-
Notifications
You must be signed in to change notification settings - Fork 169
/
Astro.ino
809 lines (690 loc) · 25.4 KB
/
Astro.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
// -----------------------------------------------------------------------------------------------------------------------------
// Astronomy related functions
// convert string in format MM/DD/YY to julian date
bool dateToDouble(double *JulianDay, char *date) {
char m[3],d[3],y[3];
int m1,d1,y1;
if (strlen(date) != 8) return false;
m[0]=*date++; m[1]=*date++; m[2]=0; if (!atoi2(m,&m1,false)) return false;
if (*date++ != '/') return false; d[0]=*date++; d[1]=*date++; d[2]=0; if (!atoi2(d,&d1,false)) return false;
if (*date++ != '/') return false; y[0]=*date++; y[1]=*date++; y[2]=0; if (!atoi2(y,&y1,false)) return false;
if ((m1 < 1) || (m1 > 12) || (d1 < 1) || (d1 > 31) || (y1 < 0) || (y1 > 99)) return false;
if (y1 > 11) y1=y1+2000; else y1=y1+2100;
*JulianDay=julian(y1,m1,d1);
return true;
}
// convert string in format HH:MM:SS to double
// (also handles) HH:MM.M
// (also handles) HH:MM:SS
// (also handles) HH:MM:SS.SSSS
bool hmsToDouble(double *f, char *hms, PrecisionMode p) {
char h[3],m[5];
int h1,m1,m2=0;
double s1=0;
while (*hms == ' ') hms++; // strip prefix white-space
if (strlen(hms) > 13) hms[13]=0; // limit maximum length
int len=strlen(hms);
if (p == PM_HIGHEST || p == PM_HIGH) { // validate length
if (len != 8 && len < 10) return false;
} else
if (p == PM_LOW) {
if (len != 7) return false;
}
// convert the hours part
h[0]=*hms++; h[1]=*hms++; h[2]=0; if (!atoi2(h,&h1,false)) return false;
// make sure the seperator is an allowed character, then convert the minutes part
if (*hms++ != ':') return false;
m[0]=*hms++; m[1]=*hms++; m[2]=0; if (!atoi2(m,&m1,false)) return false;
if (p == PM_HIGHEST || p == PM_HIGH) {
// make sure the seperator is an allowed character, then convert the seconds part
if (*hms++ != ':') return false;
if (!atof2(hms,&s1,false)) return false;
} else
if (p == PM_LOW) {
// make sure the seperator is an allowed character, then convert the decimal minutes part
if (*hms++ != '.') return false;
m2=(*hms++)-'0';
}
if (h1 < 0 || h1 > 23 || m1 < 0 || m1 > 59 || m2 < 0 || m2 > 9 || s1 < 0 || s1 > 59.9999) return false;
*f=(double)h1+(double)m1/60.0+(double)m2/600.0+s1/3600.0;
return true;
}
bool hmsToDouble(double *f, char *hms) {
if (!hmsToDouble(f,hms,PM_HIGHEST))
if (!hmsToDouble(f,hms,PM_HIGH))
if (!hmsToDouble(f,hms,PM_LOW)) return false;
return true;
}
// convert double to string in a variety of formats (as above)
void doubleToHms(char *reply, double *f, PrecisionMode p) {
double h1,m1,f1,s1,sd=0;
// round to 0.00005 second or 0.5 second, depending on precision mode
if (p == PM_HIGHEST) f1=fabs(*f)+0.0000000139; else f1=fabs(*f)+0.000139;
h1=floor(f1);
m1=(f1-h1)*60.0;
s1=(m1-floor(m1))*60.0;
// finish off calculations for hms and form string template
char s[]="%s%02d:%02d:%02d.%04d";
if (p == PM_HIGHEST) {
sd=(s1-floor(s1))*10000.0;
} else
if (p == PM_HIGH) {
s[16]=0;
