forked from lh3/ropebwt3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
rope.c
330 lines (307 loc) · 9.43 KB
/
rope.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <stdio.h>
#include <zlib.h>
#include "rle.h"
#include "rope.h"
/*******************
*** Memory Pool ***
*******************/
#define MP_CHUNK_SIZE 0x100000 // 1MB per chunk
typedef struct { // memory pool for fast and compact memory allocation (no free)
int size, i, n_elems;
int64_t top, max;
uint8_t **mem;
} mempool_t;
static mempool_t *mp_init(int size)
{
mempool_t *mp;
mp = (mempool_t*)calloc(1, sizeof(mempool_t));
mp->size = size;
mp->i = mp->n_elems = MP_CHUNK_SIZE / size;
mp->top = -1;
return mp;
}
static void mp_destroy(mempool_t *mp)
{
int64_t i;
for (i = 0; i <= mp->top; ++i) free(mp->mem[i]);
free(mp->mem); free(mp);
}
static inline void *mp_alloc(mempool_t *mp)
{
if (mp->i == mp->n_elems) {
if (++mp->top == mp->max) {
mp->max = mp->max? mp->max<<1 : 1;
mp->mem = (uint8_t**)realloc(mp->mem, sizeof(void*) * mp->max);
}
mp->mem[mp->top] = (uint8_t*)calloc(mp->n_elems, mp->size);
mp->i = 0;
}
return mp->mem[mp->top] + (mp->i++) * mp->size;
}
/***************
*** B+ rope ***
***************/
rope_t *rope_init(int max_nodes, int block_len)
{
rope_t *rope;
rope = (rope_t*)calloc(1, sizeof(rope_t));
if (block_len < 32) block_len = 32;
rope->max_nodes = (max_nodes+ 1)>>1<<1;
rope->block_len = (block_len + 7) >> 3 << 3;
rope->node = mp_init(sizeof(rpnode_t) * rope->max_nodes);
rope->leaf = mp_init(rope->block_len);
rope->root = (rpnode_t*)mp_alloc((mempool_t*)rope->node);
rope->root->n = 1;
rope->root->is_bottom = 1;
rope->root->p = (rpnode_t*)mp_alloc((mempool_t*)rope->leaf);
return rope;
}
void rope_destroy(rope_t *rope)
{
mp_destroy((mempool_t*)rope->node);
mp_destroy((mempool_t*)rope->leaf);
free(rope);
}
static inline rpnode_t *split_node(rope_t *rope, rpnode_t *u, rpnode_t *v)
{ // split $v's child. $u is the first node in the bucket. $v and $u are in the same bucket. IMPORTANT: there is always enough room in $u
int j, i = v - u;
rpnode_t *w; // $w is the sibling of $v
if (u == 0) { // only happens at the root; add a new root
u = v = (rpnode_t*)mp_alloc((mempool_t*)rope->node);
v->n = 1; v->p = rope->root; // the new root has the old root as the only child
memcpy(v->c, rope->c, 48);
for (j = 0; j < 6; ++j) v->l += v->c[j];
rope->root = v;
}
if (i != u->n - 1) // then make room for a new node
memmove(v + 2, v + 1, sizeof(rpnode_t) * (u->n - i - 1));
++u->n; w = v + 1;
memset(w, 0, sizeof(rpnode_t));
w->p = (rpnode_t*)mp_alloc((mempool_t*)(u->is_bottom? rope->leaf : rope->node));
if (u->is_bottom) { // we are at the bottom level; $v->p is a string instead of a node
uint8_t *p = (uint8_t*)v->p, *q = (uint8_t*)w->p;
rle_split(p, q);
rle_count(q, w->c);
} else { // $v->p is a node, not a string
rpnode_t *p = v->p, *q = w->p; // $v and $w are siblings and thus $p and $q are cousins
p->n -= rope->max_nodes>>1;
memcpy(q, p + p->n, sizeof(rpnode_t) * (rope->max_nodes>>1));
q->n = rope->max_nodes>>1; // NB: this line must below memcpy() as $q->n and $q->is_bottom are modified by memcpy()
q->is_bottom = p->is_bottom;
for (i = 0; i < q->n; ++i)
for (j = 0; j < 6; ++j)
w->c[j] += q[i].c[j];
}
for (j = 0; j < 6; ++j) // compute $w->l and update $v->c
w->l += w->c[j], v->c[j] -= w->c[j];
v->l -= w->l; // update $v->c
return v;
}
int64_t rope_insert_run(rope_t *rope, int64_t x, int a, int64_t rl, rpcache_t *cache)
{ // insert $a after $x symbols in $rope and the returns rank(a, x)
rpnode_t *u = 0, *v = 0, *p = rope->root; // $v is the parent of $p; $u and $v are at the same level and $u is the first node in the bucket
int64_t y = 0, z = 0, cnt[6];
int n_runs;
do { // top-down update. Searching and node splitting are done together in one pass.
