-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathModel.py
46 lines (34 loc) · 1.52 KB
/
Model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import torch
import torch.nn as nn
import math
# we dont need "embedding" since our data are already numbers.
class PositionalEncoding(nn.Module):
def __init__(self, d_model:int,seq_len=5000) -> None:
super().__init__()
self.dmodel= d_model
self.seq_len= seq_len
# self.batch_size= batch_size
self.pe= torch.zeros(seq_len, d_model)
position = torch.arange(0, seq_len, dtype=torch.float).unsqueeze(1)
div_term= torch.exp(torch.arange(0,d_model,2).float()*(-math.log(10000)/d_model))
self.pe[:,0::2]= torch.sin(position*div_term)
self.pe[:,1::2]= torch.cos(position*div_term)
self.pe = self.pe.unsqueeze(0) #(1, dmodel, seq_len)
self.register_buffer('p', self.pe)
def forward(self, x):
x = x + self.p[:, :x.size(1)].to(x.device)
return x
class TransformerModel(nn.Module):
def __init__(self, seq_len=256, d_model=512, nhead=4, num_layers=3):
super(TransformerModel, self).__init__()
self.encoder = nn.Linear(seq_len, d_model)
self.pos_encoder = PositionalEncoding(d_model=d_model,)
encoder_layers = nn.TransformerEncoderLayer(d_model, nhead)
self.transformer_encoder = nn.TransformerEncoder(encoder_layers, num_layers)
self.decoder = nn.Linear(d_model, seq_len)
def forward(self, x):
x= self.encoder(x)
x = self.pos_encoder(x)
x = self.transformer_encoder(x)
x = self.decoder(x)
return x