} else
if (p == PM_LOW) {
s1=s1/6.0;
s[11]='.'; s[14]='1'; s[16]=0;
}
// set sign and return result string
char sign[2]="";
if ((sd != 0 || s1 != 0 || m1 != 0 || h1 != 0) && *f < 0.0) strcpy(sign,"-");
if (p == PM_HIGHEST) sprintf(reply,s,sign,(int)h1,(int)m1,(int)s1,(int)sd); else sprintf(reply,s,sign,(int)h1,(int)m1,(int)s1);
}
// convert string in format sDD:MM:SS to double
// (also handles) sDD:MM:SS.SSS
// DDD:MM:SS
// sDD:MM
// DDD:MM
// sDD*MM
// DDD*MM
bool dmsToDouble(double *f, char *dms, bool sign_present, PrecisionMode p) {
char d[4],m[5];
int d1,m1,lowLimit=0,highLimit=360,len;
double s1=0,sign=1;
bool secondsOff=false;
while (*dms == ' ') dms++; // strip prefix white-space
if (strlen(dms) > 13) dms[13]=0; // maximum length
len=strlen(dms);
if (p == PM_HIGHEST || p == PM_HIGH) { // validate length
if (len != 9 && len < 11) return false;
} else
if (p == PM_LOW) {
if (len != 6) {
if (len != 9) return false;
secondsOff=false;
} else secondsOff = true;
}
// determine if the sign was used and accept it if so, then convert the degrees part
if (sign_present) {
if (*dms == '-') sign=-1.0; else if (*dms == '+') sign=1.0; else return false;
dms++; d[0]=*dms++; d[1]=*dms++; d[2]=0; if (!atoi2(d,&d1,false)) return false;
} else {
d[0]=*dms++; d[1]=*dms++; d[2]=*dms++; d[3]=0; if (!atoi2(d,&d1,false)) return false;
}
// make sure the seperator is an allowed character, then convert the minutes part
if (*dms != ':' && *dms != '*' && *dms != char(223)) return false; else dms++;
m[0]=*dms++; m[1]=*dms++; m[2]=0; if (!atoi2(m,&m1,false)) return false;
if ((p == PM_HIGHEST || p == PM_HIGH) && !secondsOff) {
// make sure the seperator is an allowed character, then convert the seconds part
if (*dms++ != ':' && *dms++ != '\'') return false;
if (!atof2(dms,&s1,false)) return false;
}
if (sign_present) { lowLimit=-90; highLimit=90; }
if ((d1 < lowLimit) || (d1 > highLimit) || (m1 < 0) || (m1 > 59) || (s1 < 0) || (s1 > 59.999)) return false;
*f=sign*((double)d1+(double)m1/60.0+s1/3600.0);
return true;
}
bool dmsToDouble(double *f, char *dms, bool sign_present) {
if (!dmsToDouble(f,dms,sign_present,PM_HIGHEST))
if (!dmsToDouble(f,dms,sign_present,PM_HIGH))
if (!dmsToDouble(f,dms,sign_present,PM_LOW)) return false;
return true;
}
// convert double to string in a variety of formats (as above)
void doubleToDms(char *reply, double *f, bool fullRange, bool signPresent, PrecisionMode p) {
char sign[]="+";
int o=0;
double d1,m1,s1=0,s2,f1;
// setup formatting, handle adding the sign
f1=*f;
if (f1 < 0) { f1=-f1; sign[0]='-'; }
// round to 0.0005 arc-second or 0.5 arc-second, depending on precision mode
if (p == PM_HIGHEST) f1=f1+0.000000139; else f1=f1+0.000139;
d1=floor(f1);
m1=(f1-d1)*60.0;
s1=(m1-floor(m1))*60.0;
// finish off calculations for dms and form string template
char s[]="+%02d*%02d:%02d.%03d";
if (p == PM_HIGHEST) {
s2=(s1-floor(s1))*1000.0;
} else s[15]=0;
if (signPresent) {
if (sign[0] == '-') s[0]='-';
o=1;
} else memmove(&s[0],&s[1],strlen(s));
if (fullRange) s[2+o]='3';
// return result string
