-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPredict.py
39 lines (31 loc) · 1.2 KB
/
Predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import torch
import matplotlib.pyplot as plt
from Model import TransformerModel
from Data_Processing import load_data
# train_dataloader, test_dataloader= load_data(data)
# model = TransformerModel().to(device)
def predict(model, test_data_loader, batch_size):
model.eval()
model.to('cpu')
for i, (test_in_data, test_out_data) in enumerate(test_data_loader):
if i == batch_size:
break
input = test_in_data[0, :, :].unsqueeze(0)
target = test_out_data[0, :, :].unsqueeze(0)
with torch.no_grad():
prediction = model(input)
prediction_np = prediction.flatten().numpy()
target_np = target.flatten().numpy()
return prediction_np, target_np
predictions, targets = predict(model, test_dataloader, 10)
def plot_results(predictions, targets):
plt.figure(figsize=(14, 7))
plt.plot(targets, label='Actual Data', color='blue')
plt.plot(predictions, label='Predicted Data', color='red', linestyle='--')
plt.title('Comparison of Actual and Predicted Data')
plt.xlabel('Time Step')
plt.ylabel('Traffic_data')
plt.legend()
plt.grid(True)
plt.show()
plot_results( predictions[100:200], targets[100:200])