diff --git a/bin/dune b/bin/dune index 4952ca8..a8987a2 100644 --- a/bin/dune +++ b/bin/dune @@ -1,6 +1,6 @@ (executables - (public_names uiml_demo benchmark uiml_cmdline) - (names uiml_demo benchmark uiml_cmdline) + (public_names uiml_demo benchmark uiml_cmdline isl_dec) + (names uiml_demo benchmark uiml_cmdline isl_dec) (modes js native) (preprocess (pps js_of_ocaml-ppx)) (libraries js_of_ocaml UIML angstrom exenum) diff --git a/bin/isl_dec.ml b/bin/isl_dec.ml new file mode 100644 index 0000000..ef3cf4d --- /dev/null +++ b/bin/isl_dec.ml @@ -0,0 +1,27 @@ +open Exenum +open Printer +open UIML.Formulas +open Sys +open Char +open UIML.DecisionProcedure +open UIML.Datatypes +open Stringconversion +open Modal_expressions_parser + + + +let nb_args = Array.length Sys.argv + +let form = if nb_args = 2 then (Sys.argv.(1)) else "T" + +let usage_string = + "isl_dec φ: decides the provability of the modal formula φ in iSL.\n" + +let print_decision = function + | Coq_inl _ -> "Probable" + | _ -> "Not provable" + +let () = + if nb_args = 2 then form |> eval |> coq_Provable_dec [] |> + print_decision |> print_string |> print_newline + else print_string usage_string diff --git a/theories/extraction/UIML_extraction.v b/theories/extraction/UIML_extraction.v index 231e955..1c6ec99 100644 --- a/theories/extraction/UIML_extraction.v +++ b/theories/extraction/UIML_extraction.v @@ -5,7 +5,7 @@ Require Import ExtrOcamlBasic ExtrOcamlString. Require Import K.Interpolation.UIK_braga. Require Import KS_export. -Require Import ISL.PropQuantifiers. +Require Import ISL.PropQuantifiers ISL.DecisionProcedure. Require Import ISL.Simp. @@ -41,5 +41,5 @@ Definition isl_simplified_A v f := A_simplified v f. Set Extraction Output Directory "extraction". -Separate Extraction gl_UI k_UI isl_E isl_A isl_simplified_E isl_simplified_A Formulas.weight isl_simp. +Separate Extraction Provable_dec gl_UI k_UI isl_E isl_A isl_simplified_E isl_simplified_A Formulas.weight isl_simp. diff --git a/theories/iSL/DecisionProcedure.v b/theories/iSL/DecisionProcedure.v new file mode 100644 index 0000000..a7802ea --- /dev/null +++ b/theories/iSL/DecisionProcedure.v @@ -0,0 +1,618 @@ +Require Import ISL.Sequents ISL.SequentProps ISL.Order. + +Global Instance proper_rm : Proper ((=) ==> (≡ₚ) ==> (≡ₚ)) rm. +Proof. +intros x y Heq. subst y. +induction 1; simpl; trivial. +- case form_eq_dec; auto with *. +- case form_eq_dec; auto with * ; + case form_eq_dec; auto with *. intros. apply Permutation_swap. +- now rewrite IHPermutation1. +Qed. + +Definition exists_dec {A : Type} (P : A -> bool) (l : list A): {x & (In x l) /\ P x} + {forall x, In x l -> ¬ P x}. +Proof. +induction l as [|x l]. +- right. tauto. +- case_eq (P x); intro Heq. + + left. exists x. split; auto with *. + + destruct IHl as [(y & Hin & Hy)|Hf]. + * left. exists y. split; auto with *. + * right. simpl. intros z [Hz|Hz]; subst; try rewrite Heq; auto with *. +Defined. + +(* This function computes a proof tree of a sequent, if there is one, or produces a proof that there is none *) +Proposition Proof_tree_dec Γ φ : + {_ : list_to_set_disj Γ ⊢ φ & True} + {forall H : list_to_set_disj Γ ⊢ φ, False}. +Proof. +(* duplicate *) +Ltac l_tac := repeat rewrite list_to_set_disj_open_boxes; + rewrite (proper_Provable _ _ (list_to_set_disj_env_add _ _) _ _ eq_refl) +|| rewrite (proper_Provable _ _ (equiv_disj_union_compat_r (list_to_set_disj_env_add _ _)) _ _ eq_refl) +|| rewrite (proper_Provable _ _ (equiv_disj_union_compat_r (equiv_disj_union_compat_r (list_to_set_disj_env_add _ _))) _ _ eq_refl) +|| rewrite (proper_Provable _ _ (equiv_disj_union_compat_r(equiv_disj_union_compat_r (equiv_disj_union_compat_r (list_to_set_disj_env_add _ _)))) _ _ eq_refl). +remember (Γ, φ) as pe. +replace Γ with pe.1 by now inversion Heqpe. +replace φ with pe.2 by now inversion Heqpe. clear Heqpe Γ φ. +revert pe. +refine (@well_founded_induction _ _ wf_pointed_order _ _). +intros (Γ& φ) Hind; simpl. +assert(Hind' := λ Γ' φ', Hind(Γ', φ')). simpl in Hind'. clear Hind. rename Hind' into Hind. + +case (decide (⊥ ∈ Γ)); intro Hbot. +{ left. eexists; trivial. apply elem_of_list_to_set_disj in Hbot. exhibit Hbot 0. apply ExFalso. } +assert(HAndR : {φ1 & {φ2 & φ = (And φ1 φ2)}} + {∀ φ1 φ2, φ ≠ (And φ1 φ2)}) by (destruct φ; eauto). +destruct