if (p == PM_HIGHEST) {
sprintf(reply,s,(int)d1,(int)m1,(int)s1,(int)s2);
} else
if (p == PM_HIGH) {
sprintf(reply,s,(int)d1,(int)m1,(int)s1);
} else
if (p == PM_LOW) {
s[9+o]=0;
sprintf(reply,s,(int)d1,(int)m1);
}
}
// convert timezone to string in format sHHH:MM[:SS]
void timeZoneToHM(char *reply, double tz) {
double f=fabs(frac(tz));
sprintf(reply,"%+03d",(int)tz);
// append for :30
if (fabs(f-0.5) < 0.00000001) {
strcat(reply,":30");
}
// append for :45
if (fabs(f-0.75) < 0.00000001) {
strcat(reply,":45");
}
}
// -----------------------------------------------------------------------------------------------------------------------------
// Date/time conversion
// convert date/time to Greenwich Apparent Sidereal time
double jd2gast(double JulianDay, double ut1) {
int y,m,d;
greg(JulianDay,&y,&m,&d);
double JulianDay0=julian(y,m,d);
double D= (JulianDay - 2451545.0)+(ut1/24.0);
double D0=(JulianDay0- 2451545.0);
double H = ut1;
double T = D/36525.0;
double gmst=6.697374558 + 0.06570982441908*D0;
gmst=timeRange(gmst);
gmst=gmst + 1.00273790935*H + 0.000026*T*T;
gmst=timeRange(gmst);
// equation of the equinoxes
double O = 125.04 - 0.052954*D;
double L = 280.47 + 0.98565*D;
double E = 23.4393 - 0.0000004*D;
double W = -0.000319*sin(O/Rad) - 0.000024*sin((2*L)/Rad);
double eqeq = W*cos(E/Rad);
double gast=gmst+eqeq;
return timeRange(gast);
}
// convert date/time to Local Apparent Sidereal Time
// optionally updates the RTC, uses longitude
double jd2last(double JulianDay, double ut1, bool updateRTC) {
if (updateRTC) {
// UT to local time
double lmt=ut1-timeZone;
// correct for day moving forward/backward... this works for multipule days of up-time
double J=JulianDay;
while (lmt >= 24.0) { lmt=lmt-24.0; J=J-1.0; }
if (lmt < 0.0) { lmt=lmt+24.0; J=J+1.0; }
// set the RTC
tls.set(J,lmt);
}
// JulianDay is the Local date, jd2gast requires a universal time
// this is a hack that leaves the date alone and lets the UT1 cover
// the difference in time to the next (or previous) day
double gast=jd2gast(JulianDay,ut1);
return timeRange(gast-(longitude/15.0));
}
// passes Local Apparent Sidereal Time to stepper timer
void updateLST(double t) {
long lst1=(t/24.0)*8640000.0;
// set the local sidereal time
cli();
lst=lst1;
sei();
UT1_start=UT1;
lst_start=lst1;
}
// convert the lst (in 1/100 second units) into floating point hours
double LST() {
cli(); long tempLst=lst; sei();
while (tempLst > 8640000) tempLst-=8640000;
return (tempLst/8640000.0)*24.0;
}
double decodeTimeZone(double tz) {
// -100 codes for :30
if (tz < -24.0) {
tz=tz+100.0;
if (tz < 0) tz=tz-0.5; else tz=tz+0.5;
}
// +100 codes for :45
if (tz > 24.0) {
tz=tz-100.0;
if (tz < 0) tz=tz-0.75; else tz=tz+0.75;
}
return tz;
}
double encodeTimeZone(double tz) {
double f=fabs(frac(tz));
// -100 codes for :30
if (fabs(f-0.5) < 0.00000001) {
tz=(long)tz-100.0;
}
// +100 codes for :45
if (fabs(f-0.75) < 0.00000001) {
tz=(long)tz+100.0;
}
tz=(long)tz;
return tz;
}
// -----------------------------------------------------------------------------------------------------------------------------
