Skip to content

Latest commit

 

History

History
181 lines (138 loc) · 11.2 KB

README.md

File metadata and controls

181 lines (138 loc) · 11.2 KB

AraBERT : Pre-training BERT for Arabic Language Understanding

AraBERT is an Arabic pretrained lanaguage model based on Google's BERT architechture. AraBERT uses the same BERT-Base config. More details are available in the AraBERT PAPER and in the AraBERT Meetup

There are two version off the model AraBERTv0.1 and AraBERTv1, with the difference being that AraBERTv1 uses pre-segmented text where prefixes and suffixes were splitted using the Farasa Segmenter.

The model was trained on ~70M sentences or ~23GB of Arabic text with ~3B words. The training corpora are a collection of publically available large scale raw arabic text (Arabic Wikidumps, The 1.5B words Arabic Corpus, The OSIAN Corpus, Assafir news articles, and 4 other manually crawled news websites (Al-Akhbar, Annahar, AL-Ahram, AL-Wafd) from the Wayback Machine)

We evalaute both AraBERT models on different downstream tasks and compare it to mBERT, and other state of the art models (To the extent of our knowledge). The Tasks were Sentiment Analysis on 6 different datasets (HARD, ASTD-Balanced, ArsenTD-Lev, LABR, ArSaS), Named Entity Recognition with the ANERcorp, and Arabic Question Answering on Arabic-SQuAD and ARCD

Update 4 (7/7/2020) : Added TF2 models under the aubmindlab models on HuggingFace, you can now use TFAutoModel and work with Tensorflow 2

Update 3 (1/7/2020) : You can now use the Transformers Library without adding the extra parameters to the AutoTokenizer, the tokens are now loaded automatically:

#----NEW----
from transformers import AutoTokenizer, AutoModel
from arabert.preprocess_arabert import preprocess

arabert_tokenizer = AutoTokenizer.from_pretrained("aubmindlab/bert-base-arabert")

#----OLD----
from transformers import AutoTokenizer, AutoModel
from arabert.preprocess_arabert import never_split_tokens, preprocess

arabert_tokenizer = AutoTokenizer.from_pretrained(
    "aubmindlab/bert-base-arabert",
    do_lower_case=False,
    do_basic_tokenize=True,
    never_split=never_split_tokens)

Update 2 (21/5/2020) : Added support for the farasapy segmenter https://github.com/MagedSaeed/farasapy in the preprocess_arabert.py which is ~6x faster than the py4j.java_gateway, consider setting use_farasapy=True when calling preprocess and pass it an instance of FarasaSegmenter(interactive=True) with interactive set to True for faster segmentation.

Update 1 (21/4/2020) : Fixed an issue with ARCD fine-tuning which drastically improved performance. Initially we didn't account for the change of the answer_start during preprocessing.

Results (Acc.)

Task prev. SOTA mBERT AraBERTv0.1 AraBERTv1
HARD 95.7 ElJundi et.al. 95.7 96.2 96.1
ASTD 86.5 ElJundi et.al. 80.1 92.2 92.6
ArsenTD-Lev 52.4 ElJundi et.al. 51 58.9 59.4
AJGT 93 Dahou et.al. 83.6 93.1 93.8
LABR 87.5 Dahou et.al. 83 85.9 86.7
ANERcorp 81.7 (BiLSTM-CRF) 78.4 84.2 81.9
ARCD mBERT EM:34.2 F1: 61.3 EM:51.14 F1:82.13 EM:54.84 F1: 82.15

If you tested AraBERT on a public dataset and you want to add your results to the table above, open a pull request or contact us. Also make sure to have your code available online so we can add it as a reference

How to use

You can easily use AraBERT since it is almost fully compatible with existing codebases (Use this repo instead of the official BERT one, the only difference is in the tokenization.py file where we modify the _is_punctuation function to make it compatible with the "+" symbol and the "[" and "]" characters)

AraBERTv1 always needs pre-segmentation

from transformers import AutoTokenizer, AutoModel
from arabert.preprocess_arabert import never_split_tokens, preprocess
from farasa.segmenter import FarasaSegmenter

arabert_tokenizer = AutoTokenizer.from_pretrained("aubmindlab/bert-base-arabert")
arabert_model = AutoModel.from_pretrained("aubmindlab/bert-base-arabert")

# OLD WAY
# arabert_tokenizer = AutoTokenizer.from_pretrained(
#     "aubmindlab/bert-base-arabert",
#     do_lower_case=False,
#     do_basic_tokenize=True,
#     never_split=never_split_tokens)
# arabert_model = AutoModel.from_pretrained("aubmindlab/bert-base-arabert")

#Preprocess the text to make it compatible with AraBERT using farasapy
farasa_segmenter = FarasaSegmenter(interactive=True)

#or you can use a py4j JavaGateway to the farasa Segmneter .jar but it's slower 
#(see update 2)
#from py4j.java_gateway import JavaGateway
#gateway = JavaGateway.launch_gateway(classpath='./PATH_TO_FARASA/FarasaSegmenterJar.jar')
#farasa = gateway.jvm.com.qcri.farasa.segmenter.Farasa()

text = "ولن نبالغ إذا قلنا إن هاتف أو كمبيوتر المكتب في زمننا هذا ضروري"
text_preprocessed = preprocess( text,
                                do_farasa_tokenization = True,
                                farasa = farasa_segmenter,
                                use_farasapy = True)

