})
if self.CTRL_PNL['dropout'] == True:
model = model.cuda().train()
else:
model = model.cuda().eval()
break
except:
pass
if filename2 is not None:
for i in range(0, 8):
try:
model2 = torch.load(filename2, map_location={'cuda:'+str(i):'cuda:0'})
if self.CTRL_PNL['dropout'] == True:
model2 = model2.cuda().train()
else:
model2 = model2.cuda().eval()
break
except:
pass
else:
model2 = None
else:
print filename1
model = torch.load(filename1, map_location='cpu')
if self.CTRL_PNL['dropout'] == True:
model = model.train()
else:
model = model.eval()
if filename2 is not None:
model2 = torch.load(filename2, map_location='cpu')
if self.CTRL_PNL['dropout'] == True:
model2 = model2.train()
else:
model2 = model2.eval()
else:
model2 = None
#function_input = np.array(function_input)*np.array([10, 10, 10, 10, 10, 10, 0.1, 0.1, 0.1, 0.1, 1])
#function_input += np.array([2.2, 32, -1, 1.2, 32, -5, 1.0, 1.0, 0.96, 0.95, 0.8])
function_input = np.array(self.calibration_optim_values)*np.array([10, 10, 10, 0.1, 0.1, 0.1, 0.1])
function_input += np.array([1.2, 32, -5, 1.0, 1.0, 0.96, 0.95])
kinect_rotate_angle = function_input[3-3]
kinect_shift_up = int(function_input[4-3])# - 40
kinect_shift_right = int(function_input[5-3])# - 20
camera_alpha_vert = function_input[6-3]
camera_alpha_horiz = function_input[7-3]
pressure_horiz_scale = function_input[8-3]
pressure_vert_scale = function_input[9-3]
#head_angle_multiplier = function_input[10-3]
#print kinect_shift_up, kinect_shift_right, "SHIFT UP RIGHT"
#print pressure_horiz_scale, pressure_vert_scale, "PRESSURE SCALES" #1.04 for one too far to left
#file_dir = "/media/henry/multimodal_data_1/all_hevans_data/0905_2_Evening/0255"
#file_dir_list = ["/media/henry/multimodal_data_2/test_data/data_072019_0001/"]
blah = True
#file_dir = "/media/henry/multimodal_data_2/test_data/data_072019_0007"
#file_dir = "/media/henry/multimodal_data_2/test_data/data_072019_0006"
#file_dir = "/home/henry/ivy_test_data/data_102019_kneeup_0000"
#file_dir = "/media/henry/multimodal_data_1/CVPR2020_study/P000/data_102019_kneeup_0000"
if PARTICIPANT == "P106":
#file_dir = "/media/henry/multimodal_data_1/CVPR2020_study/"+PARTICIPANT+"/data_"+PARTICIPANT+"_000"
file_dir = "/home/henry/Desktop/CVPR2020_study/"+PARTICIPANT+"/data_"+PARTICIPANT+"_000"
file_dirs = [#file_dir+str(0),
file_dir+str(1),
file_dir+str(2),
file_dir+str(3),
file_dir+str(4),
file_dir+str(5)]
else:
#file_dir = "/media/henry/multimodal_data_1/CVPR2020_study/"+PARTICIPANT+"/data_"+PARTICIPANT+"-2_000"
file_dir = "/media/henry/multimodal_data_2/CVPR2020_study/"+PARTICIPANT+"/data_checked_"+PARTICIPANT+"-"+POSE_TYPE
file_dirs = [file_dir]
#file_dir = "/media/henry/multimodal_data_1/CVPR2020_study/"+PARTICIPANT+"/data_"+PARTICIPANT+"-2_000"
#file_dir = "/media/henry/multimodal_data_2/CVPR2020_study/"+PARTICIPANT+"/data_"+PARTICIPANT+"-C_0000"
#file_dirs = [file_dir]
self.RESULTS_DICT = {}
self.RESULTS_DICT['body_roll_rad'] = []
self.RESULTS_DICT['v_to_gt_err'] = []
self.RESULTS_DICT['v_limb_to_gt_err'] = []
self.RESULTS_DICT['gt_to_v_err'] = []
self.RESULTS_DICT['precision'] = []
self.RESULTS_DICT['recall'] = []
self.RESULTS_DICT['overlap_d_err'] = []
