-
Notifications
You must be signed in to change notification settings - Fork 94
/
Copy pathtrain.py
134 lines (102 loc) · 4.35 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import numpy as np
import torch
import torch.nn as nn
from torch import optim
from torch.utils.data import DataLoader, ConcatDataset
from models.psp.pspnet import PSPNet
from models.sobel_op import SobelComputer
from dataset import OnlineTransformDataset
from util.logger import BoardLogger
from util.model_saver import ModelSaver
from util.hyper_para import HyperParameters
from util.log_integrator import Integrator
from util.metrics_compute import compute_loss_and_metrics, iou_hooks_to_be_used
from util.image_saver import vis_prediction
import time
import os
import datetime
torch.backends.cudnn.benchmark = True
# Parse command line arguments
para = HyperParameters()
para.parse()
# Logging
if para['id'].lower() != 'null':
long_id = '%s_%s' % (para['id'],datetime.datetime.now().strftime('%Y-%m-%d_%H:%M:%S'))
else:
long_id = None
logger = BoardLogger(long_id)
logger.log_string('hyperpara', str(para))
print('CUDA Device count: ', torch.cuda.device_count())
# Construct model
model = PSPNet(sizes=(1, 2, 3, 6), psp_size=2048, deep_features_size=1024, backend='resnet50')
model = nn.DataParallel(
model.cuda(), device_ids=[0,1]
)
if para['load'] is not None:
model.load_state_dict(torch.load(para['load']))
optimizer = optim.Adam(model.parameters(), lr=para['lr'], weight_decay=para['weight_decay'])
duts_tr_dir = os.path.join('data', 'DUTS-TR')
duts_te_dir = os.path.join('data', 'DUTS-TE')
ecssd_dir = os.path.join('data', 'ecssd')
msra_dir = os.path.join('data', 'MSRA_10K')
fss_dataset = OnlineTransformDataset(os.path.join('data', 'fss'), method=0, perturb=True)
duts_tr_dataset = OnlineTransformDataset(duts_tr_dir, method=1, perturb=True)
duts_te_dataset = OnlineTransformDataset(duts_te_dir, method=1, perturb=True)
ecssd_dataset = OnlineTransformDataset(ecssd_dir, method=1, perturb=True)
msra_dataset = OnlineTransformDataset(msra_dir, method=1, perturb=True)
print('FSS dataset size: ', len(fss_dataset))
print('DUTS-TR dataset size: ', len(duts_tr_dataset))
print('DUTS-TE dataset size: ', len(duts_te_dataset))
print('ECSSD dataset size: ', len(ecssd_dataset))
print('MSRA-10K dataset size: ', len(msra_dataset))
train_dataset = ConcatDataset([fss_dataset, duts_tr_dataset, duts_te_dataset, ecssd_dataset, msra_dataset])
print('Total training size: ', len(train_dataset))
# For randomness: https://github.com/pytorch/pytorch/issues/5059
def worker_init_fn(worker_id):
np.random.seed(np.random.get_state()[1][0] + worker_id)
# Dataloaders, multi-process data loading
train_loader = DataLoader(train_dataset, para['batch_size'], shuffle=True, num_workers=8,
worker_init_fn=worker_init_fn, drop_last=True, pin_memory=True)
sobel_compute = SobelComputer()
# Learning rate decay scheduling
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, para['steps'], para['gamma'])
saver = ModelSaver(long_id)
report_interval = 50
save_im_interval = 800
total_epoch = int(para['iterations']/len(train_loader) + 0.5)
print('Actual training epoch: ', total_epoch)
train_integrator = Integrator(logger)
train_integrator.add_hook(iou_hooks_to_be_used)
total_iter = 0
last_time = 0
for e in range(total_epoch):
np.random.seed() # reset seed
epoch_start_time = time.time()
# Train loop
model = model.train()
for im, seg, gt in train_loader:
im, seg, gt = im.cuda(), seg.cuda(), gt.cuda()
total_iter += 1
if total_iter % 5000 == 0:
saver.save_model(model, total_iter)
images = model(im, seg)
images['im'] = im
images['seg'] = seg
images['gt'] = gt
sobel_compute.compute_edges(images)
loss_and_metrics = compute_loss_and_metrics(images, para)
train_integrator.add_dict(loss_and_metrics)
optimizer.zero_grad()
(loss_and_metrics['total_loss']).backward()
optimizer.step()
if total_iter % report_interval == 0:
logger.log_scalar('train/lr', scheduler.get_lr()[0], total_iter)
train_integrator.finalize('train', total_iter)
train_integrator.reset_except_hooks()
# Need to put step AFTER get_lr() for correct logging, see issue #22107 in PyTorch
scheduler.step()
if total_iter % save_im_interval == 0:
predict_vis = vis_prediction(images)
logger.log_cv2('train/predict', predict_vis, total_iter)
# Final save!
saver.save_model(model, total_iter)