forked from utanaka2000/fairseq
-
Notifications
You must be signed in to change notification settings - Fork 0
/
average_checkpoints.py
150 lines (128 loc) · 5.82 KB
/
average_checkpoints.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import collections
import torch
import os
import re
from fairseq.file_io import PathManager
def average_checkpoints(inputs):
"""Loads checkpoints from inputs and returns a model with averaged weights.
Args:
inputs: An iterable of string paths of checkpoints to load from.
Returns:
A dict of string keys mapping to various values. The 'model' key
from the returned dict should correspond to an OrderedDict mapping
string parameter names to torch Tensors.
"""
params_dict = collections.OrderedDict()
params_keys = None
new_state = None
num_models = len(inputs)
for fpath in inputs:
with PathManager.open(fpath, 'rb') as f:
state = torch.load(
f,
map_location=(
lambda s, _: torch.serialization.default_restore_location(s, 'cpu')
),
)
# Copies over the settings from the first checkpoint
if new_state is None:
new_state = state
model_params = state['model']
model_params_keys = list(model_params.keys())
if params_keys is None:
params_keys = model_params_keys
elif params_keys != model_params_keys:
raise KeyError(
'For checkpoint {}, expected list of params: {}, '
'but found: {}'.format(f, params_keys, model_params_keys)
)
for k in params_keys:
p = model_params[k]
if isinstance(p, torch.HalfTensor):
p = p.float()
if k not in params_dict:
params_dict[k] = p.clone()
# NOTE: clone() is needed in case of p is a shared parameter
else:
params_dict[k] += p
averaged_params = collections.OrderedDict()
for k, v in params_dict.items():
averaged_params[k] = v
if averaged_params[k].is_floating_point():
averaged_params[k].div_(num_models)
else:
averaged_params[k] //= num_models
new_state['model'] = averaged_params
return new_state
def last_n_checkpoints(paths, n, update_based, upper_bound=None):
assert len(paths) == 1
path = paths[0]
if update_based:
pt_regexp = re.compile(r'checkpoint_\d+_(\d+)\.pt')
else:
pt_regexp = re.compile(r'checkpoint(\d+)\.pt')
files = PathManager.ls(path)
entries = []
for f in files:
m = pt_regexp.fullmatch(f)
if m is not None:
sort_key = int(m.group(1))
if upper_bound is None or sort_key <= upper_bound:
entries.append((sort_key, m.group(0)))
if len(entries) < n:
raise Exception('Found {} checkpoint files but need at least {}', len(entries), n)
return [os.path.join(path, x[1]) for x in sorted(entries, reverse=True)[:n]]
def main():
parser = argparse.ArgumentParser(
description='Tool to average the params of input checkpoints to '
'produce a new checkpoint',
)
# fmt: off
parser.add_argument('--inputs', required=True, nargs='+',
help='Input checkpoint file paths.')
parser.add_argument('--output', required=True, metavar='FILE',
help='Write the new checkpoint containing the averaged weights to this path.')
num_group = parser.add_mutually_exclusive_group()
num_group.add_argument('--num-epoch-checkpoints', type=int,
help='if set, will try to find checkpoints with names checkpoint_xx.pt in the path specified by input, '
'and average last this many of them.')
num_group.add_argument('--num-update-checkpoints', type=int,
help='if set, will try to find checkpoints with names checkpoint_ee_xx.pt in the path specified by input, '
'and average last this many of them.')
parser.add_argument('--checkpoint-upper-bound', type=int,
help='when using --num-epoch-checkpoints, this will set an upper bound on which epoch to use, '
'when using --num-update-checkpoints, this will set an upper bound on which update to use'
'e.g., with --num-epoch-checkpoints=10 --checkpoint-upper-bound=50, checkpoints 41-50 would be averaged.'
'e.g., with --num-update-checkpoints=10 --checkpoint-upper-bound=50000, checkpoints 40500-50000 would be averaged assuming --save-interval-updates 500'
)
# fmt: on
args = parser.parse_args()
print(args)
num = None
is_update_based = False
if args.num_update_checkpoints is not None:
num = args.num_update_checkpoints
is_update_based = True
elif args.num_epoch_checkpoints is not None:
num = args.num_epoch_checkpoints
assert args.checkpoint_upper_bound is None or (args.num_epoch_checkpoints is not None or args.num_update_checkpoints is not None), \
'--checkpoint-upper-bound requires --num-epoch-checkpoints or --num-update-checkpoints'
assert args.num_epoch_checkpoints is None or args.num_update_checkpoints is None, \
'Cannot combine --num-epoch-checkpoints and --num-update-checkpoints'
if num is not None:
args.inputs = last_n_checkpoints(
args.inputs, num, is_update_based, upper_bound=args.checkpoint_upper_bound,
)
print('averaging checkpoints: ', args.inputs)
new_state = average_checkpoints(args.inputs)
with PathManager.open(args.output, 'wb') as f:
torch.save(new_state, f)
print('Finished writing averaged checkpoint to {}'.format(args.output))
if __name__ == '__main__':
main()