Skip to content

Latest commit

 

History

History
105 lines (93 loc) · 13.1 KB

README.md

File metadata and controls

105 lines (93 loc) · 13.1 KB

Visual Tracking Paper List

This repository records the visual tracking papers I have read, and I also make a brief summary for each paper.

2022

  • Unicorn: "Towards Grand Unification of Object Tracking" ECCV (Oral). [Paper]
    VOT/VOS/MOT/MOTS多任务的统一,主要是解决VOT与MOT的统一问题,其他两个任务加个分割分支。两阶段训练网络模型:VOT/MOT与VOS/MOTS数据集。方法结构简单,论文易读,解决问题新颖实用。
  • RTS: "Robust Visual Tracking by Segmentation" ECCV. [Paper]
    PrDiMP与LWL的组合。分割式跟踪,采用PrDiMP的得分图作为LWL的先验信息获取更准确的分割Mask。
  • ToMP: "Transforming Model Prediction for Tracking" CVPR. [Paper]
    基于SuperDiMP,提出Transformer架构的目标分类器,矩形框回归采用ltrb表达。
  • "MixFormer: End-to-End Tracking with Iterative Mixed Attention" CVPR (Oral). [Paper]
    参照目标检测的CVT, Siamese网络与Transformer架构,堆叠混合注意力模块将特征提取与聚合统一处理,外加一个corner预测头;设计一个得分预测模块选择高质量模板用于更新模板。
  • "Global Tracking via Ensemble of Local Trackers" CVPR. [Paper]
    针对长期目标跟踪的改进,网络使用了ResNet50+Transformer+DETR预测头。与re-detection 和 global tracking跟踪方式不同,采用10个局部跟踪器(参照Deformable DETR)的集成实现全局跟踪。另外,KeepTrack的LaSOT结果与原作者提供的不一致。

2021

  • KeepTrack: "Learning Target Candidate Association to Keep Track of What Not to Track" ICCV. [Paper]
    基于SuperDiMP, 提出可学习的目标候选关联网络,用于显示关联distractor。
  • STARK: "Learning Spatio-Temporal Transformer for Visual Tracking" ICCV. [Paper]
    不同与常规的transformer结构,参照目标检测的DETR.
  • "Alpha-Refine: Boosting Tracking Performance by Precise Bounding Box Estimation" CVPR. [Paper]
    一个即插即用的涨分组件,采用孪生网络架构,主要包括corner和mask分支,在基础跟踪器结构基础上进一步提炼目标框。特征融合是pixel-wise互相关。
  • TranT: "Transformer Tracking" CVPR. [Paper]
    孪生跟踪器,采用Transformer结构融合模板和搜索区域特征。
  • TrDiMP: "Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking" CVPR. [Paper]
    基于DiMP, 采用Transformer结构融合多帧特征。

2020

  • KYS: "Know Your Surroundings: Exploiting Scene Information for Object Tracking" ECCV. [Paper]
    基于DiMP,采用ConvGRU隐式编码场景信息以应对distractor的干扰
  • LTMU: "High-Performance Long-Term Tracking With Meta-Updater" CVPR. [Paper]
    Local+Global长期目标跟踪方式,局部跟踪器采用的ATOM定位+SiamMask尺度估计;fast R-CNN作为重检测器,SiamRPN用于对检测器的object并行生成更精准的矩形框,RTMDNet作为验证器重新识别目标供局部跟踪器继续跟踪。除了多跟踪器组合,核心是提出LSTM结构的Meta-Updater。
  • PrDiMP: "Probabilistic Regression for Visual Tracking" CVPR. [Paper]
    满屏的公式,基于DiMP,从概率解释的角度构建回归模型,并采用KL散度训练。
  • "D3S - A Discriminative Single Shot Segmentation Tracker" CVPR. [Paper]
    分割式跟踪,实现短期跟踪和视频目标分割,ATOM+VideoMatch+U-net组合。
  • "Siam R-CNN: Visual Tracking by Re-Detection" CVPR. [Paper]
    长期跟踪,采用第一帧和前一帧目标重检测比对的方式,hard example mining提高判别能力,动态规划潜在目标和干扰者,现有的Box2Seg用于分割。总体跟踪速度太慢。
  • "Globaltrack: A simple and strong baseline for long-term tracking" AAAI. [Paper]
    全局搜索模型的长期目标跟踪任务,基于Faster-RCNN 类似于One-shot detector, 无模板更新。
  • "SiamFC++: Towards Robust and Accurate Visual Tracking with Target Estimation Guidelines" AAAI. [Paper]
    anchor-free的预测头(ltrb),计算一个中心度得分图对分类得分图加权,以降低离中心点远的位置得分值,提高鲁棒性。