>>>text_preprocessed: "و+ لن نبالغ إذا قل +نا إن هاتف أو كمبيوتر ال+ مكتب في زمن +نا هذا ضروري"

arabert_tokenizer.tokenize(text_preprocessed)

>>> ['و+', 'لن', 'نبال', '##غ', 'إذا', 'قل', '+نا', 'إن', 'هاتف', 'أو', 'كمبيوتر', 'ال+', 'مكتب', 'في', 'زمن', '+نا', 'هذا', 'ضروري']

AraBERTv0.1 needs no pre-segmentation.

from transformers import AutoTokenizer, AutoModel

arabert_tokenizer = AutoTokenizer.from_pretrained("aubmindlab/bert-base-arabertv01",do_lower_case=False)
arabert_model = AutoModel.from_pretrained("aubmindlab/bert-base-arabertv01")

text = "ولن نبالغ إذا قلنا إن هاتف أو كمبيوتر المكتب في زمننا هذا ضروري"
arabert_tokenizer.tokenize(text)

>>> ['ولن', 'ن', '##بالغ', 'إذا', 'قلنا', 'إن', 'هاتف', 'أو', 'كمبيوتر', 'المكتب', 'في', 'زمن', '##ن', '##ا', 'هذا', 'ضروري']

Examples

araBERT_(Updated_Demo_TF).ipynb is a demo using the AJGT dataset using TensorFlow Estimators (GPU and TPU compatible).

AraBERT_PyTorch_Demo.ipynb is a demo using the AJGT dataset using HuggingFace's Transformers API for PyTorch (GPU compatible)

AraBERT_with_fast_bert.ipynb is a demo using the AJGT dataset with Fast-Bert library

AraBERT_Fill_Mask.ipynb is a demo of the Masked Language capabilites and how it is better than other models that support Arabic

AraBert_output_Embeddings_PyTorch.ipynb is a demo on how to extract word embeddings fro sentences using the Transformers Library

AraBERT_Text_Classification_with_HF_Trainer_Pytorch_GPU.ipynb is a demo using the AJGT dataset using HuggingFace's Trainer API for PyTorch (GPU compatible) Note: TPU compatibility should be enabled in the TrainingArguments but not tested yet

MTL_AraBERT_Offensive_Lanaguage_detection.ipynb is the code used in the in the OSACT4 - shared task on Offensive language detection (LREC 2020). Paper Link

AraBERT on ARCD

During the preprocessing step the answer_start character position needs to be recalculated. You can use the file arcd_preprocessing.py as shown below to clean, preprocess the ARCD dataset before running run_squad.py. More detailed Colab notebook is available in the SOQAL repo.

python arcd_preprocessing.py \
    --input_file="/PATH_TO/arcd-test.json" \
    --output_file="arcd-test-pre.json" \
    --do_farasa_tokenization=True \
    --use_farasapy=True \
python run_squad.py \
  --vocab_file="/PATH_TO_PRETRAINED_TF_CKPT/vocab.txt" \
  --bert_config_file="/PATH_TO_PRETRAINED_TF_CKPT/config.json" \
  --init_checkpoint="/PATH_TO_PRETRAINED_TF_CKPT/" \
  --do_train=True \
  --train_file=turk_combined_all_pre.json \
  --do_predict=True \
  --predict_file=arcd-test-pre.json \
  --train_batch_size=32 \
  --predict_batch_size=24 \
  --learning_rate=3e-5 \
  --num_train_epochs=4 \
  --max_seq_length=384 \
  --doc_stride=128 \
  --do_lower_case=False\
  --output_dir="/PATH_TO/OUTPUT_PATH"/ \
  --use_tpu=True \
  --tpu_name=$TPU_ADDRESS \

Model Weights and Vocab Download

Models AraBERTv0.1 AraBERTv1
TensorFlow Drive Link Drive Link
PyTorch Drive_Link Drive_Link

You can find the PyTorch models in HuggingFace's Transformer Library under the aubmindlab username

If you used this model please cite us as:

@inproceedings{antoun2020arabert,
  title={AraBERT: Transformer-based Model for Arabic Language Understanding},
  author={Antoun, Wissam and Baly, Fady and Hajj, Hazem},
  booktitle={LREC 2020 Workshop Language Resources and Evaluation Conference 11--16 May 2020},
  pages={9}
}

Acknowledgments

Thanks to TensorFlow Research Cloud (TFRC) for the free access to Cloud TPUs, couldn't have done it without this program, and to the AUB MIND Lab Members for the continous support. Also thanks to Yakshof and Assafir for data and storage access. Another thanks for Habib Rahal (https://www.behance.net/rahalhabib), for putting a face to AraBERT.

Contacts

Wissam Antoun: Linkedin | Twitter | Github | [email protected] | [email protected]

Fady Baly: Linkedin | Twitter | Github | [email protected] | [email protected]

We are looking for sponsors to train BERT-Large and other Transformer models, the sponsor only needs to cover to data storage and compute cost of the generating the pretraining data