// Coordinate conversion
// sets latitude and associated values
void setLatitude(double Lat) {
latitude=Lat;
nv.writeFloat(EE_sites+currentSite*25+0,latitude);
cosLat=cos(latitude/Rad);
sinLat=sin(latitude/Rad);
latitudeAbs=fabs(latitude);
if (latitude >= 0) latitudeSign=1; else latitudeSign=-1;
if (latitude >= 0) {
if (axis1Settings.reverse == ON) defaultDirAxis1 = DefaultDirAxis1SCPInit; else defaultDirAxis1 = DefaultDirAxis1NCPInit;
} else {
if (axis1Settings.reverse == ON) defaultDirAxis1 = DefaultDirAxis1NCPInit; else defaultDirAxis1 = DefaultDirAxis1SCPInit;
}
// the polar home position
#if MOUNT_TYPE == ALTAZM
homePositionAxis2=AXIS2_HOME_DEFAULT;
#else
if (latitude < 0) homePositionAxis2=-AXIS2_HOME_DEFAULT; else homePositionAxis2=AXIS2_HOME_DEFAULT;
#endif
}
// convert equatorial coordinates to horizon
// this takes approx. 1.4mS on a 16MHz Mega2560
void equToHor(double HA, double Dec, double *Alt, double *Azm) {
HA = HA/Rad;
Dec = Dec/Rad;
double cosHA = cos(HA);
double SinAlt = (sin(Dec) * sinLat) + (cos(Dec) * cosLat * cosHA);
*Alt = asin(SinAlt);
double t1=sin(HA);
// handle degenerate coordinates within 0.1 arc-sec of the poles
if (abs(Dec - 90.0/Rad) < 4.848e-7) *Azm = 0.0; else
if (abs(Dec + 90.0/Rad) < 4.848e-7) *Azm = 180.0; else {
double t2 = cosHA*sinLat - tan(Dec)*cosLat;
*Azm = atan2(t1, t2)*Rad;
*Azm = *Azm + 180.0;
}
*Alt = *Alt*Rad;
}
// convert horizon coordinates to equatorial
// this takes approx. 1.4mS
void horToEqu(double Alt, double Azm, double *HA, double *Dec) {
Alt = Alt/Rad;
Azm = Azm/Rad;
double cosAzm=cos(Azm);
double SinDec = (sin(Alt) * sinLat) + (cos(Alt) * cosLat * cosAzm);
*Dec = asin(SinDec);
double t1=sin(Azm);
double t2=cosAzm*sinLat-tan(Alt)*cosLat;
*HA =atan2(t1,t2)*Rad;
*HA =*HA+180.0;
*Dec=*Dec*Rad;
}
// returns the amount of refraction (in arcminutes) at the given true altitude (degrees), pressure (millibars), and temperature (celsius)
double trueRefrac(double Alt, double Pressure=1010.0, double Temperature=10.0) {
if (isnan(Pressure)) Pressure=1010.0;
if (isnan(Temperature)) Temperature=10.0;
double TPC=(Pressure/1010.0) * (283.0/(273.0+Temperature));
double r=( ( 1.02*cot( (Alt+(10.3/(Alt+5.11)))/Rad ) ) ) * TPC; if (r < 0.0) r=0.0;
return r;
}
// returns the amount of refraction (in arcminutes) at the given apparent altitude (degrees), pressure (millibars), and temperature (celsius)
double apparentRefrac(double Alt, double Pressure=1010.0, double Temperature=10.0) {
if (isnan(Pressure)) Pressure=1010.0;
if (isnan(Temperature)) Temperature=10.0;
double r=trueRefrac(Alt,Pressure,Temperature);
r=trueRefrac(Alt-(r/60.0),Pressure,Temperature);
return r;
}
// converts from the "Topocentric" to "Observed"
void topocentricToObservedPlace(double *RA, double *Dec) {
double Alt,Azm;
double h=LST()*15.0-*RA;
double d=*Dec;
#if TOPOCENTRIC_STRICT == ON
// within about 1/20 arc-second of NCP
if (fabs(d-90.0) < 0.00001) { Azm=0.0; Alt=latitude; } else
// within about 1/20 arc-second of SCP
