-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbenchmark.py
118 lines (97 loc) · 3.56 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
from os.path import join, exists
from sys import argv
from tempfile import mkdtemp
from json_tricks import load as jt_load, dump as jt_dump
from matplotlib.pyplot import show
from numpy import mean, loadtxt, array, std
from numpy.random import RandomState
from scipy import sparse
from methods import METHODS
from visualize import plot_results
class Benchmark(object):
extension = 'data'
def __init__(self, cls, data, data_name=None, reps=50):
self.cls = cls
self.data = data
if data_name:
self.data_name = data_name
else:
self.data_name = str(hash(data.tobytes())).replace('-', '')[:8]
self.reps = int(reps)
self.todo = []
self.done = []
self.label = self.cls.__name__
for k in range(reps):
pth = 'cache/{0:s}.{1:s}.{2:03d}.json'.format(self.cls.__name__, self.data_name, k)
if exists(pth):
self.done.append(jt_load(pth))
else:
inst = self.cls()
inst._cache = pth
self.todo.append(inst)
@property
def save_time(self):
assert self.done
return mean(tuple(inst.save_time for inst in self.done))
@property
def load_time(self):
assert self.done
return mean(tuple(inst.load_time for inst in self.done))
@property
def storage_space(self):
assert self.done
return mean(tuple(inst.storage_space for inst in self.done))
@property
def save_time_std(self):
assert self.done
return std(tuple(inst.save_time for inst in self.done))
@property
def load_time_std(self):
assert self.done
return std(tuple(inst.load_time for inst in self.done))
@property
def storage_space_std(self):
assert self.done
return std(tuple(inst.storage_space for inst in self.done))
def __str__(self):
return 'benchmark {0:s} {2:d}/{1:d}'.format(self.cls.__name__, self.reps, len(self.done))
def run(self):
while self.todo:
inst = self.todo.pop()
pth = join(mkdtemp(), '{0:s}_{1:d}.{2:s}'.format(self.__class__.__name__, len(self.done), inst.extension))
inst.time_save(self.data, pth)
inst.time_load(self.data, pth)
jt_dump(inst, inst._cache)
self.done.append(inst)
def log(self):
print('{0:12s} {4:2d}/{5:2d} {1:8.6f}+-{6:8.6f}s {2:8.6f}+-{7:8.6f}s {3:6.0f}+-{8:8.6f}kb'.format(self.cls.__name__, self.save_time,
self.load_time, self.storage_space/1024., len(self.done), self.reps, self.save_time_std, self.load_time_std, self.storage_space_std/1024.))
def random_data(size, is_sparse=False, is_big=True):
rs = RandomState(seed=123456789)
if is_sparse:
arr = array(sparse.rand(size[0], size[1], density=0.01, random_state=rs).todense())
else:
arr = rs.rand(*size).astype('float64')
if is_big:
# don't use the full range, since some formats (Stata) uses the highest values for special meanings.
arr = (arr - 0.5) * 1.7976931348623157e+308
return arr
def load_example_data():
return loadtxt('testdata.csv', delimiter=',')
if __name__ == '__main__':
reps = int(argv[1]) if len(argv) > 1 else 30
for data, name, label in (
(random_data((1000, 400)), 'random', 'Random array'),
(random_data((1000, 400), is_sparse=True), 'sparse', 'Sparse (0.01)'),
(random_data((100000, 3), is_big=False), 'long', 'Long array'),
(load_example_data(), 'example', 'Real data'),
):
print('>> benchmark {0:s} <<'.format(name))
insts = tuple(Benchmark(cls, data, data_name=name, reps=reps) for cls in METHODS)
for bm in insts:
bm.run()
bm.log()
# sinsts = sorted(insts, key=lambda inst: (inst.save_time + inst.load_time) * inst.storage_space)
fig, ax = plot_results(insts, fname='bm_{0:s}.png'.format(name),
suptitle='{1:s} storage performance ({2:d}x{3:d}, avg of {0:d}x)'.format(reps, label, *data.shape))
show()