self.RESULTS_DICT['all_d_err'] = []
self.RESULTS_DICT['betas'] = []
init_time = time.time()
for file_dir in file_dirs:
V3D.load_next_file(file_dir)
start_num = 0
#print self.color_all.shape
#for im_num in range(29, 100):
for im_num in range(start_num, self.color_all.shape[0]):
#For P188: skip 5. 13 good cross legs
print "NEXT IM!", im_num, " ", time.time() - init_time
if PARTICIPANT == "S114" and POSE_TYPE == "2" and im_num in [26, 29]: continue #these don't have point clouds
if PARTICIPANT == "S165" and POSE_TYPE == "2" and im_num in [1, 3, 15]: continue #these don't have point clouds
if PARTICIPANT == "S188" and POSE_TYPE == "2" and im_num in [5, 17, 21]: continue
#good picks: 103 - 6 good for what info is there
#151 11 is good
#179 - 7 is great
#187 natural poses very good
#196 - 11 has great smile :)
self.overall_image_scale_amount = 0.85
half_w_half_l = [0.4, 0.4, 1.1, 1.1]
all_image_list = []
self.label_single_image = []
self.label_index = 0
self.color = self.color_all[im_num]
self.depth_r = self.depth_r_all[im_num]
self.pressure = self.pressure_all[im_num]
self.bed_state = self.bedstate_all[im_num]
if self.point_cloud_autofil_all[im_num].shape[0] == 0:
self.point_cloud_autofil_all[im_num] = np.array([[0.0, 0.0, 0.0]])
self.point_cloud_autofil = self.point_cloud_autofil_all[im_num] + self.markers_all[im_num][2]#[0.0, 0.0, 0.0]#0.1]
#print self.markers_all[im_num]
#print self.point_cloud_autofil.shape, 'PC AUTOFIL ORIG'
self.bed_state[0] = self.bed_state[0]*0.0#*head_angle_multiplier
self.bed_state *= 0
#self.bed_state += 60.
#print self.bed_state, np.shape(self.pressure)
if im_num == start_num and blah == True:
markers_c = []
markers_c.append(self.markers_all[im_num][0])
markers_c.append(self.markers_all[im_num][1])
markers_c.append(self.markers_all[im_num][2])
markers_c.append(self.markers_all[im_num][3])
#for idx in range(4):
#if markers_c[idx] is not None:
#markers_c[idx] = np.array(markers_c[idx])*213./228.
blah = False
#print markers_c, 'Markers C'
# Get the marker points in 2D on the color image
u_c, v_c = ArTagLib().color_2D_markers(markers_c, self.new_K_kin)
# Get the marker points dropped to the height of the pressure mat
u_c_drop, v_c_drop, markers_c_drop = ArTagLib().color_2D_markers_drop(markers_c, self.new_K_kin)
#print markers_c_drop, self.new_K_kin, self.pressure_im_size_required, self.bed_state, half_w_half_l
# Get the geometry for sizing the pressure mat
pmat_ArTagLib = ArTagLib()
self.pressure_im_size_required, u_c_pmat, v_c_pmat, u_p_bend, v_p_bend, half_w_half_l = \
pmat_ArTagLib.p_mat_geom(markers_c_drop, self.new_K_kin, self.pressure_im_size_required, self.bed_state, half_w_half_l)
tf_corners = np.zeros((8, 2))
tf_corners[0:8,:] = np.copy(self.tf_corners)
#COLOR
#if self.color is not 0:
color_reshaped, color_size = VizLib().color_image(self.color, self.kcam, self.new_K_kin,
u_c, v_c, u_c_drop, v_c_drop, u_c_pmat, v_c_pmat, camera_alpha_vert, camera_alpha_horiz)
color_reshaped = imutils.rotate(color_reshaped, kinect_rotate_angle)
color_reshaped = color_reshaped[pre_VERT_CUT+kinect_shift_up:-pre_VERT_CUT+kinect_shift_up, HORIZ_CUT+kinect_shift_right : 540 - HORIZ_CUT+kinect_shift_right, :]
