-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot.py
45 lines (38 loc) · 1.6 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import argparse
import os
import json
import matplotlib.pyplot as plt
import numpy as np
def plot(args):
train_stat_name_list=["Training loss", "Training accuracy(EM)"]
train_stat_dict = dict()
with open(os.path.join(args.plot_folder, args.plot_file ), "r") as fp:
for i, line in enumerate(fp.readlines()):
stat_d = json.loads(line)
train_stat_dict[train_stat_name_list[i]]=stat_d
# print(train_stat_dict)
# loss_epochs = train_stat_dict["training loss"].keys()
# print(loss_epochs)
for train_stat_name in train_stat_name_list:
xs = list(train_stat_dict[train_stat_name].keys())
ys = [ float(train_stat_dict[train_stat_name][x]) for x in xs]
xs = [args.start_epoch+int(x) for x in xs]
plt.figure() # initiate new figure
print("xs: ", xs)
print("ys: ", ys)
plt.plot( xs, ys)
plt.xlabel("epochs")
plt.ylabel(train_stat_name)
ys_float = [float(y) for y in ys]
# print(ys_float)
# plt.yticks(np.arange(min(ys_float), max(ys_float), step= (max(ys_float)-min(ys_float))/10 ), np.arange(min(ys_float), max(ys_float), step= 10 ))
# name = f"{}/{train_stat_name}.png"
plt.savefig("{}/{}.png".format(args.plot_folder, train_stat_name))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
## Basic parameters
parser.add_argument("--plot_folder", default="out/nq-bart-closed-qa")
parser.add_argument("--plot_file", default="bart_bs130.json")
parser.add_argument("--start_epoch", default=0, type=int)
args = parser.parse_args()
plot(args)