if (p->n == rope->max_nodes) { // node is full; split
v = split_node(rope, u, v); // $v points to the parent of $p; when a new root is added, $v points to the root
if (y + v->l < x) // if $v is not long enough after the split, we need to move both $p and its parent $v
y += v->l, z += v->c[a], ++v, p = v->p;
}
u = p;
if (v && x - y > v->l>>1) { // then search backwardly for the right node to descend
p += p->n - 1; y += v->l; z += v->c[a];
for (; y >= x; --p) y -= p->l, z -= p->c[a];
++p;
} else for (; y + p->l < x; ++p) y += p->l, z += p->c[a]; // then search forwardly
assert(p - u < u->n);
if (v) v->c[a] += rl, v->l += rl; // we should not change p->c[a] because this may cause troubles when p's child is split
v = p; p = p->p; // descend
} while (!u->is_bottom);
rope->c[a] += rl; // $rope->c should be updated after the loop as adding a new root needs the old $rope->c counts
if (cache) {
if (cache->p != (uint8_t*)p) memset(cache, 0, sizeof(rpcache_t));
n_runs = rle_insert_cached((uint8_t*)p, x - y, a, rl, cnt, v->c, &cache->beg, cache->bc);
cache->p = (uint8_t*)p;
} else n_runs = rle_insert((uint8_t*)p, x - y, a, rl, cnt, v->c);
z += cnt[a];
v->c[a] += rl; v->l += rl; // this should be after rle_insert(); otherwise rle_insert() won't work
if (n_runs + RLE_MIN_SPACE > rope->block_len) {
split_node(rope, u, v);
if (cache) memset(cache, 0, sizeof(rpcache_t));
}
return z;
}
static rpnode_t *rope_count_to_leaf(const rope_t *rope, int64_t x, int64_t cx[6], int64_t *rest)
{
rpnode_t *u, *v = 0, *p = rope->root;
int64_t y = 0;
int a;
memset(cx, 0, 48);
do {
u = p;
if (v && x - y > v->l>>1) { // search from the end
p += p->n - 1; y += v->l;
for (a = 0; a != 6; ++a) cx[a] += v->c[a];
for (; y > x; --p) {
y -= p->l;
for (a = 0; a != 6; ++a) cx[a] -= p->c[a];
}
++p;
} else { // search from the beginning
for (; y + p->l <= x; ++p) {
y += p->l;
for (a = 0; a != 6; ++a) cx[a] += p->c[a];
}
}
v = p; p = p->p;
} while (!u->is_bottom);
*rest = x - y;
return v;
}
int rope_rank2a(const rope_t *rope, int64_t x, int64_t y, int64_t *cx, int64_t *cy)
{
rpnode_t *v;
int64_t rest, tot = rope->c[0] + rope->c[1] + rope->c[2] + rope->c[3] + rope->c[4] + rope->c[5];
int c = -1;
if (x >= tot) {
memcpy(cx, rope->c, 48);
if (cy) memcpy(cy, cx, 48);
return -1;
}
v = rope_count_to_leaf(rope, x, cx, &rest);
if (y < x || cy == 0) {
c = rle_rank1a((const uint8_t*)v->p, rest, cx, v->c);
} else if (rest + (y - x) <= v->l) { // x and y are in the same block
memcpy(cy, cx, 48);
c = rle_rank2a((const uint8_t*)v->p, rest, rest + (y - x), cx, cy, v->c);
} else { // in two different blocks
c = rle_rank1a((const uint8_t*)v->p, rest, cx, v->c);
if (y >= tot) {
memcpy(cy, rope->c, 48);
} else {
v = rope_count_to_leaf(rope, y, cy, &rest);
rle_rank1a((const uint8_t*)v->p, rest, cy, v->c);
