-
Notifications
You must be signed in to change notification settings - Fork 0
/
multi_scale_eval.py
208 lines (184 loc) · 7.83 KB
/
multi_scale_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.parallel.data_parallel import DataParallel
from torch.nn.parallel.parallel_apply import parallel_apply
from torch.nn.parallel.scatter_gather import scatter
up_kwargs = {'mode': 'bilinear', 'align_corners': True}
def evaluate(model, x, target=None):
pred = model(x)
if isinstance(pred, (tuple, list)):
pred = pred[0]
if target is None:
return pred
correct, labeled = batch_pix_accuracy(pred.data, target.data)
inter, union = batch_intersection_union(pred.data, target.data, self.nclass)
class MultiEvalModule(DataParallel):
"""Multi-size Segmentation Eavluator"""
def __init__(self, args, module, nclass, device_ids=None, flip=True,
scales=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75]):
super(MultiEvalModule, self).__init__(module, device_ids)
self.args = args
self.nclass = nclass
self.base_size = args.base_size
self.crop_size = args.crop_size
self.scales = scales
self.flip = flip
print('MultiEvalModule: base_size {}, crop_size {}'. \
format(self.base_size, self.crop_size))
def parallel_forward(self, inputs, **kwargs):
"""Multi-GPU Mult-size Evaluation
Args:
inputs: list of Tensors
"""
inputs = [(input.unsqueeze(0).cuda(device),)
for input, device in zip(inputs, self.device_ids)]
replicas = self.replicate(self, self.device_ids[:len(inputs)])
kwargs = scatter(kwargs, target_gpus, dim) if kwargs else []
if len(inputs) < len(kwargs):
inputs.extend([() for _ in range(len(kwargs) - len(inputs))])
elif len(kwargs) < len(inputs):
kwargs.extend([{} for _ in range(len(inputs) - len(kwargs))])
outputs = self.parallel_apply(replicas, inputs, kwargs)
#for out in outputs:
# print('out.size()', out.size())
return outputs
def forward(self, image):
"""Mult-size Evaluation"""
# only single image is supported for evaluation
batch, _, h, w = image.size()
assert(batch == 1)
stride_rate = 2.0/3.0
crop_size = self.crop_size
stride = int(crop_size * stride_rate)
with torch.cuda.device_of(image):
scores = image.new().resize_(batch,self.nclass,h,w).zero_().cuda()
for scale in self.scales:
long_size = int(math.ceil(self.base_size * scale))
if h > w:
height = long_size
width = int(1.0 * w * long_size / h + 0.5)
short_size = width
else:
width = long_size
height = int(1.0 * h * long_size / w + 0.5)
short_size = height
"""
short_size = int(math.ceil(self.base_size * scale))
if h > w:
width = short_size
height = int(1.0 * h * short_size / w)
long_size = height
else:
height = short_size
width = int(1.0 * w * short_size / h)
long_size = width
"""
# resize image to current size
up_kwargs = {'mode': 'bilinear', 'align_corners': True}
cur_img = resize_image(image, height, width, **up_kwargs)
if long_size <= crop_size:
pad_img = pad_image(cur_img, self.args.mean,
self.args.std, crop_size)
outputs = module_inference(self.module, pad_img, self.flip)
outputs = crop_image(outputs, 0, height, 0, width)
else:
if short_size < crop_size:
# pad if needed
pad_img = pad_image(cur_img, self.args.mean,
self.args.std, crop_size)
else:
pad_img = cur_img
_,_,ph,pw = pad_img.size()
assert(ph >= height and pw >= width)
# grid forward and normalize
h_grids = int(math.ceil(1.0 * (ph-crop_size)/stride)) + 1
w_grids = int(math.ceil(1.0 * (pw-crop_size)/stride)) + 1
with torch.cuda.device_of(image):
outputs = image.new().resize_(batch,self.nclass,ph,pw).zero_().cuda()
count_norm = image.new().resize_(batch,1,ph,pw).zero_().cuda()
# grid evaluation
for idh in range(h_grids):
for idw in range(w_grids):
h0 = idh * stride
w0 = idw * stride
h1 = min(h0 + crop_size, ph)
w1 = min(w0 + crop_size, pw)
crop_img = crop_image(pad_img, h0, h1, w0, w1)
# pad if needed
pad_crop_img = pad_image(crop_img, self.args.mean,
self.args.std, crop_size)
output = module_inference(self.module, pad_crop_img, self.flip)
outputs[:,:,h0:h1,w0:w1] += crop_image(output,
0, h1-h0, 0, w1-w0)
count_norm[:,:,h0:h1,w0:w1] += 1
assert((count_norm==0).sum()==0)
outputs = outputs / count_norm
outputs = outputs[:,:,:height,:width]
score = resize_image(outputs, h, w, **up_kwargs)
scores += score
return scores ############################# scores/len(self.scales)
def module_inference(module, image, flip=True):
output = evaluate(module, image)
if flip:
fimg = flip_image(image)
foutput = evaluate(module, fimg)
output += flip_image(foutput)
return output.exp()
def resize_image(img, h, w, **up_kwargs):
return F.interpolate(img, (h, w), **up_kwargs)
def pad_image(img, mean, std, crop_size):
b,c,h,w = img.size()
assert(c==3)
padh = crop_size - h if h < crop_size else 0
padw = crop_size - w if w < crop_size else 0
pad_values = -np.array(mean) / np.array(std)
img_pad = img.new().resize_(b,c,h+padh,w+padw)
for i in range(c):
# note that pytorch pad params is in reversed orders
img_pad[:,i,:,:] = F.pad(img[:,i,:,:], (0, padw, 0, padh), value=pad_values[i])
assert(img_pad.size(2)>=crop_size and img_pad.size(3)>=crop_size)
return img_pad
def crop_image(img, h0, h1, w0, w1):
return img[:,:,h0:h1,w0:w1]
def flip_image(img):
assert(img.dim()==4)
with torch.cuda.device_of(img):
idx = torch.arange(img.size(3)-1, -1, -1).type_as(img).long()
return img.index_select(3, idx)
######### prepare small model and args #########
class small(nn.Module):
def __init__(self, args=None):
super(small, self).__init__()
self.args=args
if args.aux:
c=1
else:
c=3
self.encoder = nn.Conv2d(in_channels=3, out_channels=c, kernel_size=1)
self.bn = nn.BatchNorm2d(c)
self.decoder = nn.Conv2d(in_channels=3, out_channels=args.nclass, kernel_size=1)
def forward(self, x):
if args.aux:
return tuple([self.decoder(x),self.bn (self.encoder(x))])
else:
return tuple([self.decoder(self.bn(self.encoder(x)))])
class args:
nclass=1
not_bin=False
aux=False
base_size=512
crop_size=480
scales = [0.75, 1.0, 1.25, 1.5]
mean = [.485, .456, .406]
std = [.229, .224, .225]
######### prepare multi scale evaluation models a.k.a evaluator #########
model = small(args)
evaluator = MultiEvalModule(args, model, args.nclass, scales=args.scales).cuda()
evaluator.eval()
######### inference #########
image = torch.rand(1,3,512,512)
pred = evaluator.parallel_forward(image) # type : list | len(list)=1
print(pred[0])