HAndR as [(φ1 & φ2 & Heq) | HAndR]. +{ subst. + destruct (Hind Γ φ1) as [(Hp1&_) | H1]. order_tac. + - destruct (Hind Γ φ2) as [(Hp2&_) | H2]. order_tac. + + left. eexists; trivial. apply AndR; assumption. + + right. intro Hp. apply AndR_rev in Hp. tauto. + - right. intro Hp. apply AndR_rev in Hp. tauto. +} +assert(Hvar : {p & φ = Var p & Var p ∈ Γ} + {∀ p, φ = Var p -> Var p ∈ Γ -> False}). { + destruct φ. 2-6: right; auto with *. + case (decide (Var v ∈ Γ)); intro Hin. + - left. exists v; trivial. + - right; auto with *. } +destruct Hvar as [[p Heq Hp]|Hvar]. +{ subst. left. eexists; trivial. apply elem_of_list_to_set_disj in Hp. exhibit Hp 0. apply Atom. } +assert(HAndL : {ψ1 & {ψ2 & (And ψ1 ψ2) ∈ Γ}} + {∀ ψ1 ψ2, (And ψ1 ψ2) ∈ Γ -> False}). { + pose (fA := (fun θ => match θ with |And _ _ => true | _ => false end)). + destruct (exists_dec fA Γ) as [(θ & Hin & Hθ) | Hf]. + - left. subst fA. destruct θ. 3: { eexists. eexists. apply elem_of_list_In. eauto. } + all: auto with *. + - right. intros ψ1 ψ2 Hψ. rewrite elem_of_list_In in Hψ. apply Hf in Hψ. subst fA. simpl in Hψ. tauto. +} +destruct HAndL as [(ψ1 & ψ2 & Hin)|HAndL]. +{ destruct (Hind (ψ1 :: ψ2 :: rm (And ψ1 ψ2) Γ) φ) as [[Hp' _] | Hf]. order_tac. + - left. eexists; trivial. apply elem_of_list_to_set_disj in Hin. + exhibit Hin 0. + rewrite (proper_Provable _ _ (equiv_disj_union_compat_r (list_to_set_disj_rm _ _)) _ _ eq_refl). + apply AndL. peapply Hp'. + - right. intro Hf'. apply Hf. + rw (symmetry (list_to_set_disj_env_add (ψ2 :: rm (And ψ1 ψ2) Γ) ψ1)) 0. + rw (symmetry (list_to_set_disj_env_add (rm (And ψ1 ψ2) Γ) ψ2)) 1. + exch 0. apply AndL_rev. + rw (symmetry (list_to_set_disj_rm Γ(And ψ1 ψ2))) 1. + apply elem_of_list_to_set_disj in Hin. + pose (difference_singleton (list_to_set_disj Γ) (And ψ1 ψ2)). + peapply Hf'. +} +assert(HImpR : {φ1 & {φ2 & φ = (Implies φ1 φ2)}} + {∀ φ1 φ2, φ ≠ (Implies φ1 φ2)}) by (destruct φ; eauto). +destruct HImpR as [(φ1 & φ2 & Heq) | HImpR]. +{ subst. + destruct (Hind (φ1 :: Γ) φ2) as [(Hp1&_) | H1]. order_tac. + - left. eexists; trivial. apply ImpR. peapply Hp1. + - right. intro Hf. apply H1. apply ImpR_rev in Hf. peapply Hf. +} +assert(HOrL : {ψ1 & {ψ2 & (Or ψ1 ψ2) ∈ Γ}} + {∀ ψ1 ψ2, (Or ψ1 ψ2) ∈ Γ -> False}). { + pose (fA := (fun θ => match θ with |Or _ _ => true | _ => false end)). + destruct (exists_dec fA Γ) as [(θ & Hin & Hθ) | Hf]. + - left. subst fA. destruct θ. 4: { eexists. eexists. apply elem_of_list_In. eauto. } + all: auto with *. + - right. intros ψ1 ψ2 Hψ. rewrite elem_of_list_In in Hψ. apply Hf in Hψ. subst fA. simpl in Hψ. tauto. +} +destruct HOrL as [(ψ1 & ψ2 & Hin)|HOrL]. +{ apply elem_of_list_to_set_disj in Hin. + destruct (Hind (ψ1 :: rm (Or ψ1 ψ2) Γ) φ) as [[Hp1 _] | Hf]. order_tac. + - destruct (Hind (ψ2 :: rm (Or ψ1 ψ2) Γ) φ) as [[Hp2 _] | Hf]. order_tac. + + left. eexists; trivial. exhibit Hin 0. + rewrite (proper_Provable _ _ (equiv_disj_union_compat_r (list_to_set_disj_rm _ _)) _ _ eq_refl). + apply OrL. peapply Hp1. peapply Hp2. + + right; intro Hf'. assert(Hf'' :list_to_set_disj (rm (Or ψ1 ψ2) Γ) • Or ψ1 ψ2 ⊢ φ). { + rw (symmetry (list_to_set_disj_rm Γ(Or ψ1 ψ2))) 1. + pose (difference_singleton (list_to_set_disj Γ) (Or ψ1 ψ2)). peapply Hf'. + } + apply OrL_rev in Hf''. apply Hf. peapply Hf''. + - right; intro Hf'. assert(Hf'' :list_to_set_disj (rm (Or ψ1 ψ2) Γ) • Or ψ1 ψ2 ⊢ φ). { + rw (symmetry (list_to_set_disj_rm Γ(Or ψ1 ψ2))) 1. + pose (difference_singleton (list_to_set_disj Γ) (Or ψ1 ψ2)). peapply Hf'. + } + apply OrL_rev in Hf''. apply Hf. peapply Hf''.1. +} +assert(HImpLVar : {p & {ψ & Var p ∈ Γ /\ (Implies (Var p) ψ) ∈ Γ}} + + {∀ p ψ, Var p ∈ Γ -> (Implies (Var p) ψ) ∈ Γ -> False}). { + pose (fIp :=λ p θ, match θ with | Implies (Var q) _ => if decide (p = q) then true else false | _ => false end). + pose (fp:= (fun θ => match θ with |Var p => if (exists_dec (fIp p) Γ) then true else false | _ => false end)). + destruct (exists_dec fp Γ) as [(θ & Hin & Hθ) | Hf]. + - left. subst fp. destruct θ. 2-6: auto with *. + case exists_dec as [(ψ &Hinψ & Hψ)|] in Hθ; [|auto with *]. + unfold fIp in Hψ. destruct ψ. 1-4, 6: auto with *. + destruct ψ1. 