Skip to content

Latest commit

 

History

History

1808__maximize-number-of-nice-divisors

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 

Problem Statement

You are given a positive integer primeFactors. You are asked to construct a positive integer n that satisfies the following conditions:

  • The number of prime factors of n (not necessarily distinct) is at most primeFactors.
  • The number of nice divisors of n is maximized. Note that a divisor of n is nice if it is divisible by every prime factor of n. For example, if n = 12, then its prime factors are [2,2,3], then 6 and 12 are nice divisors, while 3 and 4 are not.

Return the number of nice divisors of n. Since that number can be too large, return it modulo 109 + 7.

Note that a prime number is a natural number greater than 1 that is not a product of two smaller natural numbers. The prime factors of a number n is a list of prime numbers such that their product equals n.

 

Example 1:

Input: primeFactors = 5
Output: 6
Explanation: 200 is a valid value of n.
It has 5 prime factors: [2,2,2,5,5], and it has 6 nice divisors: [10,20,40,50,100,200].
There is not other value of n that has at most 5 prime factors and more nice divisors.

Example 2:

Input: primeFactors = 8
Output: 18

 

Constraints:

  • 1 <= primeFactors <= 109