tf_corners[0:4, :], color_reshaped = self.transform_selected_points(color_reshaped,
camera_alpha_vert,
camera_alpha_horiz,
kinect_rotate_angle,
kinect_shift_right,
kinect_shift_up, [1.0, 0],
[1.0, 0],
np.copy(self.tf_corners[0:4][:]))
all_image_list.append(color_reshaped)
#DEPTH
h = VizLib().get_new_K_kin_homography(camera_alpha_vert, camera_alpha_horiz, self.new_K_kin)
depth_r_orig = cv2.warpPerspective(self.depth_r, h, (self.depth_r.shape[1], self.depth_r.shape[0]))
depth_r_orig = imutils.rotate(depth_r_orig, kinect_rotate_angle)
depth_r_orig = depth_r_orig[HORIZ_CUT + kinect_shift_right: 540 - HORIZ_CUT + kinect_shift_right, pre_VERT_CUT - kinect_shift_up:-pre_VERT_CUT - kinect_shift_up]
depth_r_reshaped, depth_r_size, depth_r_orig = VizLib().depth_image(depth_r_orig, u_c, v_c)
self.depth_r_orig = depth_r_orig
self.depthcam_midpixel = [self.new_K_kin[1, 2] - HORIZ_CUT - kinect_shift_right, (960-self.new_K_kin[0, 2]) - pre_VERT_CUT - kinect_shift_up]
self.depthcam_midpixel2 = [self.new_K_kin[1, 2] - HORIZ_CUT, (960-self.new_K_kin[0, 2]) - pre_VERT_CUT]
#print h, "H" #warping perspective
#print kinect_rotate_angle #the amount to rotate counterclockwise about normal vector to the bed
#print kinect_shift_right, kinect_shift_up #pixel shift of depth im. convert this to meters based on depth of
depth_r_orig_nowarp = imutils.rotate(self.depth_r, 0)
depth_r_orig_nowarp = depth_r_orig_nowarp[HORIZ_CUT + 0: 540 - HORIZ_CUT + 0, pre_VERT_CUT - 0:-pre_VERT_CUT - 0]
depth_r_reshaped_nowarp, depth_r_size, depth_r_orig_nowarp = VizLib().depth_image(depth_r_orig_nowarp, u_c, v_c) #this just does two rotations
all_image_list.append(depth_r_reshaped)
all_image_list.append(depth_r_reshaped_nowarp)
X,Y,Z = self.get_pc_from_depthmap(self.bed_state[0], tf_corners[2, :])
#print self.pressure_im_size_required, color_size, u_c_drop, v_c_drop, u_c_pmat, v_c_pmat, u_p_bend, v_p_bend
#PRESSURE
#pressure_vert_scale = 1.0
#pressure_horiz_scale = 1.0
self.pressure = np.clip(self.pressure*4, 0, 100)
pressure_reshaped, pressure_size, coords_from_top_left = VizLib().pressure_image(self.pressure, self.pressure_im_size,
self.pressure_im_size_required, color_size,
u_c_drop, v_c_drop, u_c_pmat, v_c_pmat,
u_p_bend, v_p_bend)
pressure_shape = pressure_reshaped.shape
pressure_reshaped = cv2.resize(pressure_reshaped, None, fx=pressure_horiz_scale,
fy=pressure_vert_scale)[0:pressure_shape[0],
0:pressure_shape[1], :]
if pressure_horiz_scale < 1.0 or pressure_vert_scale < 1.0:
pressure_reshaped_padded = np.zeros(pressure_shape).astype(np.uint8)
pressure_reshaped_padded[0:pressure_reshaped.shape[0], 0:pressure_reshaped.shape[1], :] += pressure_reshaped
pressure_reshaped = np.copy(pressure_reshaped_padded)
coords_from_top_left[0] -= coords_from_top_left[0]*(1-pressure_horiz_scale)
coords_from_top_left[1] += (960 - coords_from_top_left[1])*(1-pressure_vert_scale)
pressure_reshaped = pressure_reshaped[pre_VERT_CUT:-pre_VERT_CUT, HORIZ_CUT : 540 - HORIZ_CUT, :]
all_image_list.append(pressure_reshaped)
self.all_images = np.zeros((960-np.abs(pre_VERT_CUT)*2, 1, 3)).astype(np.uint8)
for image in all_image_list:
#print image.shape
self.all_images = np.concatenate((self.all_images, image), axis = 1)