-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathscierc_pred_to_coife.py
61 lines (51 loc) · 1.95 KB
/
scierc_pred_to_coife.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import argparse
import json
from typing import Any, Dict
import sys
from dygie_visualize_util import Dataset
import pathlib
from pathlib import Path
"""
Usage:
python scierc_pred_to_cofie.py --prediction_path ./predictions/cofie
"""
MECHANISM_KEY_MAP = ["USED-FOR"]
EFFECT_KEY_MAP = []
IGNORE_KEY_MAP = ['PART-OF','HYPONYM-OF','CONJUNCTION','FEATURE-OF','COMPARE','EVALUATE-FOR']
def get_doc_key_info(ds):
doc_info_conf_iter = {}
for doc in ds:
doc_key = doc._doc_key
for sent in doc:
sent_text = " ".join(sent.text)
for rel in sent.relations:
arg0 = " ".join(rel.pair[0].text)
arg1 = " ".join(rel.pair[1].text)
data_key = (doc_key, sent_text, arg0, arg1, rel.label)
doc_info_conf_iter[data_key] = rel.score
return doc_info_conf_iter
def prediction_to_tsv(ds, output_file_name):
doc_info = get_doc_key_info(ds)
output_file = open(output_file_name, "w")
for key in doc_info:
if key[4] in MECHANISM_KEY_MAP:
conf0 = str(doc_info[key])
output_file.write(key[0] + '\t' + key[1] + '\t' + key[2] + '\t' + key[3] + '\tMECHANISM\t' + conf0 + '\n')
elif key[4] in MECHANISM_KEY_MAP:
conf0 = str(doc_info[key])
output_file.write(key[0] + '\t' + key[1] + '\t' + key[2] + '\t' + key[3] + '\tEFFECT\t' + conf0 + '\n')
elif key[4] in IGNORE_KEY_MAP:
continue
else:
conf0 = str(doc_info[key])
output_file.write(key[0] + '\t' + key[1] + '\t' + key[2] + '\t' + key[3] + '\t' + str(key[4]) + '\t' + conf0 + '\n')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--prediction_path',
type=str,
help='path to the directory containing dygie++ predictions in json fromat',
required=True)
args = parser.parse_args()
pred_path = pathlib.Path(args.prediction_path) / 'pred.json'
ds = Dataset(pred_path)
prediction_to_tsv(ds, pathlib.Path(pred_dir) / "pred.tsv")