-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathmodel.py
192 lines (168 loc) · 7.41 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
from six.moves import xrange
import better_exceptions
import tensorflow as tf
import numpy as np
from commons.ops import *
def _arch_type_a(num_classes):
def _ru(t,conv3_1,bn_1,conv3_2,bn_2):
_t = conv3_1(t)
_t = bn_1(_t)
_t = tf.nn.relu(_t)
_t = conv3_2(_t)
_t = bn_2(_t)
return t + _t
def _frru(y_z,conv3_1,bn_1,conv3_2,bn_2,conv1,scale):
#tf.nn.max_pool(, ksize, strides, padding, data_format='NHWC', name=None)
y,z = y_z
_t = tf.concat([y,
tf.nn.max_pool(z,[1,scale,scale,1],[1,scale,scale,1],'SAME','NHWC')],axis=3)
_t = conv3_1(_t)
_t = bn_1(_t)
_t = tf.nn.relu(_t)
_t = conv3_2(_t)
_t = bn_2(_t)
y_prime = tf.nn.relu(_t)
_t = conv1(y_prime)
_t = tf.image.resize_nearest_neighbor(_t, tf.shape(y_prime)[1:3]*scale)
z_prime = _t + z
return y_prime,z_prime
def _divide_stream(t,conv1):
z = conv1(t)
return t,z
def _concat_stream(y_z,conv1):
y,z = y_z
t = tf.concat([tf.image.resize_bilinear(y, tf.shape(y)[1:3]*2), z],axis=3)
return conv1(t)
from functools import partial
# The First Conv
spec = [
Conv2d('conv2d_1',3,48,5,5,1,1,data_format='NHWC'),
BatchNorm('conv2d_1_bn',48,axis=3),
lambda t,**kwargs : tf.nn.relu(t)]
# RU Layers
for i in range(3):
spec.append(
partial(_ru,
conv3_1=Conv2d('ru48_%d_1'%i,48,48,3,3,1,1,data_format='NHWC'),
bn_1 = BatchNorm('ru48_%d_1_bn'%i,48,axis=3),
conv3_2=Conv2d('ru48_%d_2'%i,48,48,3,3,1,1,data_format='NHWC'),
bn_2 = BatchNorm('ru48_%d_2_bn'%i,48,axis=3))
)
# Split Streams
spec.append(
partial(_divide_stream,
conv1 = Conv2d('conv32',48,32,1,1,1,1,data_format='NHWC'))
)
# FFRU Layers (Encoding)
prev_ch = 48
for it,ch,scale in [(3,96,2),(4,192,4),(2,384,8),(2,384,16)] :
spec.append(
lambda y_z : (tf.nn.max_pool(y_z[0],[1,2,2,1],[1,2,2,1],'SAME','NHWC'),y_z[1]) #maxpooling y only.
)
for i in range(it):
spec.append(
partial(_frru,
conv3_1=Conv2d('encode_frru%d_%d_%d_1'%(ch,scale,i),prev_ch+32,ch,3,3,1,1,data_format='NHWC'),
bn_1 = BatchNorm('encode_frru%d_%d_%d_1_bn'%(ch,scale,i),ch,axis=3),
conv3_2=Conv2d('encode_frru%d_%d_%d_2'%(ch,scale,i),ch,ch,3,3,1,1,data_format='NHWC'),
bn_2 = BatchNorm('encode_frru%d_%d_%d_2_bn'%(ch,scale,i),ch,axis=3),
conv1 = Conv2d('encode_frru%d_%d_%d_3'%(ch,scale,i),ch,32,1,1,1,1,data_format='NHWC'),
scale=scale)
)
prev_ch = ch
# FRRU Layers (Decoding)
for it,ch,scale in [(2,192,8),(2,192,4),(2,96,2)] :
spec.append(
lambda y_z : (tf.image.resize_bilinear(y_z[0], tf.shape(y_z[0])[1:3]*2), y_z[1])
)
for i in range(it):
spec.append(
partial(_frru,
conv3_1=Conv2d('decode_frru%d_%d_%d_1'%(ch,scale,i),prev_ch+32,ch,3,3,1,1,data_format='NHWC'),
bn_1 = BatchNorm('decode_frru%d_%d_%d_1_bn'%(ch,scale,i),ch,axis=3),
conv3_2=Conv2d('decode_frru%d_%d_%d_2'%(ch,scale,i),ch,ch,3,3,1,1,data_format='NHWC'),
bn_2 = BatchNorm('decode_frru%d_%d_%d_2_bn'%(ch,scale,i),ch,axis=3),
conv1 = Conv2d('decode_frru%d_%d_%d_3'%(ch,scale,i),ch,32,1,1,1,1,data_format='NHWC'),