if (fabs(d+90.0) < 0.00001) { Azm=180.0; Alt=-latitude; } else equToHor(h,d,&Alt,&Azm);
#else
// within about 1/20 arc-second of NCP or SCP, just exit
if (fabs(d-90.0) < 0.00001 || fabs(d+90.0) < 0.00001) return; else equToHor(h,d,&Alt,&Azm);
#endif
Alt = Alt+trueRefrac(Alt)/60.0;
horToEqu(Alt,Azm,&h,&d);
*RA=degRange(LST()*15.0-h); *Dec=d;
}
// converts from the "Observed" to "Topocentric"
void observedPlaceToTopocentric(double *RA, double *Dec) {
double Alt,Azm;
double h=LST()*15.0-*RA;
double d=*Dec;
#if TOPOCENTRIC_STRICT == ON
// within about 1/20 arc-second of the "refracted" NCP
if (fabs(d-90.0) < 0.00001) { Azm=0.0; Alt=latitude; } else
// within about 1/20 arc-second of the "refracted" SCP
if (fabs(d+90.0) < 0.00001) { Azm=180.0; Alt=-latitude; } else equToHor(h,d,&Alt,&Azm);
#else
// within about 1/20 arc-second of NCP or SCP, just exit
if (fabs(d-90.0) < 0.00001 || fabs(d+90.0) < 0.00001) return; else equToHor(h,d,&Alt,&Azm);
#endif
Alt = Alt-apparentRefrac(Alt)/60.0;
horToEqu(Alt,Azm,&h,&d);
*RA=degRange(LST()*15.0-h); *Dec=d;
}
// -----------------------------------------------------------------------------------------------------------------------------
// Tracking rate control
// _deltaAxis1/2 are in arc-seconds/second
double _deltaAxis1=15.0,_deltaAxis2=0.0;
bool trackingSyncInProgress() {
static int lastTrackingSyncSeconds=0;
// sound goto done
if (trackingSyncSeconds == 0 && lastTrackingSyncSeconds != trackingSyncSeconds) {
soundAlert();
VLF("MSG: Tracking sync done");
}
lastTrackingSyncSeconds=trackingSyncSeconds;
if (trackingState != TrackingSidereal) trackingSyncSeconds=0;
return trackingSyncSeconds > 0;
}
void setDeltaTrackingRate() {
double f1=0.0, f2=0.0;
if (trackingSyncInProgress()) {
trackingSyncSeconds--;
#if MOUNT_TYPE == ALTAZM
double a,z,d1,d2,newTargetAlt,newTargetAzm;
getHor(&a,&z);
double newTargetHA=haRange(LST()*15.0-newTargetRA);
equToHor(newTargetHA,newTargetDec,&newTargetAlt,&newTargetAzm);
d1=-(z-newTargetAzm);
d2=-(a-newTargetAlt);
#else
double r,d,d1,d2;
getEqu(&r,&d,false);
d1=r-newTargetRA;
d2=d-newTargetDec;
if (getInstrPierSide() == PierSideEast) d2=-d2;
#endif
if ((fabs(d1) < arcSecPerStepAxis1/3600.0) && (fabs(d2) < arcSecPerStepAxis2/3600.0)) {
trackingSyncSeconds=0;
} else {
f1=(d1*3600.0)/120.0; if (f1 < -5.0) f1=-5.0; if (f1 > 5.0) f1=5.0;
if (fabs(d1) < arcSecPerStepAxis1/3600.0) f1=0.0;
f2=(d2*3600.0)/120.0; if (f2 < -5.0) f2=-5.0; if (f2 > 5.0) f2=5.0;
if (fabs(d2) < arcSecPerStepAxis2/3600.0) f2=0.0;
}
}
#if MOUNT_TYPE != ALTAZM
if ((rateCompensation != RC_REFR_BOTH) && (rateCompensation != RC_FULL_BOTH)) _deltaAxis2=0.0;
#endif
cli();
// trackingTimerRateAxis1/2 are x the sidereal rate
if (trackingState == TrackingSidereal) trackingTimerRateAxis1=(_deltaAxis1/15.0)+f1; else trackingTimerRateAxis1=0.0;
if (trackingState == TrackingSidereal) trackingTimerRateAxis2=(_deltaAxis2/15.0)+f2; else trackingTimerRateAxis2=0.0;
sei();
fstepAxis1.fixed=doubleToFixed( ((axis1Settings.stepsPerMeasure/240.0)*(_deltaAxis1/15.0))/100.0 );