2-6: auto with *. case decide in Hψ; [|auto with *]. + subst. apply elem_of_list_In in Hinψ, Hin. + do 2 eexists. split; eauto. + - right. intros p ψ Hp Hψ. rewrite elem_of_list_In in Hp, Hψ. apply Hf in Hp. subst fp fIp. + simpl in Hp. case exists_dec as [|Hf'] in Hp. auto with *. + apply (Hf' _ Hψ). rewrite decide_True; trivial. auto with *. +} +destruct HImpLVar as [[p [ψ [Hinp Hinψ]]]|HImpLVar]. +{ apply elem_of_list_to_set_disj in Hinp. + apply elem_of_list_to_set_disj in Hinψ. + assert(Hinp' : Var p ∈ (list_to_set_disj Γ ∖ {[Implies p ψ]} : env)) + by (apply in_difference; [discriminate| assumption]). + destruct (Hind (ψ :: rm (Implies (Var p) ψ) Γ) φ) as [[Hp _]|Hf]. order_tac. + - left. eexists; trivial. exhibit Hinψ 0. + exhibit Hinp' 1. apply ImpLVar. + rw (symmetry (difference_singleton (list_to_set_disj Γ ∖ {[Implies p ψ]}) (Var p) Hinp')) 1. + rw (list_to_set_disj_rm Γ(Implies p ψ)) 1. l_tac. exact Hp. + - right. intro Hf'. apply Hf. + rw (symmetry (list_to_set_disj_env_add (rm (Implies p ψ) Γ) ψ)) 0. + rw (symmetry (list_to_set_disj_rm Γ(Implies p ψ))) 1. + exhibit Hinp' 1. apply ImpLVar_rev. + rw (symmetry (difference_singleton _ _ Hinp')) 1. + rw (symmetry (difference_singleton _ _ Hinψ)) 0. + exact Hf'. +} +assert(HImpLAnd : {φ1 & {φ2 & {φ3 & (Implies (And φ1 φ2) φ3) ∈ Γ}}} + + {∀ φ1 φ2 φ3, (Implies (And φ1 φ2) φ3) ∈ Γ -> False}). { + pose (fII := (fun θ => match θ with |Implies (And _ _) _ => true | _ => false end)). + destruct (exists_dec fII Γ) as [(θ & Hin & Hθ) | Hf]. + - left. subst fII. destruct θ. 1-4, 6: auto with *. + destruct θ1. 1-2,4-6: auto with *. do 3 eexists; apply elem_of_list_In; eauto. + - right. intros ψ1 ψ2 ψ3 Hψ. rewrite elem_of_list_In in Hψ. apply Hf in Hψ. subst fII. simpl in Hψ. tauto. +} +destruct HImpLAnd as [(φ1&φ2&φ3&Hin)|HImpLAnd]. +{ apply elem_of_list_to_set_disj in Hin. + destruct (Hind (Implies φ1 (Implies φ2 φ3) :: rm (Implies (And φ1 φ2) φ3) Γ) φ) as [[Hp _]|Hf]. order_tac. + - left. eexists; trivial. exhibit Hin 0. apply ImpLAnd. + rw (list_to_set_disj_rm Γ(Implies (And φ1 φ2) φ3)) 1. l_tac. exact Hp. + - right. intro Hf'. apply Hf. + rw (symmetry (list_to_set_disj_env_add (rm (Implies (And φ1 φ2) φ3) Γ) (Implies φ1 (Implies φ2 φ3)))) 0. + rw (symmetry (list_to_set_disj_rm Γ(Implies (And φ1 φ2) φ3))) 1. + apply ImpLAnd_rev. + rw (symmetry (difference_singleton _ _ Hin)) 0. exact Hf'. +} +assert(HImpLOr : {φ1 & {φ2 & {φ3 & (Implies (Or φ1 φ2) φ3) ∈ Γ}}} + + {∀ φ1 φ2 φ3, (Implies (Or φ1 φ2) φ3) ∈ Γ -> False}). { + pose (fII := (fun θ => match θ with |Implies (Or _ _) _ => true | _ => false end)). + destruct (exists_dec fII Γ) as [(θ & Hin & Hθ) | Hf]. + - left. subst fII. destruct θ. 1-4, 6: auto with *. + destruct θ1. 1-3, 5-6: auto with *. do 3 eexists; apply elem_of_list_In; eauto. + - right. intros ψ1 ψ2 ψ3 Hψ. rewrite elem_of_list_In in Hψ. apply Hf in Hψ. subst fII. simpl in Hψ. tauto. +} +destruct HImpLOr as [(φ1&φ2&φ3&Hin)|HImpLOr]. +{ apply elem_of_list_to_set_disj in Hin. + destruct (Hind (Implies φ2 φ3 :: Implies φ1 φ3 :: rm (Implies (Or φ1 φ2) φ3) Γ) φ) as [[Hp _]|Hf]. order_tac. + - left. eexists; trivial. exhibit Hin 0. apply ImpLOr. + rw (list_to_set_disj_rm Γ(Implies (Or φ1 φ2) φ3)) 2. do 2 l_tac. exact Hp. + - right. intro Hf'. apply Hf. + rw (symmetry (list_to_set_disj_env_add ( Implies φ1 φ3 :: rm (Implies (Or φ1 φ2) φ3) Γ) (Implies φ2 φ3))) 0. + rw (symmetry (list_to_set_disj_env_add (rm (Implies (Or φ1 φ2) φ3) Γ) (Implies φ1 φ3))) 1. + rw (symmetry (list_to_set_disj_rm Γ(Implies (Or φ1 φ2) φ3))) 2. + apply ImpLOr_rev. + rw (symmetry (difference_singleton _ _ Hin)) 0. exact Hf'. +} +(* non invertible right rules *) +assert(HOrR1 : {φ1 & {φ2 & {Hp : (list_to_set_disj Γ ⊢ φ1) & φ = (Or φ1 φ2)}}} + + {∀ φ1 φ2, ∀ (H : list_to_set_disj Γ ⊢ φ1), φ = (Or φ1 φ2) -> False}). +{ + destruct φ. 4: { destruct (Hind Γ φ1)as [[Hp _]|Hf]. order_tac. + - left. do 3 eexists; eauto. + - right. intros ? ? Hp Heq. inversion Heq. subst. tauto. + } + all: right; auto with *. +} +destruct HOrR1 as [(φ1 & φ2 & Hp & Heq)| HOrR1]. +{ subst. left. eexists; trivial. apply OrR1, Hp. } +assert(HOrR2 : {φ1 & {φ2 & {Hp : (list_to_set_disj Γ ⊢ φ2) & φ = (Or φ1 φ2)}}} + + {∀ φ1 φ2, ∀ (H : list_to_set_disj Γ ⊢ φ2), φ = (Or φ1 φ2) -> False}). +{ + destruct φ. 4: { destruct (Hind Γ φ2)as [[Hp _]|Hf]. order_tac. + - left. do 3 eexists; eauto. + - right. intros ? ? Hp Heq. inversion