}
}
assert(c >= 0);
return c;
}
/*********************
*** Rope iterator ***
*********************/
void rope_itr_first(const rope_t *rope, rpitr_t *i)
{
memset(i, 0, sizeof(rpitr_t));
i->rope = rope;
for (i->pa[i->d] = rope->root; !i->pa[i->d]->is_bottom;) // descend to the leftmost leaf
++i->d, i->pa[i->d] = i->pa[i->d - 1]->p;
}
const uint8_t *rope_itr_next_block(rpitr_t *i)
{
const uint8_t *ret;
assert(i->d < ROPE_MAX_DEPTH); // a B+ tree should not be that tall
if (i->d < 0) return 0;
ret = (uint8_t*)i->pa[i->d][i->ia[i->d]].p;
while (i->d >= 0 && ++i->ia[i->d] == i->pa[i->d]->n) i->ia[i->d--] = 0; // backtracking
if (i->d >= 0)
while (!i->pa[i->d]->is_bottom) // descend to the leftmost leaf
++i->d, i->pa[i->d] = i->pa[i->d - 1][i->ia[i->d - 1]].p;
return ret;
}
/***********
*** I/O ***
***********/
void rope_print_node(const rpnode_t *p, FILE *fp)
{
if (p->is_bottom) {
int i;
fputc('(', fp);
for (i = 0; i < p->n; ++i) {
uint8_t *block = (uint8_t*)p[i].p;
const uint8_t *q = block + 2, *end = block + 2 + *rle_nptr(block);
if (i) putchar(',');
while (q < end) {
int c = 0;
int64_t j, l;
rle_dec1(q, c, l);
for (j = 0; j < l; ++j) fputc("$ACGTN"[c], fp);
}
}
fputc(')', fp);
} else {
int i;
fputc('(', fp);
for (i = 0; i < p->n; ++i) {
if (i) fputc(',', fp);
rope_print_node(p[i].p, fp);
}
fputc(')', fp);
}
}
void rope_dump_node(const rpnode_t *p, FILE *fp)
{
int16_t i, n = p->n;
uint8_t is_bottom = p->is_bottom;
fwrite(&is_bottom, 1, 1, fp);
fwrite(&n, 2, 1, fp);
if (is_bottom) {
for (i = 0; i < n; ++i) {
fwrite(p[i].c, 8, 6, fp);
fwrite(p[i].p, 1, *rle_nptr(p[i].p) + 2, fp);
}
} else {
for (i = 0; i < p->n; ++i)
rope_dump_node(p[i].p, fp);
}
}
void rope_dump(const rope_t *r, FILE *fp)
{
fwrite(&r->max_nodes, 4, 1, fp);
fwrite(&r->block_len, 4, 1, fp);
rope_dump_node(r->root, fp);
}
rpnode_t *rope_restore_node(const rope_t *r, FILE *fp, int64_t c[6])
{
uint8_t is_bottom, a;
int16_t i, n;
rpnode_t *p;
fread(&is_bottom, 1, 1, fp);
fread(&n, 2, 1, fp);
p = (rpnode_t*)mp_alloc((mempool_t*)r->node);
p->is_bottom = is_bottom, p->n = n;
if (is_bottom) {
for (i = 0; i < n; ++i) {
uint16_t *q;
p[i].p = (rpnode_t*)mp_alloc((mempool_t*)r->leaf);
q = rle_nptr(p[i].p);
fread(p[i].c, 8, 6, fp);
fread(q, 2, 1, fp);
fread(q + 1, 1, *q, fp);
}
} else {
for (i = 0; i < n; ++i)
p[i].p = rope_restore_node(r, fp, p[i].c);
}
memset(c, 0, 48);
for (i = 0; i < n; ++i) {
p[i].l = 0;
for (a = 0; a < 6; ++a)
c[a] += p[i].c[a], p[i].l += p[i].c[a];
}
return p;
}
rope_t *rope_restore(FILE *fp)
{
rope_t *r;
r = (rope_t*)calloc(1, sizeof(rope_t));
fread(&r->max_nodes, 4, 1, fp);
fread(&r->block_len, 4, 1, fp);
r->node = mp_init(sizeof(rpnode_t) * r->max_nodes);
r->leaf = mp_init(r->block_len);
r->root = rope_restore_node(r, fp, r->c);
return r;
}