scale=scale)
)
prev_ch = ch
# Concat Streams
spec.append(
partial(_concat_stream,
conv1 = Conv2d('conv48',prev_ch+32,48,1,1,1,1,data_format='NHWC')))
# RU Layers
for i in range(3,6):
spec.append(
partial(_ru,
conv3_1=Conv2d('ru48_%d_1'%i,48,48,3,3,1,1,data_format='NHWC'),
bn_1 = BatchNorm('ru48_%d_1_bn'%i,48,axis=3),
conv3_2=Conv2d('ru48_%d_2'%i,48,48,3,3,1,1,data_format='NHWC'),
bn_2 = BatchNorm('ru48_%d_2_bn'%i,48,axis=3))
)
# Final Classification Layer
spec.append(
Conv2d('conv_c',48,num_classes,1,1,1,1,data_format='NHWC'))
return spec
class FRRN():
def __init__(self,lr,global_step,K,
im,gt,arch_fn,
param_scope,is_training=False):
with tf.variable_scope(param_scope):
net_spec = arch_fn()
with tf.variable_scope('forward') as forward_scope:
_t = im
for block in net_spec:
print(_t)
_t = block(_t)
self.logits = _t
self.preds = tf.argmax(self.logits,axis=3)
# Loss
naive_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=self.logits,labels=gt)
# TODO: ignore pixels labed as void? is it requried?
# mask = tf.logical_not(tf.equal(gt,0))
# naive_loss = naive_loss * mask
boot_loss,_ = tf.nn.top_k(tf.reshape(naive_loss,[tf.shape(im)[0],tf.shape(im)[1]*tf.shape(im)[2]]),k=K,sorted=False)
self.loss = tf.reduce_mean(tf.reduce_sum(boot_loss,axis=1))
if( is_training ):
with tf.variable_scope('backward'):
optimizer = tf.train.AdamOptimizer(lr)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS,forward_scope.name)
#print('------------batchnorm ops---------------')
#for op in update_ops:
# print(update_ops)
#print('------------batchnorm ops end---------------')
with tf.control_dependencies(update_ops):
self.train_op= optimizer.minimize(self.loss,global_step=global_step)
save_vars = {('train/'+'/'.join(var.name.split('/')[1:])).split(':')[0] : var for var in
tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,param_scope.name) }
#for name,var in save_vars.items():
# print(name,var)
self.saver = tf.train.Saver(var_list=save_vars,max_to_keep = 3)
def save(self,sess,dir,step=None):
if(step is not None):
self.saver.save(sess,dir+'/model.ckpt',global_step=step)
else :
self.saver.save(sess,dir+'/last.ckpt')
def load(self,sess,model):
self.saver.restore(sess,model)
if __name__ == "__main__":
with tf.variable_scope('params') as params:
pass
im = tf.placeholder(tf.float32,[None,256,512,3])
gt = tf.placeholder(tf.int32,[None,256,512]) #19 + unlabeled area(plus ignored labels)
global_step = tf.Variable(0, trainable=False)
from functools import partial
net = FRRN(0.1,global_step,512*64,im,gt,partial(_arch_type_a,20),params,True)
print(net.logits)
init_op = tf.group(tf.global_variables_initializer(),
tf.local_variables_initializer())
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
sess.graph.finalize()
sess.run(init_op)
for _ in range(30):
_t,preds,_ = (sess.run([net.logits,net.preds,net.train_op],
feed_dict={im:np.random.random((1,256,512,3)),
gt:np.zeros((1,256,512))}))
print(preds.shape)