fstepAxis2.fixed=doubleToFixed( ((axis2Settings.stepsPerMeasure/240.0)*(_deltaAxis2/15.0))/100.0 );
}
double _currentRate=1.0;
void setTrackingRate(double r) {
_currentRate=r;
#if MOUNT_TYPE != ALTAZM
_deltaAxis1=r*15.0;
_deltaAxis2=0.0;
#endif
}
double getTrackingRate60Hz() {
double f=0;
// during slews, if tracking is enabled it's at the default sidereal rate
if (trackingState == TrackingMoveTo && lastTrackingState == TrackingSidereal) f=1.00273790935*60.0;
#if MOUNT_TYPE == ALTAZM
if (trackingState == TrackingSidereal) f=_currentRate*1.00273790935*60.0;
#else
if (trackingState == TrackingSidereal) { cli(); f=(trackingTimerRateAxis1*1.00273790935)*60.0; sei(); }
#endif
return f;
}
double getstepsPerSecondAxis1() {
double s=((axis1Settings.stepsPerMeasure/240.0)*(_deltaAxis1/15.0));
if (s < 8.0) s=8.0;
return s;
}
double getstepsPerSecondAxis2() {
double s=((axis2Settings.stepsPerMeasure/240.0)*(_deltaAxis2/15.0));
if (s < 8.0) s=8.0;
return s;
}
// -----------------------------------------------------------------------------------------------------------------------------
// Low overhead altitude calculation, 16 calls to complete
bool doFastAltCalc(bool recalc) {
bool done=false;
static byte ac_step = 0;
static double ac_HA=0,ac_Dec=0;
static double ac_sindec,ac_cosdec,ac_cosha;
static double ac_sinalt;
if (recalc == true) { ac_step=0; return false; }
ac_step++;
// load HA/Dec
if (ac_step == 1) {
getApproxEqu(&ac_HA,&ac_Dec,true);
currentDec=ac_Dec;
} else
// convert units
if (ac_step == 2) {
ac_HA =ac_HA/Rad;
ac_Dec=ac_Dec/Rad;
} else
// prep Dec
if (ac_step == 3) {
ac_sindec=sin(ac_Dec);
} else
// prep Dec
if (ac_step == 4) {
ac_cosdec=cos(ac_Dec);
} else
// prep HA
if (ac_step == 5) {
ac_cosha=cos(ac_HA);
} else
// calc Alt, phase 1
if (ac_step == 6) {
ac_sinalt = (ac_sindec * sinLat) + (ac_cosdec * cosLat * ac_cosha);
} else
// calc Alt, phase 2
if (ac_step == 7) {
currentAlt=asin(ac_sinalt)*Rad;
} else
// finish
if (ac_step == 8) {
ac_step=0;
done=true;
}
return done;
}
// -----------------------------------------------------------------------------------------------------------------------------
// Refraction adjusted tracking
// Alternate tracking rate calculation method
double ztr(double a) {
if (a > 89.8) return 14.9998;
if (a > 89.5) return 14.9995;
double Alt1=a+0.25; if (Alt1 < 0.0) Alt1=0.0;
double Alt2=a-0.25; if (Alt2 < 0.0) Alt2=0.0;
double Alt1_ = Alt1 - ( trueRefrac(Alt1) / 60.0 );
double Alt2_ = Alt2 - ( trueRefrac(Alt2) / 60.0 );
double x=15.0 * ((double)(( Alt1 - Alt2 ) / ( Alt1_ - Alt2_ ))); if (x > 15.0) x=15.0;
return x;
}
#if MOUNT_TYPE != ALTAZM
// Distance in arc-min ahead of and behind the current Equ position, used for rate calculation
#ifdef HAL_NO_DOUBLE_PRECISION
#define RefractionRateRange 30.0
#else
#define RefractionRateRange 1.0
#endif
bool doRefractionRateCalc() {
bool done=false;
static int rr_step = 0;
static double rr_Axis1=0,rr_Axis2=0;
static double rr_Dec=0,rr_HA=0;
static double rr_Dec1=0,rr_HA1=0,rr_Dec2=-91,rr_HA2=0;
static double rr_Alt,rr_Azm;