Heq. subst. tauto. + } + all: right; auto with *. +} +destruct HOrR2 as [(φ1 & φ2 & Hp & Heq)| HOrR2 ]. +{ subst. left. eexists; trivial. apply OrR2, Hp. } +assert(HBoxR : {φ' & {Hp : (⊗ (list_to_set_disj Γ) • □ φ' ⊢ φ') & φ = (□ φ')}} + + {∀ φ', ∀ (H : ⊗ (list_to_set_disj Γ) • □ φ' ⊢ φ'), φ = (□ φ') -> False}). +{ + destruct φ. 6: { destruct (Hind ((□ φ) :: map open_box Γ) φ)as [[Hp _]|Hf]. order_tac. + - left. do 2 eexists; eauto. l_tac. exact Hp. + - right. intros ? Hp Heq. inversion Heq. subst. apply Hf. + rw (symmetry (list_to_set_disj_env_add (map open_box Γ) (□ φ'))) 0. + rewrite <- list_to_set_disj_open_boxes. exact Hp. + } + all: right; auto with *. +} +destruct HBoxR as [(φ' & Hp & Heq)| HBoxR ]. +{ left. subst. eexists; trivial. apply BoxR, Hp. } +assert(Hempty: ∀ (Δ : env) φ,((Δ • φ) = ∅) -> False). +{ + intros Δ θ Heq. assert (Hm:= multiplicity_empty θ). + unfold base.empty in *. + rewrite <- Heq, union_mult, singleton_mult_in in Hm by trivial. lia. +} +(* non invertible left rules *) +assert(HImpLImp : ∀Γ2 Γ1, Γ1 ++ Γ2 = Γ -> {φ1 & {φ2 & {φ3 &{H2312 : ((list_to_set_disj (rm (Implies (Implies φ1 φ2) φ3) Γ) • (Implies φ2 φ3)) ⊢ (Implies φ1 φ2)) + & {H3: (list_to_set_disj (rm (Implies (Implies φ1 φ2) φ3) Γ) • φ3 ⊢ φ) & (Implies (Implies φ1 φ2) φ3) ∈ Γ2}}}}} + + {∀ φ1 φ2 φ3 (_ : (list_to_set_disj (rm (Implies (Implies φ1 φ2) φ3) Γ) • (Implies φ2 φ3)) ⊢ (Implies φ1 φ2)) + (_: list_to_set_disj (rm (Implies (Implies φ1 φ2) φ3) Γ) • φ3 ⊢ φ), + Implies (Implies φ1 φ2) φ3 ∈ Γ2 → False}). +{ + induction Γ2 as [|θ Γ2]; intros Γ1 Heq. + - right. intros φ1 φ2 φ3 _ _ Hin. inversion Hin. + - assert(Heq' : (Γ1 ++ [θ]) ++ Γ2 = Γ) by (subst; auto with *). + destruct (IHΓ2 (Γ1 ++ [θ]) Heq') as [(φ1 & φ2 & φ3 & Hp1 & Hp2 & Hin)|Hf]. + + left. repeat eexists; eauto. now right. + + destruct θ. + 5: destruct θ1. + 9 : { + destruct (Hind (Implies θ1_2 θ2 :: rm (Implies (Implies θ1_1 θ1_2) θ2) Γ) (Implies θ1_1 θ1_2)) + as [[Hp1 _] | Hf']. + - order_tac. rewrite <- Permutation_middle. unfold rm. + destruct form_eq_dec; [|tauto]. order_tac. + - destruct (Hind (θ2 :: rm (Implies (Implies θ1_1 θ1_2) θ2) Γ) φ) as [[Hp2 _] | Hf'']. + + order_tac. rewrite <- Permutation_middle. unfold rm. + destruct form_eq_dec; [|tauto]. order_tac. + + left. repeat eexists; try l_tac; eauto. ms. + + right; intros φ1 φ2 φ3 Hp1' Hp2 He; apply elem_of_list_In in He; + destruct He as [Heq''| Hin]; [|apply elem_of_list_In in Hin; eapply Hf; eauto]. + inversion Heq''. subst. apply Hf''. peapply Hp2. + - right; intros φ1 φ2 φ3 Hp1 Hp2 He; apply elem_of_list_In in He; + destruct He as [Heq''| Hin]; [|apply elem_of_list_In in Hin; eapply Hf; eauto]. + inversion Heq''. subst. apply Hf'. peapply Hp1. + } + all: (right; intros φ1 φ2 φ3 Hp1 Hp2 He; apply elem_of_list_In in He; destruct He as [Heq''| Hin]; + [discriminate|apply elem_of_list_In in Hin; eapply Hf; eauto]). +} +destruct (HImpLImp Γ [] (app_nil_l _)) as [(φ1 & φ2 & φ3 & Hp1 & Hp2 & Hin)|HfImpl]. +{ apply elem_of_list_to_set_disj in Hin. + left. eexists; trivial. exhibit Hin 0. rw (list_to_set_disj_rm Γ(Implies (Implies φ1 φ2) φ3)) 1. + apply ImpLImp; assumption. +} +(* ImpBox *) +assert(HImpLBox : ∀Γ2 Γ1, Γ1 ++ Γ2 = Γ -> {φ1 & {φ2 & {H2312 : ((⊗(list_to_set_disj ((rm (Implies (□ φ1) φ2) Γ))) • □ φ1 • φ2) ⊢φ1) + & {H3: (list_to_set_disj (rm (Implies (□ φ1) φ2) Γ) • φ2 ⊢ φ) & (Implies (□ φ1) φ2) ∈ Γ2}}}} + + {∀ φ1 φ2 (_ : ((⊗ (list_to_set_disj ((rm (Implies (□ φ1) φ2) Γ))) • □ φ1 • φ2) ⊢φ1)) + (_: list_to_set_disj (rm (Implies (□ φ1) φ2) Γ) • φ2 ⊢ φ), + Implies (□ φ1) φ2 ∈ Γ2 → False}). +{ + induction Γ2 as [|θ Γ2]; intros Γ1 Heq. + - right. intros φ1 φ2 _ _ Hin. inversion Hin. + - assert(Heq' : (Γ1 ++ [θ]) ++ Γ2 = Γ) by (subst; auto with *). + destruct (IHΓ2 (Γ1 ++ [θ]) Heq') as [(φ1 & φ2 & Hp1 & Hp2 & Hin)|Hf]. + + left. repeat eexists; eauto. now right. + + destruct θ. + 5: destruct θ1. + 10 : { + destruct (Hind (θ2 :: (□θ1) :: map open_box (rm (Implies (□ θ1) θ2) Γ)) θ1) + as [[Hp1 _] | Hf']. + - order_tac. rewrite <- Permutation_middle. unfold rm. + destruct form_eq_dec; [|tauto]. order_tac. + - destruct (Hind (θ2 :: rm (Implies (□ θ1) θ2) Γ) φ) as [[Hp2 _] | Hf'']. + + order_tac. rewrite <- Permutation_middle. unfold rm. + destruct form_eq_dec; [|tauto]. order_tac. + + left. repeat eexists; repeat