2019

  • DiMP: "Learning Discriminative Model Prediction for Tracking" ICCV. [Paper] [Code]
    将相关滤波跟踪范式设计成端到端可训练的在线目标分类分支
  • "ATOM: Accurate Tracking by Overlap Maximization" CVPR. [Paper] [Code]
    将目标检测的IouNet引入到目标跟踪以解决目标尺度估计的问题
  • "SiamRPN++: Evolution of Siamese Visual Tracking With Very Deep Networks" CVPR. [Paper]
    SiamRPN的改进版,采用ResNet50作为backbone,多层融合,以multi-channel方式融合模板和搜索区域(即,Depthwise Cross Correlation)
  • "Learning the Model Update for Siamese Trackers" ICCV. [Paper]
    针对Siamese trackers采用的固定或移动平均法方式更新目标模板,训练了一个UpdateNet解决孪生网络的模板更新问题。

2018

  • UPDT: "Unveiling the Power of Deep Tracking" ECCV. [Paper]
    将HOG+CN当作浅层特征,CNN特征当作深层特征,对两种特征响应图进行自适应权重融合。
  • SiamRPN: "High Performance Visual Tracking with Siamese Region Proposal Network" CVPR. [Paper]
    将目标检测的RPN网络引入到目标跟踪
  • DaSiamRPN: "Distractor-aware siamese networks for visual object tracking" [Paper]
    Local-to-Global搜索方式的长期目标跟踪方法, 主要对正负样本对进行数据处理以提高网络应对distractor的判别力。

2017

  • ECO: "ECO: Efficient Convolution Operators for Tracking" CVPR. [Paper] [Code]
    滤波器参数降维;高斯混合模型对样本集进行聚类,提高训练样本的多样性;间隔5帧更新模型。
  • fDSST: "Discriminative Scale Space Tracking" TPAMI. [Paper] [Code]
    DSST提出了新颖可移植的尺度估计方法,单独的尺度滤波器,33个尺度因子. fDSST主要是解决增加尺度估计方法所带来的速度下降的问题,对特征和尺度维度进行PCA降维.
  • CSR-DCF: "Discriminative Correlation Filter with Channel and Spatial Reliability" CVPR. [Paper]
    存在不规则形状和中空的物体,克服循环位移的搜索范围随意和矩形形状的假设限制,颜色直方图掩膜和通道加权。
  • BACF: "Learning Background-Aware Correlation Filters for Visual Tracking" ICCV. [Paper]
    基于HOG特征的背景感知相关滤波,采集所有的背景块代替循环前景块作为负样本训练一个滤波器;ADMM迭代优化和Sherman-Morrison公式进行模型更新,增广拉格朗日法求解目标函数。
  • LMCF:"Large Margin Object Tracking with Circulant Feature Maps" CVPR. [Paper]
    SVM 与 CF 结合,多模式目标检测方法,提出APCE指标优化模型更新策略。
  • CFNet: "End-to-end Representation Learning for Correlation Filter based Tracking" CVPR. [Paper] [Code]
    训练非对称的 Siamese network,将 CF 作为层嵌入网络,并在傅里叶域进行 back-propagation,以实现端到端的训练网络。

2016

  • SiamFC: "Fully-Convolutional Siamese Networks for Object Tracking" ECCVW. [Paper]
    端到端的深度学习跟踪方法,首次将孪生网络引入目标跟踪,将目标跟踪任务看作模板匹配方式。

  • "Staple: Complementary Learners for Real-Time Tracking" CVPR.
    提出了颜色直方图作为补充学习特征,增强跟踪效果

  • MDnet: "Learning multi-domain convolutional neural networks for visual tracking" CVPR. [Project]
    多域学习,CNN共享层+多分支全连接分类,将不同视频序列当成不同的域训练共享层获取通用特征表示,另外,hard negative mining被用于在线学习。

2015

  • KCF: "High-Speed Tracking with Kernelized Correlation Filters" TPAMI. [Paper]
    CSK的升级版,详细阐述了循环位移采样过程,和引入核机制,并证明了核化后对角化可行性,此外使用了HOG特征
  • SRDCF: "Learning Spatially Regularized Correlation Filters for Visual Tracking" ICCV. [Paper]
    对滤波模板进行惩罚减少循环位移带来的边际效应
  • HCFT: "Hierarchical Convolutional Features for Visual Tracking" ICCV. [Paper] [Code]
    采用3层CNN特征层分别进行相关滤波跟踪,亮点是采用多层CNN特征取代HOG特征

2014

  • CN: "Adaptive Color Attributes for Real-Time Visual Tracking" CVPR (Oral). [Paper] [Code]
    将color names替换掉CSK的灰度特征,并使用了PCA对11维特征进行降维
  • SAMF: "A Scale Adaptive Kernel Correlation Filter Tracker with Feature Integration" ECCVW. [Paper]
    将 HOG 特征和 CN 特征融合并采用了简单的多尺度方法

2012

  • CSK: "Exploiting the Circulant Structure of Tracking-by-detection with Kernels" ECCV. [Paper]
    提出循环密集采样,仅仅使用了灰度特征

2010

  • MOSSE: "Visual Object Tracking using Adaptive Correlation Filters" ICCV. [Paper]
    第一次将相关滤波引入目标跟踪,负样本采样不足和存在过拟合