// turn off if not tracking at sidereal rate
if (trackingState != TrackingSidereal) { _deltaAxis1=_currentRate*15.0; _deltaAxis2=0.0; return true; }
rr_step++;
// load HA/Dec
if (rr_step == 1) {
if ((rateCompensation == RC_FULL_RA) || (rateCompensation == RC_FULL_BOTH)) getEqu(&rr_Axis1,&rr_Axis2,true); else getApproxEqu(&rr_Axis1,&rr_Axis2,true);
} else
// convert units, get ahead of and behind current position
if ((rr_step == 5) || (rr_step == 105)) {
rr_HA =rr_Axis1;
rr_Dec=rr_Axis2;
if (rr_step == 5) rr_HA =rr_HA-(RefractionRateRange/60.0);
if (rr_step == 105) rr_HA =rr_HA+(RefractionRateRange/60.0);
} else
// get the instrument coordinates
if ((rr_step == 10) || (rr_step == 110)) {
if ((rateCompensation == RC_FULL_RA) || (rateCompensation == RC_FULL_BOTH)) {
Align.equToInstr(rr_HA,rr_Dec,&rr_HA,&rr_Dec,getInstrPierSide());
}
}
// get the Horizon coords
if ((rr_step == 15) || (rr_step == 115)) {
equToHor(rr_HA,rr_Dec,&rr_Alt,&rr_Azm);
} else
// apply refraction
if ((rr_step == 20) || (rr_step == 120)) {
rr_Alt+=apparentRefrac(rr_Alt,ambient.getPressure(),ambient.getTemperature())/60.0;
} else
// convert back to the Equtorial coords
if ((rr_step == 25) || (rr_step == 125)) {
horToEqu(rr_Alt,rr_Azm,&rr_HA1,&rr_Dec1);
if (rr_HA1 > 180.0) rr_HA1-=360.0; // HA range +/-180
} else
// calculate refraction rate deltas'
if ((rr_step == 30) || (rr_step == 130)) {
// store first calc
if (rr_step == 30) { rr_HA2=rr_HA1; rr_Dec2=rr_Dec1; }
// we have both -0.5hr and +0.5hr values
if (rr_step == 130) {
// set rates
// handle coordinate wrap
if ((rr_HA1 < -90.0) && (rr_HA2 > 90.0)) rr_HA1+=360.0;
if ((rr_HA2 < -90.0) && (rr_HA1 > 90.0)) rr_HA2+=360.0;
// set rates
double dax1=(rr_HA1-rr_HA2)*(15.0/(RefractionRateRange/60.0))/2.0;
if (fabs(_deltaAxis1-dax1) > 0.005) _deltaAxis1=dax1; else _deltaAxis1=(_deltaAxis1*9.0+dax1)/10.0;
double dax2;
if (getInstrPierSide() == PierSideWest) {
dax2=(rr_Dec2-rr_Dec1)*(15.0/(RefractionRateRange/60.0))/2.0;
} else {
dax2=(rr_Dec1-rr_Dec2)*(15.0/(RefractionRateRange/60.0))/2.0;
}
if (fabs(_deltaAxis2-dax2) > 0.005) _deltaAxis2=dax2; else _deltaAxis2=(_deltaAxis2*9.0+dax2)/10.0;
// override for special case of near a celestial pole
if (90.0-fabs(rr_Dec) < (1.0/3600.0)) { _deltaAxis1=_currentRate*15.0; _deltaAxis2=0.0; }
// override for special case of near the zenith
if (currentAlt > 85.0) { _deltaAxis1=ztr(currentAlt); _deltaAxis2=0.0; }
}
} else
// finish once every 200 calls
if (rr_step == 200) {
rr_step=0;
done=true;
}
return done;
}
#endif
// -----------------------------------------------------------------------------------------------------------------------------
// AltAz tracking
#if MOUNT_TYPE == ALTAZM
#define AltAzTrackingRange 5 // distance in arc-min (10) ahead of and behind the current Equ position, used for rate calculation
bool doHorRateCalc() {
bool done=false;
static int az_step=0;
static double az_Axis1=0,az_Axis2=0;
static double az_Dec=0,az_HA=0;
static double az_Dec1=0,az_HA1=0;
static double az_Alt,az_Alt1,az_Alt2;