l_tac; eauto. ms. + + right; intros φ1 φ2 Hp1' Hp2 He; apply elem_of_list_In in He; + destruct He as [Heq''| Hin]; [|apply elem_of_list_In in Hin; eapply Hf; eauto]. + inversion Heq''. subst. apply Hf''. peapply Hp2. + - right; intros φ1 φ2 Hp1 Hp2 He; apply elem_of_list_In in He; + destruct He as [Heq''| Hin]; [|apply elem_of_list_In in Hin; eapply Hf; eauto]. + inversion Heq''. subst. apply Hf'. + (erewrite proper_Provable; [| |reflexivity]); [eapply Hp1|]. + repeat rewrite <- ?list_to_set_disj_env_add, list_to_set_disj_open_boxes. trivial. + } + all: (right; intros φ1 φ2 Hp1 Hp2 He; apply elem_of_list_In in He; destruct He as [Heq''| Hin]; + [discriminate|apply elem_of_list_In in Hin; eapply Hf; eauto]). +} +destruct (HImpLBox Γ [] (app_nil_l _)) as [(φ1 & φ2 & Hp1 & Hp2 & Hin)|HfImpLBox]. +{ apply elem_of_list_to_set_disj in Hin. + left. eexists; trivial. exhibit Hin 0. rw (list_to_set_disj_rm Γ(Implies (□ φ1) φ2)) 1. + apply ImpBox; assumption. +} +clear Hind HImpLImp HImpLBox. +right. +Ltac eqt := match goal with | H : (_ • ?φ) = list_to_set_disj ?Γ |- _ => + let Heq := fresh "Heq" in assert(Heq := H); + assert(Hinφ : φ ∈ Γ) by (apply elem_of_list_to_set_disj; setoid_rewrite <- H; ms); + apply env_equiv_eq, env_add_inv', symmetry in Heq; rewrite list_to_set_disj_rm in Heq end. +intro Hp. inversion Hp; subst; try eqt; eauto 2. +- eapply HAndR; eauto. +- eapply HImpR; eauto. +- eapply HImpLVar; eauto. apply elem_of_list_to_set_disj. setoid_rewrite <- H; ms. +- eapply HfImpl; eauto. + + now rw Heq 1. + + now rw Heq 1. +- eapply HfImpLBox; eauto. + + now rw (proper_open_boxes _ _ Heq) 2. + + now rw Heq 1. +Defined. + + +(* This function decides whether a sequent is provable *) +Proposition Provable_dec Γ φ : + (exists _ : list_to_set_disj Γ ⊢ φ, True) + (forall H : list_to_set_disj Γ ⊢ φ, False). +Proof. +remember (Γ, φ) as pe. +replace Γ with pe.1 by now inversion Heqpe. +replace φ with pe.2 by now inversion Heqpe. clear Heqpe Γ φ. +revert pe. +refine (@well_founded_induction _ _ wf_pointed_order _ _). +intros (Γ& φ) Hind; simpl. +assert(Hind' := λ Γ' φ', Hind(Γ', φ')). simpl in Hind'. clear Hind. rename Hind' into Hind. + +case (decide (⊥ ∈ Γ)); intro Hbot. +{ left. eexists; trivial. apply elem_of_list_to_set_disj in Hbot. exhibit Hbot 0. apply ExFalso. } +assert(HAndR : {φ1 & {φ2 & φ = (And φ1 φ2)}} + {∀ φ1 φ2, φ ≠ (And φ1 φ2)}) by (destruct φ; eauto). +destruct HAndR as [(φ1 & φ2 & Heq) | HAndR]. +{ subst. + destruct (Hind Γ φ1) as [Hp1| H1]. order_tac. + - destruct (Hind Γ φ2) as [Hp2| H2]. order_tac. + + left. destruct Hp1, Hp2. eexists; trivial. apply AndR; assumption. + + right. intro Hp. apply AndR_rev in Hp. tauto. + - right. intro Hp. apply AndR_rev in Hp. tauto. +} +assert(Hvar : {p & φ = Var p & Var p ∈ Γ} + {∀ p, φ = Var p -> Var p ∈ Γ -> False}). { + destruct φ. 2-6: right; auto with *. + case (decide (Var v ∈ Γ)); intro Hin. + - left. exists v; trivial. + - right; auto with *. } +destruct Hvar as [[p Heq Hp]|Hvar]. +{ subst. left. eexists; trivial. apply elem_of_list_to_set_disj in Hp. exhibit Hp 0. apply Atom. } +assert(HAndL : {ψ1 & {ψ2 & (And ψ1 ψ2) ∈ Γ}} + {∀ ψ1 ψ2, (And ψ1 ψ2) ∈ Γ -> False}). { + pose (fA := (fun θ => match θ with |And _ _ => true | _ => false end)). + destruct (exists_dec fA Γ) as [(θ & Hin & Hθ) | Hf]. + - left. subst fA. destruct θ. 3: { eexists. eexists. apply elem_of_list_In. eauto. } + all: auto with *. + - right. intros ψ1 ψ2 Hψ. rewrite elem_of_list_In in Hψ. apply Hf in Hψ. subst fA. simpl in Hψ. tauto. +} +destruct HAndL as [(ψ1 & ψ2 & Hin)|HAndL]. +{ destruct (Hind (ψ1 :: ψ2 :: rm (And ψ1 ψ2) Γ) φ) as [Hp' | Hf]. order_tac. + - left. destruct Hp' as [Hp' _]. eexists; trivial. apply elem_of_list_to_set_disj in Hin. + exhibit Hin 0. + rewrite (proper_Provable _ _ (equiv_disj_union_compat_r (list_to_set_disj_rm _ _)) _ _ eq_refl). + apply AndL. peapply Hp'. + - right. intro Hf'. apply Hf. + rw (symmetry (list_to_set_disj_env_add (ψ2 :: rm (And ψ1 ψ2) Γ) ψ1)) 0. + rw (symmetry (list_to_set_disj_env_add (rm (And ψ1 ψ2) Γ) ψ2)) 1. + exch 0. apply AndL_rev. + rw (symmetry (list_to_set_disj_rm Γ(And ψ1 ψ2))) 1. + apply elem_of_list_to_set_disj in Hin. + pose (difference_singleton (list_to_set_disj Γ) (And ψ1 ψ2)). + peapply Hf'. +} +assert(HImpR : {φ1 & {φ2 & φ = (Implies φ1 φ2)}} + {∀ φ1 φ2, φ ≠ (Implies φ1 φ2)}) by (destruct φ; eauto). +destruct HImpR as [(φ1 & φ2 & Heq) | HImpR]. +{ subst. + destruct (Hind (φ1 :: Γ) φ2) as [Hp1| H1]. order_tac. + - left. destruct Hp1 as [Hp1 _]. eexists; trivial. apply ImpR. peapply Hp1. + - right. intro Hf. apply H1. apply ImpR_rev in Hf. peapply Hf. +} +assert(HOrL : {ψ1 & {ψ2 & (Or ψ1 ψ2) ∈ Γ}} + {∀ ψ1 ψ2, (Or ψ1 ψ2) ∈ Γ -> False}). { + pose (fA := (fun θ => match θ with |Or _ _ => true | _ => false end)). + destruct (exists_dec fA Γ) as [(θ & Hin & Hθ) | Hf]. + - left. subst fA. destruct θ. 4: { eexists. eexists. apply elem_of_list_In. eauto. } + all: auto with *. + - right. intros ψ1 ψ2 Hψ. rewrite elem_of_list_In in Hψ. apply Hf in Hψ. subst fA. simpl in Hψ. tauto. +} +destruct HOrL as [(ψ1 & ψ2 & Hin)|HOrL]. +{ apply elem_of_list_to_set_disj in Hin. + destruct (Hind (ψ1 :: rm (Or ψ1 ψ2) Γ) φ) as [Hp1| Hf]. order_tac. + - destruct (Hind (ψ2 :: rm (Or ψ1 ψ2) Γ) φ) as [Hp2| Hf]. order_tac. + + left. destruct Hp1 as [Hp1 _]. destruct Hp2 as [Hp2 _]. eexists; trivial. exhibit Hin 0. + rewrite (proper_Provable _ _ (equiv_disj_union_compat_r (list_to_set_disj_rm _ _)) _ _ eq_refl). + apply OrL. peapply Hp1. peapply Hp2. + + right; intro Hf'. assert(Hf'' :list_to_set_disj (rm (Or ψ1 ψ2) Γ) • Or ψ1 ψ2 ⊢ φ). { + rw (symmetry (list_to_set_disj_rm Γ(Or ψ1 ψ2))) 1. + pose (difference_singleton (list_to_set_disj Γ) (Or ψ1 ψ2)). peapply Hf'. + } + apply OrL_rev in Hf''. apply Hf. peapply Hf''. + - right; intro Hf'. assert(Hf'' :list_to_set_disj (rm (Or ψ1 ψ2) Γ) • Or ψ1 ψ2 ⊢ φ). { + rw (symmetry (list_to_set_disj_rm Γ(Or ψ1 ψ2))) 1. + pose (difference_singleton (list_to_set_disj Γ) (Or ψ1 ψ2)). peapply Hf'. + } + apply OrL_rev in Hf''. apply Hf. peapply Hf''.1. +} +assert(HImpLVar : {p & {ψ & Var p ∈ Γ /\ (Implies (Var p) ψ) ∈ Γ}} + + {∀ p ψ, Var p ∈ Γ -> (Implies (Var p) ψ) ∈ Γ -> False}). { + pose (fIp :=λ p θ, match θ with | Implies (Var q) _ => if decide (p = q) then true else false | _ => false end). + pose (fp:= (fun θ => match θ with |Var p => if (exists_dec (fIp p) Γ) then true else false | _ => false end)). + destruct (exists_dec fp Γ) as [(θ & Hin & Hθ) | Hf]. + - left. subst fp. destruct θ. 2-6: auto with *. + case exists_dec as [(ψ &Hinψ & Hψ)|] in Hθ; [|auto with *]. + unfold fIp in Hψ. destruct ψ. 1-4, 6: auto with *. + destruct ψ1. 2-6: auto with *. case decide in Hψ; [|auto with *]. + subst. apply elem_of_list_In in Hinψ, Hin. + do 2 eexists. split; eauto. + - right. intros p ψ Hp Hψ. rewrite elem_of_list_In in Hp, Hψ. apply Hf in Hp. subst fp fIp. + simpl in Hp. case exists_dec as [|Hf'] in Hp. auto with *. + apply (Hf' _ Hψ). rewrite decide_True; trivial. auto with *. +} +destruct HImpLVar as [[p [ψ [Hinp Hinψ]]]|HImpLVar]. +{ apply elem_of_list_to_set_disj in Hinp. + apply elem_of_list_to_set_disj in Hinψ. + assert(Hinp' : Var p ∈ (list_to_set_disj Γ ∖ {[Implies p ψ]} : env)) + by (apply in_difference; [discriminate| assumption]). + destruct (Hind (ψ :: rm (Implies (Var p) ψ) Γ) φ) as [Hp|Hf]. order_tac. + - left. destruct Hp as [Hp _]. eexists; trivial. exhibit Hinψ 0. + exhibit Hinp' 1. apply ImpLVar. + rw (symmetry (difference_singleton (list_to_set_disj Γ ∖ {[Implies p ψ]}) (Var p) Hinp')) 1. + rw (list_to_set_disj_rm Γ(Implies p ψ)) 1. l_tac. exact Hp. + - right. intro Hf'. apply Hf. + rw (symmetry (list_to_set_disj_env_add (rm (Implies p ψ) Γ) ψ)) 0. + rw (symmetry (list_to_set_disj_rm Γ(Implies p ψ))) 1. + exhibit Hinp' 1. apply ImpLVar_rev. + rw (symmetry (difference_singleton _ _ Hinp')) 1. + rw (symmetry (difference_singleton _ _ Hinψ)) 0. + exact Hf'. +} +assert(HImpLAnd : {φ1 & {φ2 & {φ3 & (Implies (And φ1 φ2) φ3) ∈ Γ}}} + + {∀ φ1 φ2 φ3, (Implies (And φ1 φ2) φ3) ∈ Γ -> False}). { + pose (fII := (fun θ => match θ with |Implies (And _ _) _ => true | _ => false end)). + destruct (exists_dec fII Γ) as [(θ & Hin & Hθ) | Hf]. + - left. subst fII. destruct θ. 1-4, 6: auto with *. + destruct θ1. 