-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_multi_GPU.py
224 lines (184 loc) · 9.51 KB
/
train_multi_GPU.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import time
import os
import datetime
from typing import Union, List
import torch
from torch.utils import data
from src import u2net_full
from train_utils import (train_one_epoch, evaluate, init_distributed_mode, save_on_master, mkdir,
create_lr_scheduler, get_params_groups)
from my_dataset import DUTSDataset
import transforms as T
class SODPresetTrain:
def __init__(self, base_size: Union[int, List[int]], crop_size: int,
hflip_prob=0.5, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)):
self.transforms = T.Compose([
T.ToTensor(),
T.Resize(base_size, resize_mask=True),
T.RandomCrop(crop_size),
T.RandomHorizontalFlip(hflip_prob),
T.Normalize(mean=mean, std=std)
])
def __call__(self, img, target):
return self.transforms(img, target)
class SODPresetEval:
def __init__(self, base_size: Union[int, List[int]], mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)):
self.transforms = T.Compose([
T.ToTensor(),
T.Resize(base_size, resize_mask=False),
T.Normalize(mean=mean, std=std),
])
def __call__(self, img, target):
return self.transforms(img, target)
def main(args):
init_distributed_mode(args)
print(args)
device = torch.device(args.device)
# 用来保存训练以及验证过程中信息
results_file = "results{}.txt".format(datetime.datetime.now().strftime("%Y%m%d-%H%M%S"))
train_dataset = DUTSDataset(args.data_path, train=True, transforms=SODPresetTrain([320, 320], crop_size=288))
val_dataset = DUTSDataset(args.data_path, train=False, transforms=SODPresetEval([320, 320]))
print("Creating data loaders")
if args.distributed:
train_sampler = data.distributed.DistributedSampler(train_dataset)
test_sampler = data.distributed.DistributedSampler(val_dataset)
else:
train_sampler = data.RandomSampler(train_dataset)
test_sampler = data.SequentialSampler(val_dataset)
train_data_loader = data.DataLoader(
train_dataset, batch_size=args.batch_size,
sampler=train_sampler, num_workers=args.workers,
pin_memory=True, collate_fn=train_dataset.collate_fn, drop_last=True)
val_data_loader = data.DataLoader(
val_dataset, batch_size=1, # batch_size must be 1
sampler=test_sampler, num_workers=args.workers,
pin_memory=True, collate_fn=train_dataset.collate_fn)
# create model num_classes equal background + 20 classes
model = u2net_full()
model.to(device)
if args.sync_bn:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
params_group = get_params_groups(model, weight_decay=args.weight_decay)
optimizer = torch.optim.AdamW(params_group, lr=args.lr, weight_decay=args.weight_decay)
lr_scheduler = create_lr_scheduler(optimizer, len(train_data_loader), args.epochs,
warmup=True, warmup_epochs=2)
scaler = torch.cuda.amp.GradScaler() if args.amp else None
# 如果传入resume参数,即上次训练的权重地址,则接着上次的参数训练
if args.resume:
# If map_location is missing, torch.load will first load the module to CPU
# and then copy each parameter to where it was saved,
# which would result in all processes on the same machine using the same set of devices.
checkpoint = torch.load(args.resume, map_location='cpu') # 读取之前保存的权重文件(包括优化器以及学习率策略)
model_without_ddp.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
args.start_epoch = checkpoint['epoch'] + 1
if args.amp:
scaler.load_state_dict(checkpoint["scaler"])
if args.test_only:
mae_metric, f1_metric = evaluate(model, val_data_loader, device=device)
print(mae_metric, f1_metric)
return
print("Start training")
current_mae, current_f1 = 1.0, 0.0
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
train_sampler.set_epoch(epoch)
mean_loss, lr = train_one_epoch(model, optimizer, train_data_loader, device, epoch,
lr_scheduler=lr_scheduler, print_freq=args.print_freq, scaler=scaler)
save_file = {'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
"lr_scheduler": lr_scheduler.state_dict(),
'args': args,
'epoch': epoch}
if args.amp:
save_file["scaler"] = scaler.state_dict()
if epoch % args.eval_interval == 0 or epoch == args.epochs - 1:
# 每间隔eval_interval个epoch验证一次,减少验证频率节省训练时间
mae_metric, f1_metric = evaluate(model, val_data_loader, device=device)
mae_info, f1_info = mae_metric.compute(), f1_metric.compute()
print(f"[epoch: {epoch}] val_MAE: {mae_info:.3f} val_maxF1: {f1_info:.3f}")
# 只在主进程上进行写操作
if args.rank in [-1, 0]:
# write into txt
with open(results_file, "a") as f:
# 记录每个epoch对应的train_loss、lr以及验证集各指标
write_info = f"[epoch: {epoch}] train_loss: {mean_loss:.4f} lr: {lr:.6f} " \
f"MAE: {mae_info:.3f} maxF1: {f1_info:.3f} \n"
f.write(write_info)
# save_best
if current_mae >= mae_info and current_f1 <= f1_info:
if args.output_dir:
# 只在主节点上执行保存权重操作
save_on_master(save_file,
os.path.join(args.output_dir, 'model_best.pth'))
if args.output_dir:
if args.rank in [-1, 0]:
# only save latest 10 epoch weights
if os.path.exists(os.path.join(args.output_dir, f'model_{epoch - 10}.pth')):
os.remove(os.path.join(args.output_dir, f'model_{epoch - 10}.pth'))
# 只在主节点上执行保存权重操作
save_on_master(save_file,
os.path.join(args.output_dir, f'model_{epoch}.pth'))
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(
description=__doc__)
# 训练文件的根目录(VOCdevkit)
parser.add_argument('--data-path', default='./', help='DUTS root')
# 训练设备类型
parser.add_argument('--device', default='cuda', help='device')
# 每块GPU上的batch_size
parser.add_argument('-b', '--batch-size', default=16, type=int,
help='images per gpu, the total batch size is $NGPU x batch_size')
# 指定接着从哪个epoch数开始训练
parser.add_argument('--start-epoch', default=0, type=int, help='start epoch')
# 训练的总epoch数
parser.add_argument('--epochs', default=360, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)',
dest='weight_decay')
# 是否使用同步BN(在多个GPU之间同步),默认不开启,开启后训练速度会变慢
parser.add_argument('--sync-bn', action='store_true', help='whether using SyncBatchNorm')
# 数据加载以及预处理的线程数
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
# 训练学习率
parser.add_argument('--lr', default=0.001, type=float,
help='initial learning rate')
# 验证频率
parser.add_argument("--eval-interval", default=10, type=int, help="validation interval default 10 Epochs")
# 训练过程打印信息的频率
parser.add_argument('--print-freq', default=20, type=int, help='print frequency')
# 文件保存地址
parser.add_argument('--output-dir', default='./multi_train', help='path where to save')
# 基于上次的训练结果接着训练
parser.add_argument('--resume', default='', help='resume from checkpoint')
# 不训练,仅测试
parser.add_argument(
"--test-only",
dest="test_only",
help="Only test the model",
action="store_true",
)
# 分布式进程数
parser.add_argument('--world-size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist-url', default='env://', help='url used to set up distributed training')
# Mixed precision training parameters
parser.add_argument("--amp", action='store_true',
help="Use torch.cuda.amp for mixed precision training")
args = parser.parse_args()
# 如果指定了保存文件地址,检查文件夹是否存在,若不存在,则创建
if args.output_dir:
mkdir(args.output_dir)
main(args)