static double az_Azm,az_Azm1,az_Azm2;
// turn off if not tracking at sidereal rate
if (((trackingState != TrackingSidereal) && (trackingState != TrackingMoveTo))) { _deltaAxis1=0.0; _deltaAxis2=0.0; return true; }
az_step++;
// convert units, get ahead of and behind current position
if (az_step == 1) {
if (trackingState == TrackingMoveTo) {
cli();
az_Axis1=targetAxis1.part.m+indexAxis1Steps;
az_Axis2=targetAxis2.part.m+indexAxis2Steps;
sei();
} else {
cli();
az_Axis1=posAxis1+indexAxis1Steps;
az_Axis2=posAxis2+indexAxis2Steps;
sei();
}
// get the Azm
az_Azm=(double)az_Axis1/axis1Settings.stepsPerMeasure;
// get the Alt
az_Alt=(double)az_Axis2/axis2Settings.stepsPerMeasure;
} else
// convert to Equatorial coords
if ((az_step == 5)) {
horToEqu(az_Alt,az_Azm,&az_HA1,&az_Dec1);
} else
// look ahead of and behind the current position
if ((az_step == 10) || (az_step == 110)) {
if (az_step == 10 ) az_HA =(az_HA1-(AltAzTrackingRange/60.0));
if (az_step == 110) az_HA =(az_HA1+(AltAzTrackingRange/60.0));
az_Dec=az_Dec1;
} else
// each back to the Horizon coords
if ((az_step == 15) || (az_step == 115)) {
equToHor(az_HA,az_Dec,&az_Alt,&az_Azm);
if (az_Azm > 180.0) az_Azm-=360.0;
if (az_Azm < -180.0) az_Azm+=360.0;
if (az_step == 15) {
az_Alt2=az_Alt;
az_Azm2=az_Azm;
}
if (az_step == 115) {
az_Alt1=az_Alt;
az_Azm1=az_Azm;
}
} else
// calculate tracking rate deltas'
if ((az_step == 20) || (az_step == 120)) {
// we have both -0.5hr and +0.5hr values
if (az_step == 120) {
// handle coordinate wrap
if ((az_Azm1 < -90.0) && (az_Azm2 > 90.0)) az_Azm1+=360.0;
if ((az_Azm2 < -90.0) && (az_Azm1 > 90.0)) az_Azm2+=360.0;
// set rates
_deltaAxis1=((az_Azm1-az_Azm2)*(15.0/(AltAzTrackingRange/60.0))/2.0)*_currentRate;
_deltaAxis2=((az_Alt1-az_Alt2)*(15.0/(AltAzTrackingRange/60.0))/2.0)*_currentRate;
// override for special case of near a celestial pole
if (90.0-fabs(az_Dec) <= 0.5) { _deltaAxis1=0.0; _deltaAxis2=0.0; }
}
} else
// finish once every 200 calls
if (az_step == 200) {
az_step=0;
done=true;
}
return done;
}
#endif
// -----------------------------------------------------------------------------------------------------------------------------
// Acceleration rate calculation
void setAccelerationRates(double maxRate) {
// set the new guide acceleration rate
slewRateX = (RateToXPerSec/(maxRate/16.0))*7.0; // 7x for exponential factor average rate
slewRateX = slewRateX*((maxRateBaseActual/2.0)/(maxRate/16.0)); // scale with maxRate so SLEW_ACCELERATION_DIST and SLEW_RAPID_STOP_DIST are approximately correct
accXPerSec = slewRateX/SLEW_ACCELERATION_DIST;
guideRates[9]=RateToASPerSec/(maxRate/16.0); guideRates[8]=guideRates[9]/2.0;
activeGuideRate=GuideRateNone;
// set the new goto acceleration rate
cli();
stepsForRateChangeAxis1= (sqrt((double)SLEW_ACCELERATION_DIST*axis1Settings.stepsPerMeasure))*maxRate;
stepsForRateChangeAxis2= (sqrt((double)SLEW_ACCELERATION_DIST*axis2Settings.stepsPerMeasure))*maxRate;
sei();
// slewSpeed is in degrees per second
slewSpeed=(1000000.0/(maxRate/16.0))/axis1Settings.stepsPerMeasure;
}