1-2,4-6: auto with *. do 3 eexists; apply elem_of_list_In; eauto. + - right. intros ψ1 ψ2 ψ3 Hψ. rewrite elem_of_list_In in Hψ. apply Hf in Hψ. subst fII. simpl in Hψ. tauto. +} +destruct HImpLAnd as [(φ1&φ2&φ3&Hin)|HImpLAnd]. +{ apply elem_of_list_to_set_disj in Hin. + destruct (Hind (Implies φ1 (Implies φ2 φ3) :: rm (Implies (And φ1 φ2) φ3) Γ) φ) as [Hp|Hf]. order_tac. + - left. destruct Hp as [Hp _]. eexists; trivial. exhibit Hin 0. apply ImpLAnd. + rw (list_to_set_disj_rm Γ(Implies (And φ1 φ2) φ3)) 1. l_tac. exact Hp. + - right. intro Hf'. apply Hf. + rw (symmetry (list_to_set_disj_env_add (rm (Implies (And φ1 φ2) φ3) Γ) (Implies φ1 (Implies φ2 φ3)))) 0. + rw (symmetry (list_to_set_disj_rm Γ(Implies (And φ1 φ2) φ3))) 1. + apply ImpLAnd_rev. + rw (symmetry (difference_singleton _ _ Hin)) 0. exact Hf'. +} +assert(HImpLOr : {φ1 & {φ2 & {φ3 & (Implies (Or φ1 φ2) φ3) ∈ Γ}}} + + {∀ φ1 φ2 φ3, (Implies (Or φ1 φ2) φ3) ∈ Γ -> False}). { + pose (fII := (fun θ => match θ with |Implies (Or _ _) _ => true | _ => false end)). + destruct (exists_dec fII Γ) as [(θ & Hin & Hθ) | Hf]. + - left. subst fII. destruct θ. 1-4, 6: auto with *. + destruct θ1. 1-3, 5-6: auto with *. do 3 eexists; apply elem_of_list_In; eauto. + - right. intros ψ1 ψ2 ψ3 Hψ. rewrite elem_of_list_In in Hψ. apply Hf in Hψ. subst fII. simpl in Hψ. tauto. +} +destruct HImpLOr as [(φ1&φ2&φ3&Hin)|HImpLOr]. +{ apply elem_of_list_to_set_disj in Hin. + destruct (Hind (Implies φ2 φ3 :: Implies φ1 φ3 :: rm (Implies (Or φ1 φ2) φ3) Γ) φ) as [Hp|Hf]. order_tac. + - left. destruct Hp as [Hp _]. eexists; trivial. exhibit Hin 0. apply ImpLOr. + rw (list_to_set_disj_rm Γ(Implies (Or φ1 φ2) φ3)) 2. do 2 l_tac. exact Hp. + - right. intro Hf'. apply Hf. + rw (symmetry (list_to_set_disj_env_add ( Implies φ1 φ3 :: rm (Implies (Or φ1 φ2) φ3) Γ) (Implies φ2 φ3))) 0. + rw (symmetry (list_to_set_disj_env_add (rm (Implies (Or φ1 φ2) φ3) Γ) (Implies φ1 φ3))) 1. + rw (symmetry (list_to_set_disj_rm Γ(Implies (Or φ1 φ2) φ3))) 2. + apply ImpLOr_rev. + rw (symmetry (difference_singleton _ _ Hin)) 0. exact Hf'. +} +(* non invertible right rules *) +assert(HOrR1 : {φ1 & {φ2 & (exists (_ : list_to_set_disj Γ ⊢ φ1), φ = (Or φ1 φ2))}} + + {∀ φ1 φ2, ∀ (H : list_to_set_disj Γ ⊢ φ1), φ = (Or φ1 φ2) -> False}). +{ + destruct φ. 4: { destruct (Hind Γ φ1)as [Hp|Hf]. order_tac. + - left. do 2 eexists. destruct Hp as [Hp _]. eexists; eauto. + - right. intros ? ? Hp Heq. inversion Heq. subst. tauto. + } + all: right; auto with *. +} +destruct HOrR1 as [(φ1 & φ2 & Hp)| HOrR1]. +{ left. destruct Hp as (Hp & Heq). subst. eexists; trivial. apply OrR1, Hp. } +assert(HOrR2 : {φ1 & {φ2 & exists (_ : list_to_set_disj Γ ⊢ φ2), φ = (Or φ1 φ2)}} + + {∀ φ1 φ2, ∀ (H : list_to_set_disj Γ ⊢ φ2), φ = (Or φ1 φ2) -> False}). +{ + destruct φ. 4: { destruct (Hind Γ φ2)as [Hp|Hf]. order_tac. + - left. do 2 eexists. destruct Hp as [Hp _]; eauto. + - right. intros ? ? Hp Heq. inversion Heq. subst. tauto. + } + all: right; auto with *. +} +destruct HOrR2 as [(φ1 & φ2 & Hp)| HOrR2 ]. +{ left. destruct Hp as [Hp Heq]. subst. eexists; trivial. apply OrR2, Hp. } +assert(HBoxR : {φ' & exists (_ : (⊗ (list_to_set_disj Γ) • □ φ' ⊢ φ')), φ = (□ φ')} + + {∀ φ', ∀ (H : ⊗ (list_to_set_disj Γ) • □ φ' ⊢ φ'), φ = (□ φ') -> False}). +{ + destruct φ. 6: { destruct (Hind ((□ φ) :: map open_box Γ) φ)as [Hp|Hf]. order_tac. + - left. eexists. destruct Hp as [Hp _]. eexists; eauto. l_tac. exact Hp. + - right. intros ? Hp Heq. inversion Heq. subst. apply Hf. + rw (symmetry (list_to_set_disj_env_add (map open_box Γ) (□ φ'))) 0. + rewrite <- list_to_set_disj_open_boxes. exact Hp. + } + all: right; auto with *. +} +destruct HBoxR as [(φ' & Hp)| HBoxR ]. +{ left. destruct Hp as [Hp Heq]. subst. eexists; trivial. apply BoxR, Hp. } +assert(Hempty: ∀ (Δ : env) φ,((Δ • φ) = ∅) -> False). +{ + intros Δ θ Heq. assert (Hm:= multiplicity_empty θ). + unfold base.empty in *. + rewrite <- Heq, union_mult, singleton_mult_in in Hm by trivial. lia. +} +(* non invertible left rules *) +assert(HImpLImp : ∀Γ2 Γ1, Γ1 ++ Γ2 = Γ -> {φ1 & {φ2 & {φ3 & exists (_ : (list_to_set_disj (rm (Implies (Implies φ1 φ2) φ3) Γ) • (Implies φ2 φ3)) ⊢ (Implies φ1 φ2)), + exists (_: list_to_set_disj (rm (Implies (Implies φ1 φ2) φ3) Γ) • φ3 ⊢ φ), (Implies (Implies φ1 φ2) φ3) ∈ Γ2}}} + + {∀ φ1 φ2 φ3 (_ : (list_to_set_disj (rm (Implies (Implies φ1 φ2) φ3) Γ) • (Implies φ2 φ3)) ⊢ (Implies φ1 φ2)) + (_: list_to_set_disj (rm (Implies (Implies φ1 φ2) φ3) Γ) • φ3 ⊢ φ), + Implies (Implies φ1 φ2) φ3 ∈ Γ2 → False}). +{ + induction Γ2 as [|θ Γ2]; intros Γ1 Heq. + - right. intros φ1 φ2 φ3 _ _ Hin. inversion Hin. + - assert(Heq' : (Γ1 ++ [θ]) ++ Γ2 = Γ) by (subst; auto with *). + destruct (IHΓ2 (Γ1 ++ [θ]) Heq') as [(φ1 & φ2 & φ3 & Hp)|Hf]. + + left. do 3 eexists. destruct Hp as ( Hp1 & Hp2 & Hin). do 2 (eexists; eauto). now right. + + destruct θ. + 5: destruct θ1. + 9 : { + destruct (Hind (Implies θ1_2 θ2 :: rm (Implies (Implies θ1_1 θ1_2) θ2) Γ) (Implies θ1_1 θ1_2)) + as [Hp1| Hf']. + - order_tac. rewrite <- Permutation_middle. unfold rm. + destruct form_eq_dec; [|tauto]. order_tac. + - destruct (Hind (θ2 :: rm (Implies (Implies θ1_1 θ1_2) θ2) Γ) φ) as [Hp2| Hf'']. + + order_tac. rewrite <- Permutation_middle. unfold rm. + destruct form_eq_dec; [|tauto]. order_tac. + + left. do 3 eexists. destruct Hp1 as [Hp1 _]. destruct Hp2 as [Hp2 _]. + eexists; try l_tac; eauto. ms. + + right; intros φ1 φ2 φ3 Hp1' Hp2 He; apply elem_of_list_In in He; + destruct He as [Heq''| Hin]; [|apply elem_of_list_In in Hin; eapply Hf; eauto]. + inversion Heq''. subst. apply Hf''. peapply Hp2. + - right; intros φ1 φ2 φ3 Hp1 Hp2 He; apply elem_of_list_In in He; + destruct He as [Heq''| Hin]; [|apply elem_of_list_In in Hin; eapply Hf; eauto]. + inversion Heq''. subst. apply Hf'. peapply Hp1. + } + all: (right; intros φ1 φ2 φ3 Hp1 Hp2 He; apply elem_of_list_In in He; destruct He as [Heq''| Hin]; + [discriminate|apply elem_of_list_In in Hin; eapply Hf; eauto]). +} +destruct (HImpLImp Γ [] (app_nil_l _)) as [(φ1 & φ2 & φ3 & Hp1)|HfImpl]. +{ left. destruct Hp1 as (Hp1 & Hp2 & Hin). eexists; trivial. + apply elem_of_list_to_set_disj in Hin. exhibit Hin 0. + rw (list_to_set_disj_rm Γ(Implies (Implies φ1 φ2) φ3)) 1. + apply ImpLImp; assumption. +} +(* ImpBox *) +assert(HImpLBox : ∀Γ2 Γ1, Γ1 ++ Γ2 = Γ -> {φ1 & {φ2 & exists (_ : (⊗(list_to_set_disj ((rm (Implies (□ φ1) φ2) Γ))) • □ φ1 • φ2) ⊢φ1), + exists (_ : list_to_set_disj (rm (Implies (□ φ1) φ2) Γ) • φ2 ⊢ φ), + (Implies (□ φ1) φ2) ∈ Γ2}} + + {∀ φ1 φ2 (_ : ((⊗ (list_to_set_disj ((rm (Implies (□ φ1) φ2) Γ))) • □ φ1 • φ2) ⊢φ1)) + (_: list_to_set_disj (rm (Implies (□ φ1) φ2) Γ) • φ2 ⊢ φ), + Implies (□ φ1) φ2 ∈ Γ2 → False}). +{ + induction Γ2 as [|θ Γ2]; intros Γ1 Heq. + - right. intros φ1 φ2 _ _ Hin. inversion Hin. + - assert(Heq' : (Γ1 ++ [θ]) ++ Γ2 = Γ) by (subst; auto with *). + destruct (IHΓ2 (Γ1 ++ [θ]) Heq') as [(φ1 & φ2 & Hp1)|Hf]. + + left. do 2 eexists. destruct Hp1 as (Hp1 & Hp2 & Hin). do 2 (eexists; eauto). now right. + + destruct θ. + 5: destruct θ1. + 10 : { + destruct (Hind (θ2 :: (□θ1) :: map open_box (rm (Implies (□ θ1) θ2) Γ)) θ1) + as [Hp1|Hf']. + - order_tac. rewrite <- Permutation_middle. unfold rm. + destruct form_eq_dec; [|tauto]. order_tac. + - destruct (Hind (θ2 :: rm (Implies (□ θ1) θ2) Γ) φ) as [Hp2| Hf'']. + + order_tac. rewrite <- Permutation_middle. unfold rm. + destruct form_eq_dec; [|tauto]. order_tac. + + left. do 2 eexists. destruct Hp1 as [Hp1 _]. destruct Hp2 as [Hp2 _]. + repeat eexists; repeat l_tac; eauto. ms. + + right; intros φ1 φ2 Hp1' Hp2 He; apply elem_of_list_In in He; + destruct He as [Heq''| Hin]; [|apply elem_of_list_In in Hin; eapply Hf; eauto]. + inversion Heq''. subst. apply Hf''. peapply Hp2. + - right; intros φ1 φ2 Hp1 Hp2 He; apply elem_of_list_In in He; + destruct He as [Heq''| Hin]; [|apply elem_of_list_In in Hin; eapply Hf; eauto]. + inversion Heq''. subst. apply Hf'. + (erewrite proper_Provable; [| |reflexivity]); [eapply Hp1|]. + repeat rewrite <- ?list_to_set_disj_env_add, list_to_set_disj_open_boxes. trivial. + } + all: (right; intros φ1 φ2 Hp1 Hp2 He; apply elem_of_list_In in He; destruct He as [Heq''| Hin]; + [discriminate|apply elem_of_list_In in Hin; eapply Hf; eauto]). +} +destruct (HImpLBox Γ [] (app_nil_l _)) as [(φ1 & φ2 & Hp1)|HfImpLBox]. +{ left. destruct Hp1 as (Hp1 & Hp2 & Hin). eexists; trivial. + apply elem_of_list_to_set_disj in Hin. exhibit Hin 0. + rw (list_to_set_disj_rm Γ(Implies (□ φ1) φ2)) 1. + apply ImpBox; assumption. +} +clear Hind HImpLImp HImpLBox. +right. +intro Hp. inversion Hp; subst; try eqt; eauto 2. +- eapply HAndR; eauto. +- eapply HImpR; eauto. +- eapply HImpLVar; eauto. apply elem_of_list_to_set_disj. setoid_rewrite <- H; ms. +- eapply HfImpl; eauto. + + now rw Heq 1. + + now rw Heq 1. +- eapply HfImpLBox; eauto. + + now rw (proper_open_boxes _ _ Heq) 2. + + now rw Heq 1. +Defined.